Beyond Pilot Wave Dynamics: Non-Linearity and Non-Equilibrium in Quantum Mechanics

Total Page:16

File Type:pdf, Size:1020Kb

Beyond Pilot Wave Dynamics: Non-Linearity and Non-Equilibrium in Quantum Mechanics ECOLE CENTRALE MARSEILLE -INSTITUT FRESNEL THÈSE PRÉSENTÉE À L’ECOLE CENTRALE DE MARSEILLE POUR OBTENIR LE GRADE DE DOCTEUR Beyond pilot wave dynamics: non-linearity and non-equilibrium in quantum mechanics Autheur: Directeur de thèse: Mohamed HATIFI Pr. Thomas DURT Spécialité: Physique Théorique Ecole Doctorale 352 - Physique et Sciences de la Matière Soutenue le 24 septembre 2019 devant le jury composé de : M. Christos EFTHYMIOPOULOS Research Center for Astronomy and Rapporteur Applied Mathematics M. Jacques ROBERT Laboratoire de Physique des Gaz Rapporteur et des Plasmas (LPGP) M. Alexandre MATZKIN Laboratoire de Physique Théorique Examinateur et Modélisation (LPTM) Mme Fabienne MICHELINI Institut Matériaux Microélectronique Examinatrice Nanosciences de Provence (IM2NP) M. Thomas DURT Institut Fresnel Directeur de thèse iii “L’existence du quantum d’action (. ) implique une sorte d’incompatibilité entre le point de vue de la localisation dans l’espace et dans le temps et le point de vue de l’évolution dynamique (. ) La localisation exacte dans l’espace et le temps est une sorte d’idéalisation statique qui exclut toute évolution et toute dynamique. (. ) Dans la mécanique classique, il était permis d’étudier pour eux-mêmes les déplacements dans l’espace et de définir ainsi les vitesses, les accélérations sans s’occuper de la façon dont sont matériellement réalisés ces déplacements : de cette étude abstraite des mouvements, on s’élevait ensuite à la dynamique en introduisant quelques principes physiques nouveaux. Dans la mécanique quantique, une semblable division de l’exposé n’est plus en principe admissible puisque la localisation spacio-temporelle qui est à la base de la cinématique est acceptable seulement dans une mesure qui dépend des conditions dynamiques du mouvement...” Louis de Broglie - « La physique nouvelle et les quanta » - (1937) v ECOLE CENTRALE MARSEILLE - INSTITUT FRESNEL Abstract (French) Institut Fresnel Ecole Doctorale 352 - Physique et Sciences de la Matière Doctor of Philosophy Beyond pilot wave dynamics: non-linearity and non-equilibrium in quantum mechanics by Mohamed HATIFI La mécanique quantique a modifié notre façon d’interpréter ce que jadis l’on appelait communément "réalité physique". A titre d’exemple, selon l’interprétation standard de la mécanique quantique (dite interprétation probabiliste de Copenhague) les propriétés d’un objet quantique n’ont pas de réalité physique, du moins, pas avant que l’observateur ne les mesure. De plus, tout semble se passer comme s’il y avait un indéterminisme in- trinsèque à la dynamique quantique qui ne permettrait pas de prédire avec certitude le résultat d’une mesure. Dès lors, plusieurs interprétations physiques et philosophiques ont vu naissance afin de décrire (notre con- naissance de) cette réalité. C’est au cours de la conférence de Solvay en 1927 que Louis de Broglie, un opposant à l’interprétation prob- abiliste, proposa une solution alternative qui permettait d’une part de restaurer le déterminisme (ainsi que le réalisme) et d’autre part de remettre au premier plan la notion de trajectoire. Par la suite cette théorie fut redécouverte et complétée par David Bohm pour donner naissance à la théorie connue aujourd’hui sous l’appellation de théorie de l’onde pilote. John Bell a dit1 à propos de cette interprétation : " En 1952, l’impossible a été rendu possible. C’était dans l’article de David Bohm. Bohm a montré explicitement comment une de- scription indéterministe pouvait être transformée en théorie déterministe." Les travaux présentés dans ce manuscrit de thèse s’inscrivent dans la continuité de la vision de de Broglie et consistent en deux parties, chacune d’elles ayant pour but de répondre à une problématique particulière. Dans la première, on considère deux formalismes du type onde pilote, une version déterministe (dynamique de de Broglie-Bohm chapitre2) ainsi qu’une de ses extensions stochastiques (dynamique de Bohm-Hiley- Nelson chapitre3). On s’attardera notamment sur l’émergence de la probabilité quantique jY(x, t)j2 à partir de ces dynamiques dans l’ approche dite du "Quantum Non-Equilibrium". Cette approche permet entre autres de s’affranchir du statut axiomatique de la distribution de probabilité jY(x, t)j2 mais aussi de la justifier par des arguments similaires à ceux que l’on retrouve en mécanique statistique. Parmi ces arguments on retrou- vera à titre d’exemple la notion d’ergodicité, de chaos, de mixing ainsi que d’autres propriétés qui feront l’objet d’une étude approfondie (chapitre4). En particulier, l’ émergence de l’ équilibre s’accompagne d’un processus de relaxation que nous allons caractériser dans chacune de ces dynamiques (dans le chapitre3 nous dériverons un théorème H qui décrit quantitativement ce processus dans le cas stochastique). Par ailleurs, nous nous efforcerons, dans une approche phénoménologique, d’appliquer ces théories quantiques d’onde pilote à la dynamique macroscopique des gouttes d’huile rebondissantes dans un bain (chapitre5). La deuxième problématique quant à elle, repose sur une hypothétique généralisation non-linéaire de la mé- canique quantique. En particulier, nous considérerons l’équation de Schrodinger Newton comme une pre- mière proposition a cette généralisation. Cette équation non-linéaire découle d’une approximation semi- classique de la gravité et a été entre autres proposée par Roger Penrose pour expliquer le collapse de la fonction d’onde. Nous montrerons dans un premier temps comment le programme de la double solution de Louis de Broglie se développe dans ce contexte (chapitre6). Par la suite nous verrons comment tester cette généralisation non-linéaire par deux propositions expérimentales (chapitre7). En particulier, l’une de ces propositions nous conduira à étudier des effets de décohérence lors du refroidissement laser (Doppler cooling, chapitre8). Pour cela on utilisera le modèle de Ghirardi–Rimini–Weber (GRW) comme modèle de décohérence. Ce qui nous permettra par la suite de généraliser les résultats obtenus auparavant par GRW dans leur modèle. 1“On the impossible pilot wave” -1982 vii ECOLE CENTRALE MARSEILLE - INSTITUT FRESNEL Abstract (English) Institut Fresnel Ecole Doctorale 352 - Physique et Sciences de la Matière Doctor of Philosophy Beyond pilot wave dynamics: non-linearity and non-equilibrium in quantum mechanics by Mohamed HATIFI The quantum theory has modified the way we interpret what in the past was commonly called "physical reality". As an example, according to the standard interpretation of quantum mechanics (the so-called prob- abilistic interpretation of Copenhagen), the properties of a quantum object have no physical reality, at least not before the observer measures them. Moreover, everything seems to happen as if there was an intrinsic indeterminism in the quantum dynamics that forbids to predict with certainty the result of a measurement. From then, several physical and philosophical interpretations were born to describe (our knowledge of) this reality. It is in 1927, during the Solvay conference, that Louis de Broglie, an opponent of the probabilistic interpreta- tion, proposed an alternative solution to that problem. He proposed on the one hand to restore determinism (as well as realism) and on the other hand to bring back the notion of trajectory to the foreground. Subse- quently this theory was rediscovered and supplemented by David Bohm to give birth to the theory known today as pilot wave theory. John Bell said2 about this interpretation: " In 1952, I saw the impossible done. It was in papers by David Bohm. Bohm showed explicitly how .... the indeterministic description could be transformed into a deterministic one." The works carried out in this manuscript are in continuity with de Broglie’s view and can be summed up in two main parts, each of them having the aim of answering a particular problem. In the first part, we con- sider two versions of the pilot wave theory: a deterministic version (de Broglie-Bohm dynamics in chapter2) as well as one of its stochastic extensions (Bohm-Hiley-Nelson dynamics in chapter3). In the framework of what is called the "Quantum non-equilibrium" approach we shall see how the quantum probability jY(x, t)j2 emerges from those dynamics. This approach makes it possible to get rid of the axiomatic status of the proba- bility distribution jY(x, t)j2 but also to justify it by arguments similar to those found in statistical mechanics. Among these arguments we shall for instance find ergodicity, chaos, mixing and other properties that will be studied in depth (chapter4). In particular, the emergence of the quantum probability is accompanied by a relaxation process that will be characterized for both dynamics (in chapter3 we derive a strong H-theorem for the stochastic dynamics which quantitatively describes how this process occurs). In addition, we will try in a phenomenological approach to apply these quantum pilot wave theories to the macroscopic dynamics of bouncing oil droplets (chapter5). The second problem is linked to a hypothetical nonlinear generalization of the quantum theory. In partic- ular, we considered the Schrodinger Newton equation as a first proposal to this generalization. In a nutshell, this non-linear equation derives from a semi-classical approximation of gravity and has been proposed by Roger Penrose among others to explain the collapse of the wave function. We shall first show how it is related to the double solution program of Louis de Broglie (chapter6). Subsequently we will see how to test this nonlinear generalization by considering two experimental proposals (chapter7). In particular, one of these proposals will lead us to study the interplay between decoherence and Doppler cooling (chapter8). To do this we shall use the model of Ghirardi-Rimini and Weber (GRW) as a decoherence model, which will allow us to generalize their original results. 2“On the impossible pilot wave” -1982 ix Acknowledgements Au nom de Dieu. Papa, je me souviens encore de ce jour, ce jour où tes dernières paroles ont résonné à travers mon cœur et mon âme. Ce jour-là, je t’ai fait entre autres la promesse de faire des études.
Recommended publications
  • Yes, More Decoherence: a Reply to Critics
    Yes, More Decoherence: A Reply to Critics Elise M. Crull∗ Submitted 11 July 2017; revised 24 August 2017 1 Introduction A few years ago I published an article in this journal titled \Less interpretation and more decoherence in quantum gravity and inflationary cosmology" (Crull, 2015) that generated replies from three pairs of authors: Vassallo and Esfeld (2015), Okon and Sudarsky (2016) and Fortin and Lombardi (2017). As a philosopher of physics it is my chief aim to engage physicists and philosophers alike in deeper conversation regarding scientific theories and their implications. In as much as my earlier paper provoked a suite of responses and thereby brought into sharper relief numerous misconceptions regarding decoherence, I welcome the occasion provided by the editors of this journal to continue the discussion. In what follows, I respond to my critics in some detail (wherein the devil is often found). I must be clear at the outset, however, that due to the nature of these criticisms, much of what I say below can be categorized as one or both of the following: (a) a repetition of points made in the original paper, and (b) a reiteration of formal and dynamical aspects of quantum decoherence considered uncontroversial by experts working on theoretical and experimental applications of this process.1 I begin with a few paragraphs describing what my 2015 paper both was, and was not, about. I then briefly address Vassallo's and Esfeld's (hereafter VE) relatively short response to me, dedicating the bulk of my reply to the lengthy critique of Okon and Sudarsky (hereafter OS).
    [Show full text]
  • Simulating Quantum Field Theory with a Quantum Computer
    Simulating quantum field theory with a quantum computer John Preskill Lattice 2018 28 July 2018 This talk has two parts (1) Near-term prospects for quantum computing. (2) Opportunities in quantum simulation of quantum field theory. Exascale digital computers will advance our knowledge of QCD, but some challenges will remain, especially concerning real-time evolution and properties of nuclear matter and quark-gluon plasma at nonzero temperature and chemical potential. Digital computers may never be able to address these (and other) problems; quantum computers will solve them eventually, though I’m not sure when. The physics payoff may still be far away, but today’s research can hasten the arrival of a new era in which quantum simulation fuels progress in fundamental physics. Frontiers of Physics short distance long distance complexity Higgs boson Large scale structure “More is different” Neutrino masses Cosmic microwave Many-body entanglement background Supersymmetry Phases of quantum Dark matter matter Quantum gravity Dark energy Quantum computing String theory Gravitational waves Quantum spacetime particle collision molecular chemistry entangled electrons A quantum computer can simulate efficiently any physical process that occurs in Nature. (Maybe. We don’t actually know for sure.) superconductor black hole early universe Two fundamental ideas (1) Quantum complexity Why we think quantum computing is powerful. (2) Quantum error correction Why we think quantum computing is scalable. A complete description of a typical quantum state of just 300 qubits requires more bits than the number of atoms in the visible universe. Why we think quantum computing is powerful We know examples of problems that can be solved efficiently by a quantum computer, where we believe the problems are hard for classical computers.
    [Show full text]
  • Quantum State Complexity in Computationally Tractable Quantum Circuits
    PRX QUANTUM 2, 010329 (2021) Quantum State Complexity in Computationally Tractable Quantum Circuits Jason Iaconis * Department of Physics and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA (Received 28 September 2020; revised 29 December 2020; accepted 26 January 2021; published 23 February 2021) Characterizing the quantum complexity of local random quantum circuits is a very deep problem with implications to the seemingly disparate fields of quantum information theory, quantum many-body physics, and high-energy physics. While our theoretical understanding of these systems has progressed in recent years, numerical approaches for studying these models remains severely limited. In this paper, we discuss a special class of numerically tractable quantum circuits, known as quantum automaton circuits, which may be particularly well suited for this task. These are circuits that preserve the computational basis, yet can produce highly entangled output wave functions. Using ideas from quantum complexity theory, especially those concerning unitary designs, we argue that automaton wave functions have high quantum state complexity. We look at a wide variety of metrics, including measurements of the output bit-string distribution and characterization of the generalized entanglement properties of the quantum state, and find that automaton wave functions closely approximate the behavior of fully Haar random states. In addition to this, we identify the generalized out-of-time ordered 2k-point correlation functions as a particularly use- ful probe of complexity in automaton circuits. Using these correlators, we are able to numerically study the growth of complexity well beyond the scrambling time for very large systems. As a result, we are able to present evidence of a linear growth of design complexity in local quantum circuits, consistent with conjectures from quantum information theory.
    [Show full text]
  • Quantum Information Science and the Technology Frontier Jake Taylor February 5Th, 2020
    Quantum Information Science and the Technology Frontier Jake Taylor February 5th, 2020 Office of Science and Technology Policy www.whitehouse.gov/ostp www.ostp.gov @WHOSTP Photo credit: Lloyd Whitman The National Quantum Initiative Signed Dec 21, 2018 11 years of sustained effort DOE: new centers working with the labs, new programs NSF: new academic centers NIST: industrial consortium, expand core programs Coordination: NSTC combined with a National Coordination Office and an external Advisory committee 2 National Science and Technology Council • Subcommittee on Quantum Information Science (SCQIS) • DoE, NSF, NIST co-chairs • Coordinates NQI, other research activities • Subcommittee on Economic and Security Implications of Quantum Science (ESIX) • DoD, DoE, NSA co-chairs • Civilian, IC, Defense conversation space 3 Policy Recommendations • Focus on a science-first approach that aims to identify and solve Grand Challenges: problems whose solutions enable transformative scientific and industrial progress; • Build a quantum-smart and diverse workforce to meet the needs of a growing field; • Encourage industry engagement, providing appropriate mechanisms for public-private partnerships; • Provide the key infrastructure and support needed to realize the scientific and technological opportunities; • Drive economic growth; • Maintain national security; and • Continue to develop international collaboration and cooperation. 4 Quantum Sensing Accuracy via physical law New modalities of measurement Concept: atoms are indistinguishable. Use Challenge: measuring inside the body. Use this to create time standards, enables quantum behavior of individual nuclei to global navigation. image magnetic resonances (MRI) Concept: speed of light is constant. Use this Challenge: estimating length limited by ‘shot to measure distance using a time standard. noise’ (individual photons!).
    [Show full text]
  • It Is a Great Pleasure to Write This Letter on Behalf of Dr. Maria
    Rigorous Quantum-Classical Path Integral Formulation of Real-Time Dynamics Nancy Makri Departments of Chemistry and Physics University of Illinois The path integral formulation of time-dependent quantum mechanics provides the ideal framework for rigorous quantum-classical or quantum-semiclassical treatments, as the spatially localized, trajectory-like nature of the quantum paths circumvents the need for mean-field-type assumptions. However, the number of system paths grows exponentially with the number of propagation steps. In addition, each path of the quantum system generally gives rise to a distinct classical solvent trajectory. This exponential proliferation of trajectories with propagation time is the quantum-classical manifestation of nonlocality. A rigorous real-time quantum-classical path integral (QCPI) methodology has been developed, which converges to the stationary phase limit of the full path integral with respect to the degrees of freedom comprising the system’s environment. The starting point is the identification of two components in the effects induced on a quantum system by a polyatomic environment. The first, “classical decoherence mechanism” is associated with phonon absorption and induced emission and is dominant at high temperature. Within the QCPI framework, the memory associated with classical decoherence is removable. A second, nonlocal in time, “quantum decoherence process”, which is associated with spontaneous phonon emission, becomes important at low temperatures and is responsible for detailed balance. The QCPI methodology takes advantage of the memory-free nature of system-independent solvent trajectories to account for all classical decoherence effects on the dynamics of the quantum system in an inexpensive fashion. Inclusion of the residual quantum decoherence is accomplished via phase factors in the path integral expression, which is amenable to large time steps and iterative decompositions.
    [Show full text]
  • Quantum Computation and Complexity Theory
    Quantum computation and complexity theory Course given at the Institut fÈurInformationssysteme, Abteilung fÈurDatenbanken und Expertensysteme, University of Technology Vienna, Wintersemester 1994/95 K. Svozil Institut fÈur Theoretische Physik University of Technology Vienna Wiedner Hauptstraûe 8-10/136 A-1040 Vienna, Austria e-mail: [email protected] December 5, 1994 qct.tex Abstract The Hilbert space formalism of quantum mechanics is reviewed with emphasis on applicationsto quantum computing. Standardinterferomeric techniques are used to construct a physical device capable of universal quantum computation. Some consequences for recursion theory and complexity theory are discussed. hep-th/9412047 06 Dec 94 1 Contents 1 The Quantum of action 3 2 Quantum mechanics for the computer scientist 7 2.1 Hilbert space quantum mechanics ..................... 7 2.2 From single to multiple quanta Ð ªsecondº ®eld quantization ...... 15 2.3 Quantum interference ............................ 17 2.4 Hilbert lattices and quantum logic ..................... 22 2.5 Partial algebras ............................... 24 3 Quantum information theory 25 3.1 Information is physical ........................... 25 3.2 Copying and cloning of qbits ........................ 25 3.3 Context dependence of qbits ........................ 26 3.4 Classical versus quantum tautologies .................... 27 4 Elements of quantum computatability and complexity theory 28 4.1 Universal quantum computers ....................... 30 4.2 Universal quantum networks ........................ 31 4.3 Quantum recursion theory ......................... 35 4.4 Factoring .................................. 36 4.5 Travelling salesman ............................. 36 4.6 Will the strong Church-Turing thesis survive? ............... 37 Appendix 39 A Hilbert space 39 B Fundamental constants of physics and their relations 42 B.1 Fundamental constants of physics ..................... 42 B.2 Conversion tables .............................. 43 B.3 Electromagnetic radiation and other wave phenomena .........
    [Show full text]
  • American Leadership in Quantum Technology Joint Hearing
    AMERICAN LEADERSHIP IN QUANTUM TECHNOLOGY JOINT HEARING BEFORE THE SUBCOMMITTEE ON RESEARCH AND TECHNOLOGY & SUBCOMMITTEE ON ENERGY COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED FIFTEENTH CONGRESS FIRST SESSION OCTOBER 24, 2017 Serial No. 115–32 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PUBLISHING OFFICE 27–671PDF WASHINGTON : 2018 For sale by the Superintendent of Documents, U.S. Government Publishing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. LAMAR S. SMITH, Texas, Chair FRANK D. LUCAS, Oklahoma EDDIE BERNICE JOHNSON, Texas DANA ROHRABACHER, California ZOE LOFGREN, California MO BROOKS, Alabama DANIEL LIPINSKI, Illinois RANDY HULTGREN, Illinois SUZANNE BONAMICI, Oregon BILL POSEY, Florida ALAN GRAYSON, Florida THOMAS MASSIE, Kentucky AMI BERA, California JIM BRIDENSTINE, Oklahoma ELIZABETH H. ESTY, Connecticut RANDY K. WEBER, Texas MARC A. VEASEY, Texas STEPHEN KNIGHT, California DONALD S. BEYER, JR., Virginia BRIAN BABIN, Texas JACKY ROSEN, Nevada BARBARA COMSTOCK, Virginia JERRY MCNERNEY, California BARRY LOUDERMILK, Georgia ED PERLMUTTER, Colorado RALPH LEE ABRAHAM, Louisiana PAUL TONKO, New York DRAIN LAHOOD, Illinois BILL FOSTER, Illinois DANIEL WEBSTER, Florida MARK TAKANO, California JIM BANKS, Indiana COLLEEN HANABUSA, Hawaii ANDY BIGGS, Arizona CHARLIE CRIST, Florida ROGER W. MARSHALL, Kansas NEAL P. DUNN, Florida CLAY HIGGINS, Louisiana RALPH NORMAN, South Carolina SUBCOMMITTEE ON RESEARCH AND TECHNOLOGY HON. BARBARA COMSTOCK, Virginia, Chair FRANK D. LUCAS, Oklahoma DANIEL LIPINSKI, Illinois RANDY HULTGREN, Illinois ELIZABETH H.
    [Show full text]
  • Bohmian Mechanics Versus Madelung Quantum Hydrodynamics
    Ann. Univ. Sofia, Fac. Phys. Special Edition (2012) 112-119 [arXiv 0904.0723] Bohmian mechanics versus Madelung quantum hydrodynamics Roumen Tsekov Department of Physical Chemistry, University of Sofia, 1164 Sofia, Bulgaria It is shown that the Bohmian mechanics and the Madelung quantum hy- drodynamics are different theories and the latter is a better ontological interpre- tation of quantum mechanics. A new stochastic interpretation of quantum me- chanics is proposed, which is the background of the Madelung quantum hydro- dynamics. Its relation to the complex mechanics is also explored. A new complex hydrodynamics is proposed, which eliminates completely the Bohm quantum po- tential. It describes the quantum evolution of the probability density by a con- vective diffusion with imaginary transport coefficients. The Copenhagen interpretation of quantum mechanics is guilty for the quantum mys- tery and many strange phenomena such as the Schrödinger cat, parallel quantum and classical worlds, wave-particle duality, decoherence, etc. Many scientists have tried, however, to put the quantum mechanics back on ontological foundations. For instance, Bohm [1] proposed an al- ternative interpretation of quantum mechanics, which is able to overcome some puzzles of the Copenhagen interpretation. He developed further the de Broglie pilot-wave theory and, for this reason, the Bohmian mechanics is also known as the de Broglie-Bohm theory. At the time of inception of quantum mechanics Madelung [2] has demonstrated that the Schrödinger equa- tion can be transformed in hydrodynamic form. This so-called Madelung quantum hydrodynam- ics is a less elaborated theory and usually considered as a precursor of the Bohmian mechanics. The scope of the present paper is to show that these two theories are different and the Made- lung hydrodynamics is a better interpretation of quantum mechanics than the Bohmian me- chanics.
    [Show full text]
  • Bounds on Errors in Observables Computed from Molecular Dynamics Simulations
    Bounds on Errors in Observables Computed from Molecular Dynamics Simulations Vikram Sundar [email protected] Advisor: Dr. David Gelbwaser and Prof. Alan´ Aspuru-Guzik (Chemistry) Shadow Advisor: Prof. Martin Nowak Submitted in partial fulfillment of the honors requirements for the degree of Bachelor of Arts in Mathematics March 19, 2018 Contents Abstract iii Acknowledgments iv 1 Introduction1 1.1 Molecular Dynamics................................1 1.1.1 Why Molecular Dynamics?........................1 1.1.2 What is Molecular Dynamics?......................2 1.1.2.1 Force Fields and Integrators..................2 1.1.2.2 Observables...........................3 1.2 Structure of this Thesis...............................4 1.2.1 Sources of Error...............................4 1.2.2 Key Results of this Thesis.........................5 2 The St¨ormer-Verlet Method and Energy Conservation7 2.1 Symplecticity....................................8 2.1.1 Hamiltonian and Lagrangian Mechanics................8 2.1.2 Symplectic Structures on Manifolds...................9 2.1.3 Hamiltonian Flows are Symplectic.................... 10 2.1.4 Symplecticity of the Stormer-Verlet¨ Method............... 12 2.2 Backward Error Analysis.............................. 12 2.2.1 Symplectic Methods and Backward Error Analysis.......... 14 2.2.2 Bounds on Energy Conservation..................... 14 3 Integrable Systems and Bounds on Sampling Error 16 3.1 Integrable Systems and the Arnold-Liouville Theorem............. 17 3.1.1 Poisson Brackets and First Integrals................... 17 3.1.2 Liouville’s Theorem............................ 18 3.1.3 Action-Angle Coordinates......................... 20 3.1.4 Integrability and MD Force Fields.................... 22 3.2 Sampling Error................................... 23 3.2.1 Equivalence of Spatial and Time Averages............... 23 3.2.2 Bounding Sampling Error......................... 24 3.2.3 Reducing Sampling Error with Filter Functions...........
    [Show full text]
  • Quantum Speedup for Aeroscience and Engineering
    NASA/TM-2020-220590 Quantum Speedup for Aeroscience and Engineering Peyman Givi University of Pittsburgh, Pittsburgh, Pennsylvania Andrew J. Daley University of Strathclyde, Glasgow, United Kingdom Dimitri Mavriplis University of Wyoming, Laramie, Wyoming Mujeeb Malik Langley Research Center, Hampton, Virginia May 2020 NASA STI Program . in Profile Since its founding, NASA has been dedicated to • CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space science. papers from scientific and technical The NASA scientific and technical information conferences, symposia, seminars, or other (STI) program plays a key part in helping NASA meetings sponsored or co-sponsored by maintain this important role. NASA. The NASA STI program operates under the • SPECIAL PUBLICATION. Scientific, auspices of the Agency Chief Information Officer. It technical, or historical information from collects, organizes, provides for archiving, and NASA programs, projects, and missions, often disseminates NASA’s STI. The NASA STI program concerned with subjects having substantial provides access to the NASA Aeronautics and Space public interest. Database and its public interface, the NASA Technical Report Server, thus providing one of the • TECHNICAL TRANSLATION. English- largest collections of aeronautical and space science language translations of foreign scientific and STI in the world. Results are published in both non- technical material pertinent to NASA’s NASA channels and by NASA in the NASA STI mission. Report Series, which includes the following report types: Specialized services also include creating custom thesauri, building customized databases, • TECHNICAL PUBLICATION. Reports of and organizing and publishing research results. completed research or a major significant phase of research that present the results of For more information about the NASA STI NASA programs and include extensive data or program, see the following: theoretical analysis.
    [Show full text]
  • Less Decoherence and More Coherence in Quantum Gravity, Inflationary Cosmology and Elsewhere
    Less Decoherence and More Coherence in Quantum Gravity, Inflationary Cosmology and Elsewhere Elias Okon1 and Daniel Sudarsky2 1Instituto de Investigaciones Filosóficas, Universidad Nacional Autónoma de México, Mexico City, Mexico. 2Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico. Abstract: In [1] it is argued that, in order to confront outstanding problems in cosmol- ogy and quantum gravity, interpretational aspects of quantum theory can by bypassed because decoherence is able to resolve them. As a result, [1] concludes that our focus on conceptual and interpretational issues, while dealing with such matters in [2], is avoidable and even pernicious. Here we will defend our position by showing in detail why decoherence does not help in the resolution of foundational questions in quantum mechanics, such as the measurement problem or the emergence of classicality. 1 Introduction Since its inception, more than 90 years ago, quantum theory has been a source of heated debates in relation to interpretational and conceptual matters. The prominent exchanges between Einstein and Bohr are excellent examples in that regard. An avoid- ance of such issues is often justified by the enormous success the theory has enjoyed in applications, ranging from particle physics to condensed matter. However, as people like John S. Bell showed [3], such a pragmatic attitude is not always acceptable. In [2] we argue that the standard interpretation of quantum mechanics is inadequate in cosmological contexts because it crucially depends on the existence of observers external to the studied system (or on an artificial quantum/classical cut). We claim that if the system in question is the whole universe, such observers are nowhere to be found, so we conclude that, in order to legitimately apply quantum mechanics in such contexts, an observer independent interpretation of the theory is required.
    [Show full text]
  • Defense Primer: Quantum Technology
    Updated June 7, 2021 Defense Primer: Quantum Technology Quantum technology translates the principles of quantum Successful development and deployment of such sensors physics into technological applications. In general, quantum could lead to significant improvements in submarine technology has not yet reached maturity; however, it could detection and, in turn, compromise the survivability of sea- hold significant implications for the future of military based nuclear deterrents. Quantum sensors could also sensing, encryption, and communications, as well as for enable military personnel to detect underground structures congressional oversight, authorizations, and appropriations. or nuclear materials due to their expected “extreme sensitivity to environmental disturbances.” The sensitivity Key Concepts in Quantum Technology of quantum sensors could similarly potentially enable Quantum applications rely on a number of key concepts, militaries to detect electromagnetic emissions, thus including superposition, quantum bits (qubits), and enhancing electronic warfare capabilities and potentially entanglement. Superposition refers to the ability of quantum assisting in locating concealed adversary forces. systems to exist in two or more states simultaneously. A qubit is a computing unit that leverages the principle of The DSB concluded that quantum radar, hypothesized to be superposition to encode information. (A classical computer capable of identifying the performance characteristics (e.g., encodes information in bits that can represent binary
    [Show full text]