(Scrophulariaceae): a Review of Phylogenetic Studies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
American Species of Lindernia Dubia (L.) Pennell – Occurrence in India
Biological Forum – An International Journal 7(1): 48-51(2015) ISSN No. (Print):0975-1130 ISSN No. (Online):2249-3239 American species of Lindernia dubia (L.) Pennell – occurrence in India Jothimani Krishnasamy and Rajendran Arumugam Department of Botany, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, INDIA. (Corresponding author: Rajendran Arumugam) (Received 14 December, 2014, Accepted 01 January, 2015) (Published by Research Trend, Website: www.researchtrend.net) ABSTRACT: Lindernia dubia (L.) Pennell American species so far reported in North America, Central America, South America, Taiwan, China, Serbia, Bulgaria, Japan, Canada, Mexico, Cuba, Jamaica, Coata Rica, Panama, Colombia, Bolivia, Venezuela and Brazil. First time reported in India from the Western Ghats of Coimbatore in Tamil Nadu. A detailed description and photograph are provided to facilitate its easy identification. Keywords: Lindernia dubia, New record, Western Ghats, Coimbatore, India. INTRODUCTION PLANT DESCRIPTION The genus Lindernia Allioni (1766:178, t5) comprises Lindernia dubia (L.) Pennell, in Acad. Nat. Sci. Phil. about 100 species (Fischer, 1999), distributed almost Monogr. 1: 141. 1935; Ou, in Bull. Exp. Forest. Natl. throughout the tropical and temperate regions of both Chung Hsing Univ. 8: 19. 1987; Liu, Fl. Taiwan. (2nd the old and new world (Lewis, 2000). The centers of ed). 4:605. 1998. Gratiola dubia L. Sp. Pl. 17. 1753. diversity of Lindernia are situated in Africa (Fischer, Herb, 5-20 cm long, much-branched near base, 1992) and South East Asia. They fall in 3 main glabrous, erect to ascending, often rooting at lower geographical groups, the largest in Asia followed by nodes; stem green, section quadrate. -
Protecting the Natural Endangered Heritage in Romania, Croatia, Poland and Slovenia
Available online at http://journals.usamvcluj.ro/index.php/promediu ProEnvironment ProEnvironment 11 (2018) 143-157 Review The Rights of Alive – Protecting the Natural Endangered Heritage in Romania, Croatia, Poland and Slovenia CIOANCĂ Lia-Maria1*, Luminița UJICĂ2, Marijana MIKULANDRA3, Ryszard SOŁTYSIK4, Maja ČERNE5 1Babeș-Bolyai University Cluj-Napoca, University Extension Bistrița, Andrei Mureşanu st., no. 3-5, Romania 2High Scool with Sportive Program Bistrița, Calea Moldovei no. 18. Romania 3OŠ Tina Ujevi Osnovna škola Tina Ujevića Koturaška cesta 75 10000 Zagreb, Croatia 4Zespół Szkół Nr1 w Humniskach, 36 – 206, Huminska 264, Poland 5OŠ Rogaška Slatina, Kidričeva ulica 24, 3250 Rogaška Slatina Slovenia Received 23 July 2018; received and revised form 18 September 2018; accepted 25 September 2018 Available online 30 September 2018 Abstract This article deals with the impact of destructive actions of human population on natural world. As a consequence of relying on non-renewable energy sources and reckless encroachment on natural habitats a lot of plant and animal species have become extinct and more and more species are getting endangered. Thus celebrating biodiversity and solidarity for all life forms, from the tiniest one to the most complex eco-systems, has been in the centre of our attention and operational activities. Keywords: durable development, ecology, endangered species. 1. Introduction Within the massive destruction of forests and forest climate, we witness significant changes, Just as the man has passed from the stage of sometimes radical of the environment. For the animal hunter and collector up to animal raiser and farmer, and plants which have survived through a long period the natural vegetation has increasingly been subject of adaptation, a new difficult era starts again. -
Ecology of Naturalized Invasive Species Lindernia Dubia (L.) Pennell in the Netherlands
Gorteria – Dutch Botanical Archives 40, 2018: 001 – 010 ISSN (online) 2542-8578 INVASIVE SPECIES IN THE NETHERLANDS Ecology of naturalized invasive species Lindernia dubia (L.) Pennell in the Netherlands E. L. A. N. Simons1 2, M. G. M. Jansen3 Key words Abstract – Lindernia dubia (L.) Pennell, a North American species, is still a rare and ephemerical neophyte in the Netherlands, but is invading the country rapidly now. We expect it to become a threat to plant biodiversity in Lindernia dubia Dutch wetlands. To describe its ecological and phytosociological position and assess its possible risk status we investigated known sites in the Netherlands. invasive alien species Being a pioneer species on open, muddy soil, more or less rich in nutrients, more or less acid, it occurs in different phytosociology phytosociological classes: Littorelletea uniflorae, Phragmitetea, Isoeto-Nanojuncetea and Bidentetea tripartitae. We wetlands consider the species as possibly harmfull to vegetations belonging to the Littorelletea uniflorae and some associations Littorelletea uniflorae of the Isoeto-Nanojuncetea, as those vegetations are already threatened by drainage and athmospheric deposition of nitrogen; they contain several species of the Dutch Red list for vascular plants and the size and growth rate of Isoeto-Nanojuncetea many characteristic plants makes them vulnerable to out-competing by Lindernia dubia. Bidentetea tripartitae Samenvatting – Schijngenadekruid (Lindernia dubia (L.) Pennell; Fig. 1, 2) is een kleine eenjarige plant, behorend tot een eigen familie (Fischer et al. 2013), de Linderniaceae, die nauw verwant is aan de Gratiolaceae en Plantagina- ceae en vroeger werd geplaatst in de Scrophulariaceae s.l. De plant is haarloos en vormt geen rozet, groeit liggend tot opstijgend, met op doorsnede vierkante stengels tot 20 cm lang. -
Verbascum Thapsus By: Dave Long, UCCE Master Gardener of Lake Tahoe
UCCE Master Gardeners of Lake Tahoe (Invasive) Tahoe Plants and Trees Wooley Mullein – Verbascum Thapsus By: Dave Long, UCCE Master Gardener of Lake Tahoe The Wooley or Common Mullein is one of those plants that looks like it belongs here in the Tahoe Basin but is in reality not a native plant, originating in Eurasia. It is considered a noxious weed in some states and an invasive weed having a limited environmental impact statewide in California. The plant is fairly common in disturbed areas, especially dry gravelly areas next to water channels and soil benches of braided streams. Mullein is also found along roadsides and in reclamation areas. The Common Mullein is a member of the figwort family (Scrophulariaceae) that also includes our many types of native Indian paintbrush (Castilleja spp.) and the non-native garden snapdragon (Antirrhinum majus). The plant is an annual, biennial or short lived perennial (depending on environmental conditions) that during the first year (or 2) maintains a compact basal rosette of wooly, grey green oblong-obovate leaves, that may be up to 10 inches in length. During the second (occasionally 3rd) year a central flower stalk forms with leaves of decreasing size along the lower portion of the flower stalk. Under favorable conditions the flower stock may reach 5 foot or more in height. Cold and numerous freeze thaw cycles have little effect on the appearance of the leaved basal rosette, which is one of the first plants to emerge from winter dormancy. The flower stalk may remain erect, though dry and dead for a season or more. -
State of New York City's Plants 2018
STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species. -
Conserving Europe's Threatened Plants
Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database. -
Phylogenetic Relationships Among the Mangrove Species of Acanthaceae Found in Indian Sundarban, As Revealed by RAPD Analysis
Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library Advances in Applied Science Research, 2015, 6(3):179-184 ISSN: 0976-8610 CODEN (USA): AASRFC Phylogenetic relationships among the mangrove species of Acanthaceae found in Indian Sundarban, as revealed by RAPD analysis Surya Shekhar Das 1, Swati Das (Sur) 2 and Parthadeb Ghosh* 1Department of Botany, Bolpur College, Birbhum, West Bengal, India 2Department of Botany, Nabadwip Vidyasagar College, Nadia, West Bengal, India _____________________________________________________________________________________________ ABSTRACT RAPD markers were successfully used to identify and differentiate all the five species of Acanthaceae found in the mangrove forest of Indian Sundarban, to assess the extent of interspecific genetic diversity among them, to reveal their molecular phylogeny and to throw some light on the systematic position of Avicennia. The dendrogram reveals that the five species under study exhibits an overall similarity of 60.7%. Avicennia alba and A. officinalis (cluster C1) have very close relationship between them and share a common node in the dendrogram at a 73.3% level of similarity. Avicennia marina and Acanthus ilicifolius (cluster C2) also have close relationship between them as evident by a common node in the dendrogram at 71.8% level of similarity. Acanthus volubilis showed 68.1% similarity with cluster C1 and 60.7% similarity with cluster C2. Our study also supported the view of placing Avicennia under Acanthaceae. Regarding the relative position of Avicennia within Acanthaceae, it was shown to be very close to Acanthoideae. In comparison to other species, A. marina showed most genetic variability, suggesting utilization of this species over others for breeding programme and as source material in in situ conservation programmes. -
Towards Resolving Lamiales Relationships
Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. -
2020 Plant List 1
2020 issima Introductions Sesleria nitida Artemisia lactiflora ‘Smoke Show’ Succisella inflexa 'Frosted Pearls' Impatiens omeiana ‘Black Ice’ Thalictrum contortum Kniphofia ‘Corn Dog’ Thalictrum rochebrunianum var. grandisepalum Kniphofia ‘Dries’ Tiarella polyphylla (BO) Kniphofia ‘Takis Fingers’ Verbascum roripifolium hybrids Persicaria amplexicaulis ‘Ruby Woo’ Veronica austriaca 'Ionian Skies' Sanguisorba ‘Unicorn Tails’ Sanguisorba obtusa ‘Tickled Pink’ Stock Woody and Herbaceous Perennials, New & Returning for 2020 indexed alphabetically: Alchemilla alpina Acanthus ‘Summer Beauty’ Aletris farinosa Acanthus Hollard’s Gold’ Anemone nemorosa ‘Vestal’ Acanthus syriacus Anemone nemorosa Virescens Actaea pachypoda Anemone ranunculoides Actaea rubra leucocarpa Anemone seemannii Adenophora triphylla Berkheya purpurea Pink Flower Agastache ‘Linda’ Berkheya species (Silver Hill) Agastache ‘Serpentine’ Boehmeria spicata 'Chantilly' Ajuga incisa ‘Blue Enigma’ Callirhoe digitata Amorphophallus konjac Carex plantaginea Anemonella thalictroides ‘Cameo’ Carex scaposa Anemonella thalictroides ‘Oscar Schoaff’ Deinanthe caerulea x bifida Anemonopsis macrophylla – dark stems Dianthus superbus var. speciosus Anemonopsis macrophylla – White Flower Digitalis ferruginea Angelica gigas Disporum sessile ‘Variegatum’ Anthemis ‘Cally Cream’ Echium amoenum Anthericum ramosum Echium russicum Arisaema fargesii Echium vulgare Arisaema ringens Erigeron speciosus (KDN) Arisaema sikokianum Eriogonum annuum (KDN) Artemisia lactiflora ‘Elfenbein’ Geranium psilostemon -
Acanthaceae), a New Chinese Endemic Genus Segregated from Justicia (Acanthaceae)
Plant Diversity xxx (2016) 1e10 Contents lists available at ScienceDirect Plant Diversity journal homepage: http://www.keaipublishing.com/en/journals/plant-diversity/ http://journal.kib.ac.cn Wuacanthus (Acanthaceae), a new Chinese endemic genus segregated from Justicia (Acanthaceae) * Yunfei Deng a, , Chunming Gao b, Nianhe Xia a, Hua Peng c a Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China b Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, Facultyof Life Science, Binzhou University, Binzhou, 256603, Shandong, People's Republic of China c Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China article info abstract Article history: A new genus, Wuacanthus Y.F. Deng, N.H. Xia & H. Peng (Acanthaceae), is described from the Hengduan Received 30 September 2016 Mountains, China. Wuacanthus is based on Wuacanthus microdontus (W.W.Sm.) Y.F. Deng, N.H. Xia & H. Received in revised form Peng, originally published in Justicia and then moved to Mananthes. The new genus is characterized by its 25 November 2016 shrub habit, strongly 2-lipped corolla, the 2-lobed upper lip, 3-lobed lower lip, 2 stamens, bithecous Accepted 25 November 2016 anthers, parallel thecae with two spurs at the base, 2 ovules in each locule, and the 4-seeded capsule. Available online xxx Phylogenetic analyses show that the new genus belongs to the Pseuderanthemum lineage in tribe Justi- cieae. -
Iridoid Glucosides in the Genus Sutera (Scrophulariaceae) As Chemotaxonomic Markers in Tribe Limoselleae
Downloaded from orbit.dtu.dk on: Sep 25, 2021 Iridoid glucosides in the genus Sutera (Scrophulariaceae) as chemotaxonomic markers in tribe Limoselleae Gousiadou, Chryssoula; Kokubun, Tetsuo; Albach, Dirk C.; Gotfredsen, Charlotte Held; Jensen, Søren Rosendal Published in: Phytochemistry Link to article, DOI: 10.1016/j.phytochem.2018.10.021 Publication date: 2019 Document Version Other version Link back to DTU Orbit Citation (APA): Gousiadou, C., Kokubun, T., Albach, D. C., Gotfredsen, C. H., & Jensen, S. R. (2019). Iridoid glucosides in the genus Sutera (Scrophulariaceae) as chemotaxonomic markers in tribe Limoselleae. Phytochemistry, 158, 149- 155. https://doi.org/10.1016/j.phytochem.2018.10.021 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 1 Iridoid glucosides in the genus Sutera (Scrophulariaceae) as chemotaxonomic markers in tribe Limoselleae Chryssoula Gousiadou a, Tetsuo Kokubunb, Dirk Albachc, Charlotte H. Gotfredsena, Søren Rosendal Jensena* a Department of Chemistry, The Technical University of Denmark, Build. -
Acanthaceae and Asteraceae Family Plants Used by Folk Medicinal Practitioners for Treatment of Malaria in Chittagong and Sylhet Divisions of Bangladesh
146 American-Eurasian Journal of Sustainable Agriculture, 6(3): 146-152, 2012 ISSN 1995-0748 ORIGINAL ARTICLE Acanthaceae and Asteraceae family plants used by folk medicinal practitioners for treatment of malaria in Chittagong and Sylhet Divisions of Bangladesh Md. Tabibul Islam, Protiva Rani Das, Mohammad Humayun Kabir, Shakila Akter, Zubaida Khatun, Md. Megbahul Haque, Md. Saiful Islam Roney, Rownak Jahan, Mohammed Rahmatullah Faculty of Life Sciences, University of Development Alternative, Dhanmondi, Dhaka-1205, Bangladesh Md. Tabibul Islam, Protiva Rani Das, Mohammad Humayun Kabir, Shakila Akter, Zubaida Khatun, Md. Megbahul Haque, Md. Saiful Islam Roney, Rownak Jahan, Mohammed Rahmatullah: Acanthaceae and Asteraceae family plants used by folk medicinal practitioners for treatment of malaria in Chittagong and Sylhet Divisions of Bangladesh ABSTRACT Malaria is a debilitating disease causing high mortality rates among men and women if not treated properly. The disease is prevalent in many countries of the world with the most prevalence noted among the sub-Saharan countries, where it is in an epidemic form. The disease is classified as hypo-endemic in Bangladesh with the southeast and the northeastern regions of the country having the most malaria-affected people. The rural people suffer most from malaria, and they rely on folk medicinal practitioners for treatment, who administer various plant species for treatment of the disease as well as associated symptoms like pain and fever. Plant species have always formed the richest sources of anti-malarial drugs, the most notable being quinine and artemisinin. However, quinine has developed drug-resistant vectors and artemisinin is considered by some to developing initial resistance, particularly in China, where it has been used for thousands of years to combat malaria.