Schistosoma Mansoni Intermediate Host Snails.', Parasites and Vectors., 7

Total Page:16

File Type:pdf, Size:1020Kb

Schistosoma Mansoni Intermediate Host Snails.', Parasites and Vectors., 7 Durham Research Online Deposited in DRO: 08 December 2014 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: McCreesh, N. and Booth, M. (2014) 'Eect of water temperature and population density on the population dynamics of Schistosoma mansoni intermediate host snails.', Parasites and vectors., 7 . p. 503. Further information on publisher's website: http://dx.doi.org/10.1186/s13071-014-0503-9 Publisher's copyright statement: c McCreesh et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk McCreesh et al. Parasites & Vectors 2014, 7:503 http://www.parasitesandvectors.com/content/7/1/503 RESEARCH Open Access Effect of water temperature and population density on the population dynamics of Schistosoma mansoni intermediate host snails Nicky McCreesh1*, Moses Arinaitwe2, Wilber Arineitwe2, Edridah M Tukahebwa2 and Mark Booth1 Abstract Background: Mathematical models can be used to identify areas at risk of increased or new schistosomiasis transmission as a result of climate change. The results of these models can be very different when parameterised to different species of host snail, which have varying temperature preferences. Currently, the experimental data needed by these models are available for only a few species of snail. The choice of density-dependent functions can also affect model results, but the effects of increasing densities on Biomphalaria populations have only previously been investigated in artificial aquariums. Methods: Laboratory experiments were conducted to estimate Biomphalaria sudanica mortality, fecundity and growth rates at ten different constant water temperatures, ranging from 13-32°C. Snail cages were used to determine the effects of snail densities on B. sudanica and B. stanleyi mortality and fecundity rates in semi-natural conditions in Lake Albert. Results: B. sudanica survival and fecundity were highest at 20°C and 22°C respectively. Growth in shell diameter was estimated to be highest at 23°C in small and medium sized snails, but the relationship between temperature and growth was not clear. The fecundity of both B. sudanica and B. stanleyi decreased by 72-75% with a four-fold increase in population density. Increasing densities four-fold also doubled B. stanleyi mortality rates, but had no effect on the survival of B. sudanica. Conclusions: The optimum temperature for fecundity was lower for B. sudanica than for previously studied species of Biomphalaria. In contrast to other Biomphalaria species, B. sudanica have a distinct peak temperature for survival, as opposed to a plateau of highly suitable temperatures. For both B. stanleyi and B. sudanica, fecundity decreased with increasing population densities. This means that snail populations may experience large fluctuations in numbers, even in the absence of any external factors such as seasonal temperature changes. Survival also decreased with increasing density for B. stanleyi, in contrast to B. sudanica and other studied Biomphalaria species where only fecundity has been shown to decrease. Keywords: Schistosomiasis, Schistosoma mansoni, Biomphalaria, Malacology, Climate change, Ecology Background It is crucial, however, to consider the species of intermedi- Mathematical models of water temperature and the life- ate host snail found in an area when parameterising a cycles of schistosomes and their intermediate host snails model, and when using the model to make predictions of can be used to gain valuable insight into the possible ef- the potential effects of environmental change on schisto- fects of environmental changes, including climate change, some transmission [5,6]. To accurately represent a snail on the distribution and intensity of schistosomiasis [1-4]. species in these models, it is necessary to have a wide range of data. This includes data on mortality, egg produc- tion, egg hatching and juvenile development rates at a * Correspondence: [email protected] 1School of Medicine, Pharmacy and Health, Durham University, Durham DH1 range of different temperatures. Experiments determining 3LE, UK the effects of other abiotic factors (e.g. the chemical Full list of author information is available at the end of the article © 2014 McCreesh et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. McCreesh et al. Parasites & Vectors 2014, 7:503 Page 2 of 9 http://www.parasitesandvectors.com/content/7/1/503 composition of the water) on different life stages of the clean the water, and water pumps were used to oxygen- snails will also advance model development. Currently, ate it. Pumps were set to a speed which did not disturb sufficient data are only available to accurately parameterise the snails. Larger particles of waste were removed from models of temperature and snail ecology to three species the base of the aquariums each week using a section of of Biomphalaria: B. pfeifferi, B. alexandrina,andB. glab- hose and suction, and the small volumes of water removed rata [6], and (with the exception B. alexandrina in South were replaced with aged tap water. This procedure, in Sudan) only one of these species can be found in sub- conjunction with the water filters, kept the aquarium Saharan Africa [7], where the majority of schistosomiasis water clean and prevented the need to periodically replace occurs [8]. While B. pfeifferi is generally considered to be large volumes of water. Additional calcium was added to the most important S. mansoni intermediate host in sub- the water in the form of crushed snail shells contained in Saharan Africa due to its widespread distribution [9,10], a fine mesh bag. Two pieces of expanded polystyrene foam other species are also important in maintaining transmis- were placed into each aquarium to provide a surface on sion in many areas. This is particularly the case for lake- which the snails could lay eggs. side areas in eastern Africa, where prevalences and Wild, adult B. sudanica snails were collected from intensities of intestinal schistosomiasis are often very high Lake Albert in western Uganda and transported to a la- [11], and where B. pfeifferi are not commonly found in boratory in Kampala. They were kept in aquariums at large numbers [9,12-14]. ambient temperature (approximately 25°C) for a mini- A critical decision in the design of mathematical mum of a week to acclimatise, before being used in ex- models of snail population dynamics is how to incorpor- periments. Snails that shed cercariae of any species were ate density dependent regulatory factors. In the absence discarded. The shell diameters of the remaining snails of these factors, simulated snail populations can increase were measured at the widest point using digital callipers, exponentially. This is clearly unrealistic, as wild snail and the shells of the snails were individually marked populations are limited in number by constraints such using queen bee markers affixed with nail varnish. It has as food availability. Density-dependent factors can be in- previously been shown that small quantities of nail var- corporated into models in two main ways: by increasing nish applied to the shell is not detrimental to the snails mortality rates and/or by decreasing fecundity as dens- [20,21]. The snails were then placed into the five aquar- ities increase. Laboratory experiments suggest that the iums in equal numbers. The aquariums were kept at am- fecundity of B. pfeifferi, B. alexandrina, and B. glabrata bient temperature for two days to allow the snails to tends to drop in unfavourable conditions, with little acclimatise, after which the water was gradually heated increase in mortality rates [15-18]. It is unclear if this is or cooled to the desired temperature. Snails were fed the case in more natural environments, or for other spe- with dried lettuce and spirulina cyanobacteria, which cies of Biomphalaria. were added to the water as a powder. In this paper, we describe laboratory and field experi- Two sets of experiments were conducted. In the first, ments conducted with two species of Biomphalaria: B. heaters and coolers were set to keep the five aquariums sudanica and B. stanleyi. B. sudanica is found in lakes at constant temperatures of 15°C, 19°C, 23°C, 27°C, and and rivers throughout central and eastern Africa, and is 31°C, and 91 snails were initially added to each aquarium. particularly common in Uganda [7,9]. B. stanleyi has a In the second, the heaters and coolers were set to 13°C, more limited distribution, and has been found in Lake 17°C, 21°C, 25°C, and 29°C, and 99 snails were added.
Recommended publications
  • Redalyc.Total Protein Composition of Young and Adult Biomphalaria
    Revista de Biología Tropical ISSN: 0034-7744 [email protected] Universidad de Costa Rica Costa Rica Sadaka, Hayam A.; Abou-El-Naga, Iman F.; Amer, Eglal I.; Diab, Iman H.; Khedr, Safaa I. A. Total protein composition of young and adult Biomphalaria alexandrina snails with different compatibilities to Schistosoma mansoni infection Revista de Biología Tropical, vol. 64, núm. 4, 2016, pp. 1747-1757 Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44947539030 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Total protein composition of young and adult Biomphalaria alexandrina snails with different compatibilities to Schistosoma mansoni infection Hayam A. Sadaka1, Iman F. Abou-El-Naga1*, Eglal I. Amer1, Iman H. Diab2 & Safaa I. A. Khedr1 1. Medical Parasitology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt; [email protected], [email protected], [email protected] 2. Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt; [email protected], [email protected] * Correspondence Received 04-XI-2015. Corrected 05-IV-2016. Accepted 06-V-2016. Abstract: Schistosomiasis remains a disease of major global public health concern since it is a chronic and debilitating illness. The widely distributed Schistosoma mansoni that causes intestinal schistosomiasis represents a great threat. Its world-wide distribution is permitted by the broad geographic range of the susceptible species of its intermediate host, Biomphalaria, which serves as an obligatory host for the larval stage, at which humans get infected.
    [Show full text]
  • Mitochondrial Genome of Bulinus Truncatus (Gastropoda: Lymnaeoidea): Implications for Snail Systematics and Schistosome Epidemiology
    Journal Pre-proof Mitochondrial genome of Bulinus truncatus (Gastropoda: Lymnaeoidea): implications for snail systematics and schistosome epidemiology Neil D. Young, Liina Kinkar, Andreas J. Stroehlein, Pasi K. Korhonen, J. Russell Stothard, David Rollinson, Robin B. Gasser PII: S2667-114X(21)00011-X DOI: https://doi.org/10.1016/j.crpvbd.2021.100017 Reference: CRPVBD 100017 To appear in: Current Research in Parasitology and Vector-Borne Diseases Received Date: 21 January 2021 Revised Date: 10 February 2021 Accepted Date: 11 February 2021 Please cite this article as: Young ND, Kinkar L, Stroehlein AJ, Korhonen PK, Stothard JR, Rollinson D, Gasser RB, Mitochondrial genome of Bulinus truncatus (Gastropoda: Lymnaeoidea): implications for snail systematics and schistosome epidemiology, CORTEX, https://doi.org/10.1016/ j.crpvbd.2021.100017. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2021 The Author(s). Published by Elsevier B.V. Journal Pre-proof Mitochondrial genome of Bulinus truncatus (Gastropoda: Lymnaeoidea): implications for snail systematics and schistosome epidemiology Neil D. Young a,* , Liina Kinkar a, Andreas J. Stroehlein a, Pasi K. Korhonen a, J.
    [Show full text]
  • Bilharziasis Survey in British West and East Africa, Nyasaland and Tie Rhodesias *
    Bull. Org. mond. Santu 1956, 15, 203-273 Bull. Wld Hlth Org. BILHARZIASIS SURVEY IN BRITISH WEST AND EAST AFRICA, NYASALAND AND TIE RHODESIAS * DYSON M. BLAIR Director of Medical Services, Health Department of Southern Rhodesia, Salisbury WHO Consultant on Bilharziasis SYNOPSIS The author, in his capacity as a WHO consultant, undertook a survey of bilharziasis in British West and East Africa and Nyasaland during 1950-51. The information thus obtained has been revised and brought up to date and is recorded in the present article together with similar observations on Northern Rhodesia, which was not visited, and on Southern Rhodesia, the author's own country. In Part I, each country is dealt with in turn. The history of the disease and the findings of field surveys are reviewed, and, wherever possible, personal observations have been included. The fact that the informa- tion is of a scanty and incomplete nature is an indication that further local studies in all areas are badly needed. In Part II an attempt is made to survey the situation from the point of view of the various aspects of the subjects-methods of obtaining morbidity data, intensity of infection, effects of the disease on human health, treat- ment, and the molluscan vectors. PART I. EPIDEMIOLOGICAL DATA The Joint OIHP/WHO Study Group on Bilharziasis in Africa, meeting in Cairo in October 1949, recommended that the " surveys on the geographical distribution of human bilharziasis and its vector snails should be carried out by individual experts to be selected and sent by WHO to the countries and territories in which the presence of bilharziasis is known or suspected, but for which adequate information is not available." As part of this plan, British territories in West, East and Central Africa were visited in 1950 and 1951 and the account given here is based on the * This is the sixth of a series of articles, published in the Bulletin of the World Health Organization, describing the epidemiology of bilharziasis in the African and Eastern Mediterranean regions.
    [Show full text]
  • Study on the Ethiopian Freshwater Molluscs, Especially on Identification, Distribution and Ecology of Vector Snails of Human Schistosomiasis
    Jap. J. Trop. Med. Hyg., Vol. 3, No. 2, 1975, pp. 107-134 107 STUDY ON THE ETHIOPIAN FRESHWATER MOLLUSCS, ESPECIALLY ON IDENTIFICATION, DISTRIBUTION AND ECOLOGY OF VECTOR SNAILS OF HUMAN SCHISTOSOMIASIS HIROSHI ITAGAKI1, NORIJI SUZUKI2, YOICHI ITO2, TAKAAKI HARA3 AND TEFERRA WONDE4 Received for publication 17 February 1975 Abstract: Many surveys were carried out in Ethiopia from January 1969 to January 1971 to study freshwater molluscs, especially the intermediate and potential host snails of Schistosoma mansoni and S. haematobium, to collect their ecological data, and to clarify the distribution of the snails in the country. The gastropods collected consisted of two orders, the Prosobranchia and Pulmonata. The former order contained three families (Thiaridae, Viviparidae and Valvatidae) and the latter four families (Planorbidae, Physidae, Lymnaeidae and Ancylidae). The pelecypods contained four families : the Unionidae, Mutelidae, Corbiculidae and Sphaeriidae. Biomphalaria pfeifferi rueppellii and Bulinus (Physopsis)abyssinicus are the most important hosts of S. mansoniand S. haematobium respectively. The freshwater snail species could be grouped into two distibution patterns, one of which is ubiquitous and the other sporadic. B. pfeifferirueppellii and Bulinus sericinus belong to the former pattern and Biomphalaria sudanica and the members of the subgenus Physopsis to the latter. Pictorial keys were prepared for field workers of schistosomiasis to identify freshwater molluscs in Ethiopia. Habitats of bulinid and biomphalarian snails were ecologically surveyed in connection with the epidemiology of human schistosomiasis. Rain falls and nutritional conditions of habitat appear to influence the abundance and distribution of freshwater snails more seriously than do temperature and pH, but water current affects the distribution frequently.
    [Show full text]
  • Biological Studies on Biomphalaria Alexandrina Snails Treated With
    Journal of Applied Pharmaceutical Science 01 (10); 2011: 47-55 ISSN: 2231-3354 Biological studies on Biomphalaria alexandrina Received on: 06-12-2011 Accepted on: 11-12-2011 snails treated with Furcraea selloa marginata plant (family: Agavaceae) and Bacillus thuringiensis kurstaki (Dipel-2x) Gamalat Y. Osman, Ahmed M. Mohamed, Ahmed Abdel Kader and Asmaa A. Mohamed Gamalat Y. Osman, ABSTRACT Ahmed M. Mohamed Zoology Department Effect of the dry leaves powder water suspension of the plant Furcraea selloa Faculty of Science, Menoufia University, Egypt marginata, belonging to family Agavaceae and Bacillus thuringiensis kurstaki (Dipel-2x) was evaluated against non-infected and Schistosoma mansoni-infected Biomphalaria alexandrina snails as well as their efficacy against the free larval stages of S. mansoni. The obtained results indicated that the LC50 and LC90 values after 24 hrs exposure were 53.66 & 84.35 ppm for F. selloa marginata and 392.3 & 483.64 ppm for B. thuringiensis kurstaki against adult B. alexandrina snails, respectively. The plant F. selloa marginata and B. thuringiensis kurstaki Ahmed Abdel Kader, have a larvicidal activity against S. mansoni larvae (miracidia and cercariae), the plant F. Asmaa A. Mohamed selloa marginata was more toxic against larvae than B. thuringiensis kurstaki, the miracidia Environmental Research and Medical were more sensitive towards the toxic action of the tested agents than cercariae and the Malacology Department, Theodor mortality percent of miracidia and cercariae is directly proportional to the time and the tested Bilharz Research Institute, Egypt. concentrations. The results revealed that the tested sub-lethal concentrations (LCo, LC10 and LC ) reduced the survival, growth rates and egg laying capacity of both non-infected and S.
    [Show full text]
  • Hybridism Between Biomphalaria Cousini and Biomphalaria Amazonica and Its Susceptibility to Schistosoma Mansoni
    Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 106(7): 851-855, November 2011 851 Hybridism between Biomphalaria cousini and Biomphalaria amazonica and its susceptibility to Schistosoma mansoni Tatiana Maria Teodoro1/+, Liana Konovaloff Jannotti-Passos2, Omar dos Santos Carvalho1, Mario J Grijalva3,4, Esteban Guilhermo Baús4, Roberta Lima Caldeira1 1Laboratório de Helmintologia e Malacologia Médica 2Moluscário Lobato Paraense, Instituto de Pesquisas René Rachou-Fiocruz, Av. Augusto de Lima 1715, 30190-001 Belo Horizonte, MG, Brasil 3Biomedical Sciences Department, Tropical Disease Institute, College of Osteopathic Medicine, Ohio University, Athens, OH, USA 4Center for Infectious Disease Research, School of Biological Sciences, Pontifical Catholic University of Ecuador, Quito, Ecuador Molecular techniques can aid in the classification of Biomphalaria species because morphological differentia- tion between these species is difficult. Previous studies using phylogeny, morphological and molecular taxonomy showed that some populations studied were Biomphalaria cousini instead of Biomphalaria amazonica. Three differ- ent molecular profiles were observed that enabled the separation of B. amazonica from B. cousini. The third profile showed an association between the two and suggested the possibility of hybrids between them. Therefore, the aim of this work was to investigate the hybridism between B. cousini and B. amazonica and to verify if the hybrids are susceptible to Schistosoma mansoni. Crosses using the albinism factor as a genetic marker were performed, with pigmented B. cousini and albino B. amazonica snails identified by polymerase chain reaction-restriction fragment length polymorphism. This procedure was conducted using B. cousini and B. amazonica of the type locality accord- ingly to Paraense, 1966. In addition, susceptibility studies were performed using snails obtained from the crosses (hybrids) and three S.
    [Show full text]
  • Effect of Water Temperature and Population Density on The
    McCreesh et al. Parasites & Vectors 2014, 7:503 http://www.parasitesandvectors.com/content/7/1/503 RESEARCH Open Access Effect of water temperature and population density on the population dynamics of Schistosoma mansoni intermediate host snails Nicky McCreesh1*, Moses Arinaitwe2, Wilber Arineitwe2, Edridah M Tukahebwa2 and Mark Booth1 Abstract Background: Mathematical models can be used to identify areas at risk of increased or new schistosomiasis transmission as a result of climate change. The results of these models can be very different when parameterised to different species of host snail, which have varying temperature preferences. Currently, the experimental data needed by these models are available for only a few species of snail. The choice of density-dependent functions can also affect model results, but the effects of increasing densities on Biomphalaria populations have only previously been investigated in artificial aquariums. Methods: Laboratory experiments were conducted to estimate Biomphalaria sudanica mortality, fecundity and growth rates at ten different constant water temperatures, ranging from 13-32°C. Snail cages were used to determine the effects of snail densities on B. sudanica and B. stanleyi mortality and fecundity rates in semi-natural conditions in Lake Albert. Results: B. sudanica survival and fecundity were highest at 20°C and 22°C respectively. Growth in shell diameter was estimated to be highest at 23°C in small and medium sized snails, but the relationship between temperature and growth was not clear. The fecundity of both B. sudanica and B. stanleyi decreased by 72-75% with a four-fold increase in population density. Increasing densities four-fold also doubled B.
    [Show full text]
  • Impact of the Age of Biomphalaria Alexandrina Snails on Schistosoma
    Mem Inst Oswaldo Cruz, Rio de Janeiro: 1-11, 2015 1 Impact of the age of Biomphalaria alexandrina snails on Schistosoma mansoni transmission: modulation of the genetic outcome and the internal defence system of the snail Iman Fathy Abou-El-Naga1, Hayam Abd El-Monem Sadaka1, Eglal Ibrahim Amer1, Iman Hassan Diab2, Safaa Ibrahim Abd El-Halim Khedr1/+ 1Alexandria University, Faculty of Medicine, Medical Parasitology Department, Alexandria, Egypt 2Alexandria University, Faculty of Medicine, Medical Biochemistry and Molecular Biology Department, Alexandria, Egypt Of the approximately 34 identified Biomphalaria species, Biomphalaria alexandrina represents the intermedi- ate host of Schistosoma mansoni in Egypt. Using parasitological and SOD1 enzyme assay, this study aimed to elucidate the impact of the age of B. alexandrina snails on their genetic variability and internal defence against S. mansoni infection. Susceptible and resistant snails were reared individually for self-reproduction; four subgroups of their progeny were used in experiment. The young susceptible subgroup showed the highest infection rate, the shortest pre-patent period, the highest total cercarial production, the highest mortality rate and the lowest SOD1 activity. Among the young and adult susceptible subgroups, 8% and 26% were found to be resistant, indicating the inheritance of resistance alleles from parents. The adult resistant subgroup, however, contained only resistant snails and showed the highest enzyme activity. The complex interaction between snail age, genetic background and internal defence resulted in great variability in compatibility patterns, with the highest significant difference between young susceptible and adult resistant snails. The results demonstrate that resistance alleles function to a greater degree in adults, with higher SOD1 activity and provide potential implications for Biomphalaria control.
    [Show full text]
  • Reproductive and Developmental Alterations in Biomphalaria Alexandrina Snails Exposed to Three Phenolic Compounds
    International Journal of Environmental Studies ISSN: 0020-7233 (Print) 1029-0400 (Online) Journal homepage: https://www.tandfonline.com/loi/genv20 Reproductive and developmental alterations in Biomphalaria alexandrina snails exposed to three phenolic compounds Wafaa S.F. Hasheesh, Haggag A. Mohamed, Sara S.M. Sayed & Rasha M.F. Abu El-Khair To cite this article: Wafaa S.F. Hasheesh, Haggag A. Mohamed, Sara S.M. Sayed & Rasha M.F. Abu El-Khair (2019): Reproductive and developmental alterations in Biomphalariaalexandrina snails exposed to three phenolic compounds, International Journal of Environmental Studies To link to this article: https://doi.org/10.1080/00207233.2019.1686908 Published online: 06 Nov 2019. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=genv20 INTERNATIONAL JOURNAL OF ENVIRONMENTAL STUDIES https://doi.org/10.1080/00207233.2019.1686908 ARTICLE Reproductive and developmental alterations in Biomphalaria alexandrina snails exposed to three phenolic compounds Wafaa S.F. Hasheesha, Haggag A. Mohameda, Sara S.M. Sayed b and Rasha M.F. Abu El-Khaira aZoology Department, Faculty of Science, Cairo University, Giza, Egypt; bEnvironmental Research and Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt ABSTRACT KEYWORDS The present work aims to assess the reprotoxicity in Biomphalaria Salicylic acid; benzoic acid; alexandrina snails and developmental and hatchability alterations of pyrogallol; reproduction their eggs after exposure to three phenolic compounds, viz., salicylic acid, benzoic acid and pyrogallol. The half lethal concentrations (LC50) of the three tested compounds were 574, 674 and 350 mg L−1, respectively after 24 h.
    [Show full text]
  • Pdf 439.15 K
    Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131 Vol. 25(3): 23 – 38 (2021) www.ejabf.journals.ekb.eg Marine, freshwater, and terrestrial snails as models in the biomedical applications Amina M. Ibrahim 1, Ahmed A. Hamed 2 , Mosad A. Ghareeb 3* 1Environmental Research and Medical Malacology Department, Theodor Bilharz Research Institute, Giza, 12411, Egypt 2Microbial Chemistry Department, National Research Centre, Dokki, Egypt 3Medicinal Chemistry Department, Theodor Bilharz Research Institute, Giza, 12411, Egypt *Corresponding Author: [email protected] ARTICLE INFO ABSTRACT Article History: A snail is a member of the molluscan gastropods that has a cosmopolitan Received: March 15, 2021 distribution, inhabiting marine, freshwater and terrestrial habitats. The present Accepted: April 27, 2021 review highlights the importance of the snails as they have medical and Online: May 25, 2021 veterinary applications, besides being considered as excellent indicators of _______________ ecosystem health like Biomphalaria sp., and Lymnaea stagnalis freshwater snails. Also, snails have been proved to be excellent models in neurophysiology, Keywords: especially on learning and memory formation like Aplysia californica marine Snails, snail and Lymnaea stagnalis freshwater snails. Marine snails produce Molluscan gastropods, antimicrobial secondary metabolites that exhibit anticancer, antibiotic, antiviral, Marine snails, neurotoxic, or anti-inflammatory properties. These materials can be obtained Freshwater snails, from the extracts of Babylonia spirata, Buccinulum corneum, Buccinum Terrestrial snails, undatum, Littorina littorea “called littorerin”, Haliotis laevigata or H. rubra, Secondary metabolites Murex pectin, Tegula gallina, conotoxins released from Conus magus, and hemocyanins of Rapana venosa snails. Freshwater snails have many bioactive compounds that have antimicrobial activity.
    [Show full text]
  • Research Article Toxicological Effect Of
    Egypt. J. Exp. Biol. (Zool.), 3: 135 – 143 (2007) © The Egyptian Society of Experimental Biology RESEARCH ARTICLE Erian G. Kamel Sanaa M. Wahba *Shadia M. El - D a f r a w y *Hanan, S. Mossalem TOXICOLOGICAL EFFECT OF CERTAIN PLANTS AND SYNTHETIC MOLLUSCICIDES ON ULTRASTRUCTURAL CHANGES IN HAEMOCYTES OF BIOMPHALARIA ALEXANDRINA SNAILS ABSTRACT: This study aimed to investigate the INTRODUCTION: effect of the water suspension of Anagallis The fresh water snail, B. alexandrina is arvensis or Calendula micrantha plants, as known to be the intermediate host for well as Bayluscide and copper sulphate on transmitting S. mansoni in Egypt. Application the haemocytes of Biomphalaria of molluscicides of either synthetic or of alexandrina snails at ultrastructural level at plant origin can confer a rapid and efficient three sublethal concentrations of LC 0, LC10, mean in reducing snail populations and and LC25. Examinations were performed consequently the transmission of this after 2 and 4 weeks of exposure. parasite. There is great interest in the use of The total number of the haemocytes molluscicidal plants by local communities in granulocytes, hyalinocytes and self-supporting system of schistosomiasis amoebocytes was found to be significantly control program (Taylor, 1986). In fact, plant reduced (P<0.01) after 2 weeks of snails molluscicides are gaining increased attention as they seem to be less expensive, exposure to LC 10 of the tested plants and synthetic molluscicides in comparison with more available, have low toxicity to non- the control. The reduction was more target organisms and may be applied significant after exposure to sublethal effectively by simple techniques that are more suitable for developing countries concentration of LC 25 and after 4 weeks than 2 weeks of exposure to the sublethal (Adewunmi et al., 1990; Wang and Song, concentrations LC and LC .
    [Show full text]
  • Pdf (655.93 K)
    Morphology and kinetics of susceptible and resistant Biomphalaria alexandrina hemocytes during the first week Original of exposure to Schistosoma mansoni miracidia Article Safaa I Khedr Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Egypt ABSTRACT Background: Few studies concerning Biomphalaria alexandrina (B. alexandrina) snail hemocytes’ subpopulations, and their relation to the compatibility with Schistosoma mansoni (S. mansoni)’ miracidia were performed. Manipulation of parasite development inside these snails could be applied as a control measure against schistosomiasis. Objectives: Knowing that the snail hemocytes temporarily bind to the parasites, allowing the development kinetics of diverse hemocytes of susceptible and resistant B. alexandrina and their participation in the ofsnail cercariae early immune that are response infective after to the challenge definitive by S.host. mansoni This .study aimed at studying the morphology and Material and Methods: Giemsa stained hemocytes were characterized using light microscopy. Total and differential hemocyte counts (THC and DHC) were calculated in the hemolymph of two groups composed of 60 susceptible and 60 resistant snails. Each group was further subdivided as 12 control pre-exposure S. mansoni at different time points (6 h, 1, 3 and 7 days). THC and DHC counts were recorded by a snail hemogram. Results:snails (PE) Results and 48 revealed post-exposure that granulocytes snails (PO) toconstituted the most common population all through the experiment with the large dense-granulated granulocytes subpopulation being the largest-sized cells detected. The highly reactive subpopulations that increased in number upon exposure to S. mansoni were the few-granulated and the large-granulated granulocytes, suggesting their possible participation in early parasite destruction.
    [Show full text]