Abcs of CORN
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What Is Still Limiting the Deployment of Cellulosic Ethanol? Analysis of the Current Status of the Sector
applied sciences Review What is still Limiting the Deployment of Cellulosic Ethanol? Analysis of the Current Status of the Sector Monica Padella *, Adrian O’Connell and Matteo Prussi European Commission, Joint Research Centre, Directorate C-Energy, Transport and Climate, Energy Efficiency and Renewables Unit C.2-Via E. Fermi 2749, 21027 Ispra, Italy; [email protected] (A.O.); [email protected] (M.P.) * Correspondence: [email protected] Received: 16 September 2019; Accepted: 15 October 2019; Published: 24 October 2019 Abstract: Ethanol production from cellulosic material is considered one of the most promising options for future biofuel production contributing to both the energy diversification and decarbonization of the transport sector, especially where electricity is not a viable option (e.g., aviation). Compared to conventional (or first generation) ethanol production from food and feed crops (mainly sugar and starch based crops), cellulosic (or second generation) ethanol provides better performance in terms of greenhouse gas (GHG) emissions savings and low risk of direct and indirect land-use change. However, despite the policy support (in terms of targets) and significant R&D funding in the last decade (both in EU and outside the EU), cellulosic ethanol production appears to be still limited. The paper provides a comprehensive overview of the status of cellulosic ethanol production in EU and outside EU, reviewing available literature and highlighting technical and non-technical barriers that still limit its production at commercial scale. The review shows that the cellulosic ethanol sector appears to be still stagnating, characterized by technical difficulties as well as high production costs. -
Ecosystems and Agro-Biodiversity Across Small and Large-Scale Maize Production Systems, Feeder Study to the “TEEB for Agriculture and Food”
Ecosystems and agro-biodiversity across small and large-scale maize production systems, feeder study to the “TEEB for Agriculture and Food” i Acknowledgements We would like to acknowledge TEEB and the Global Alliance for the Future of Food on supporting this project. We would also like to acknowledge the technical expertise provided by CONABIO´s network of experts outside and inside the institution and the knowledge gained through many years of hard and very robust scientific work of the Mexican research community (and beyond) tightly linked to maize genetic diversity resources. Finally we would specially like to thank the small-scale maize men and women farmers who through time and space have given us the opportunity of benefiting from the biological, genetic and cultural resources they care for. Certification All activities by Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, acting in administrative matters through Nacional Financiera Fideicomiso Fondo para la Biodiversidad (“CONABIO/FFB”) were and are consistent under the Internal Revenue Code Sections 501 (c)(3) and 509(a)(1), (2) or (3). If any lobbying was conducted by CONABIO/FFB (whether or not discussed in this report), CONABIO/FFB complied with the applicable limits of Internal Revenue Code Sections 501(c)(3) and/or 501(h) and 4911. CONABIO/FFB warrants that it is in full compliance with its Grant Agreement with the New venture Fund, dated May 15, 2015, and that, if the grant was subject to any restrictions, all such restrictions were observed. How to cite: CONABIO. 2017. Ecosystems and agro-biodiversity across small and large-scale maize production systems, feeder study to the “TEEB for Agriculture and Food”. -
The New Vegetarian South: 105 Inspired Dishes for Everyone
The Southeastern Librarian Volume 67 Issue 4 Article 8 Winter 1-1-2020 The New Vegetarian South: 105 Inspired Dishes for Everyone Follow this and additional works at: https://digitalcommons.kennesaw.edu/seln Part of the Library and Information Science Commons Recommended Citation (2020) "The New Vegetarian South: 105 Inspired Dishes for Everyone," The Southeastern Librarian: Vol. 67 : Iss. 4 , Article 8. Available at: https://digitalcommons.kennesaw.edu/seln/vol67/iss4/8 This Book Review is brought to you for free and open access by DigitalCommons@Kennesaw State University. It has been accepted for inclusion in The Southeastern Librarian by an authorized editor of DigitalCommons@Kennesaw State University. For more information, please contact [email protected]. The New Vegetarian South: 105 Inspired Dishes for Salted Caramel Bourbon Pecan Sweet Potato Souffle, Everyone. Jennifer Brule. Photographs by Fish.Eye Beans and Greens, Company Succotash, Old-School Design. Chapel Hill, North Carolina: University of North Buttermilk Mashed Potatoes, Crisp Broccoli and Smoked Carolina Press, 2018. ISBN: 978-1-4696-4516-2. Almond Salad, Winter Creamed Corn, Individual Crunchy (hardback: alk.paper); 178 p. $30.00. Mac and Cheese, Dirty Rice, Savannah Red Rice, Brown Rice with Mushrooms, Cauliflower “Rice” with Fresh Herbs, Hoppin’ John, Baked Limpin’ Susan, Roasted Butter Beans with Garlic, Slow Cooker Black-Eyed Peas, Chow-Chow, Cornbread, Sage, and “Sausage” Dressing, One-Pot Pimento Mac and Cheese, Fake-on Bacon, Fried Okra, Mississippi -
Corn - an A-Maizing Plant
Corn - An A-Maizing Plant Grade Level: 4-6 Approximate Length of Activity: Two to three class periods Objectives: Teacher: 1. Guide students in a discussion on corn production. 2. Help students understand the history of corn production. Students: 1. Locate and label the states on a U.S. map that make up the "Corn Belt". 2. Become familiar with the parts of the corn kernel. 3. Recognize products made from corn used in our daily lives. 4. Be able to distinguish, through dissection, the four different parts of a corn kernel. Michigan Content Standards: (Social Studies) II.2.2; II.2.3; IV.2.3 Introduction: The Corn Belt is a group of states where most of the corn in the United States is produced. Illinois, Iowa, Nebraska, and Minnesota produce 50 percent of all the corn grown in the US. Other major corn growing states include Indiana, Wisconsin, Michigan, South Dakota, Kansas, Missouri, Kentucky, and Ohio. These 12 states make up the Corn Belt. Corn is the major feed grain grown by farmers in the U.S., leading all other crops in value and volume of production. Corn is a major component in foods like cereals, peanut butter, and snack foods. An ear of corn has an average of 16 rows with 800 kernels. A pound of corn consists of approximately 1,300 kernels. An acre (about the size of a football field) of corn, yielding 100 bushels, produces approximately 7,280,000 kernels. Most of the weight of a bushel of corn is the starch, oil, protein, and fiber, with some natural moisture. -
Insights Into the Genetic and Environmental Bases of Mycotoxin Contamination in Kenyan Maize
INSIGHTS INTO THE GENETIC AND ENVIRONMENTAL BASES OF MYCOTOXIN CONTAMINATION IN KENYAN MAIZE A Dissertation Presented To the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Samuel Kilonzo Mutiga January 2015 © 2015 Samuel Kilonzo Mutiga ii INSIGHTS INTO THE GENETIC AND ENVIRONMENTAL BASES OF MYCOTOXIN CONTAMINATION IN KENYAN MAIZE Samuel Kilonzo Mutiga, Ph.D. Cornell University, 2015 Mycotoxins are toxic fungal secondary metabolites that contaminate an estimated 25% of foods globally. Aflatoxin and fumonisin are major mycotoxins that contaminate maize in tropical countries. Kenya’s frequent aflatoxicosis outbreaks and the associated human fatality rates have received global attention. The objective of this dissertation was to investigate the extent and the drivers for mycotoxin contamination in Kenyan maize. Between May 2009 and March 2010, surveys were conducted in three provinces (Rift Valley, Western and Nyanza) of western Kenya, the country’s grain basket and a region where mycotoxin outbreak had not been recognized. Aflatoxin contamination above the regulatory limit of 10 ppb was observed in 15% of the flour samples that had been collected from the patrons of local mills. Drought and monocropping were identified as drivers for increased aflatoxin contamination. A longitudinal survey in farmers’ storage sheds and at local mills in Western Province revealed vulnerability of the most popular varieties to mycotoxins. Surveys were conducted in 10 districts of Eastern Province during an aflatoxin outbreak in 2010. Aflatoxin contamination above 10 ppb was observed in 39% of the flour samples from patrons (n=1500) of local mills, while 37% were above the 1 ppm regulatory limit for fumonisin. -
Conversion of Corn-Kernel Fiber in Conventional Fuel-Ethanol Plants National Corn to Ethanol Research Center
Project No. 0340-19-03 (short version) November 11, 2018 Conversion of Corn-Kernel Fiber in Conventional Fuel-Ethanol Plants National Corn to Ethanol Research Center Executive Summary Ethanol derived from corn-kernel fiber is qualified as cellulosic biofuel since its production results in a 60% reduction in greenhouse gas production relative to a 2005 baseline for petroleum fuels according to the Renewable Fuel Standard (RFS) (U.S. EPA). A conventional fuel-ethanol plant can achieve a potential 9% increase in ethanol production (compared with the starch based ethanol), if they can successfully convert and ferment the cellulose and hemicellulose (xylose and galactose) in corn-kernel fiber; and achieve an additional 3% increase in ethanol production if they can ferment the arabinose derived from hemicellulose. Although complete conversion of all the corn-kernel fiber sugars to ethanol (total of 12% increase) is not possible because some byproducts are always produced, the economic benefits through the production of cellulosic ethanol for a conventional fuel-ethanol plant are much greater than 12%. Commercial technologies have been developed to optimize the conversion of corn-kernel fiber to ethanol, and they are currently available in three categories: (1) in situ technologies, in which fiber is converted to ethanol simultaneously with starch conversion, (2) technologies in which fiber is physically separated from other components of the corn kernel followed by processing of the fiber-rich material independently of the starch process train, and (3) technologies in which post-distillation residual solids from the conventional starch-based ethanol process provide the feedstock for conversion of the fiber fraction into ethanol. -
Anthocyanins Content in the Kernel and Corncob of Mexican Purple Corn Populations
MaydicaOriginal paper Open Access Anthocyanins content in the kernel and corncob of Mexican purple corn populations 1 1 2 Carmen Gabriela Mendoza-Mendoza , Ma. del Carmen Mendoza-Castillo *, Adriana Delgado-Alvarado , Francisco Javier Sánchez-Ramírez3,Takeo Ángel Kato-Yamakake1 1 Postgrado en Recursos Genéticos y Productividad-Genética, Campus Montecillo, Colegio de Postgraduados, Km 36.5 Carretera México- Texcoco. 56230, Montecillo, Texcoco, estado de México, México. 2 Campus Puebla, Colegio de Postgraduados. Boulevard Forjadores de Puebla No. 205.72760. Santiago Momoxpan, Municipio San Pedro Cholula, Puebla, México. 3 Departamento de Fitomejoramiento, Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, Buenavista, Saltillo, 25315. Coahuila, México. * Corresponding author: E-mail: [email protected] Keywords: Zea mays L., purple corn,anthocyanins, native corn, and San Juan Ixtenco, Tlaxcala. Abstract Purple corn has acquired great interest by its high content of anthocyanins and bioactive properties. Among this type of corn the Andean purple corn has been the most studied, however, in Mexico, we have the “maíces mora- dos”, which is recognized by its dark purple color. Since there is no record about its content of anthocyanins, in this study we quantified the total anthocyanins (TA) accumulated in the pericarp, aleurone layer, kernel, and corn- cob of 52 corn populations with different grades of pigmentation. Results showed that TA was superior in purple corn than in blue and red corn. TA ranged from 0.0044 to 0.0523 g of TA ∙ 100 g-1 of biomass in the aleurone layer; in the pericarp from 0.2529 to 2.6452 g of TA ∙ 100 g-1 of pericarp; in the kernel from 0.0398 to 0.2398 g of TA ∙ 100 g-1 of kernel and in the corncob from 0.1004 to 1.1022 g of TA ∙ 100 g-1 of corncob. -
Hopi Crop Diversity and Change
J. Ethtlobiol. 13(2);203-231 Winter 1993 HOPI CROP DIVERSITY AND CHANGE DANIELA SOLER I and DAVID A. CLEVELAND Center for People, Food, and Environment 344 South Third Ave. Thcson, AZ 85701 ABSTRACT.-There is increasing interest in conserving indigenous crop genetic diversity ex situ as a vital resource for industrial agriculture. However, crop diver sity is also important for conserving indigenously based, small-scale agriculture and the farm communities which practice it. Conservation of these resources may best be accomplished, therefore, by ensuring their survival in situ as part of local farming communities like the Hopi. The Hopi are foremost among Native Ameri can farmers in the United States in retaining their indigenous agriculture and folk crop varieties (FVs), yet little is known about the dynamics of change and persis tence in their crop repertoires. The purpose of our research was to investigate agricultural crop diversity in the form of individual Hopi farmers' crop reper toires, to establish the relative importance of Hopi FVs and non·Hopi crop vari eties in those repertoires, and to explore the reasons for change or persistence in these repertoires. We report data from a 1989 survey of a small (n "" 50), oppor tunistic sample of Hopi farmers and discuss the dynamics of change based on cross·sectional comparisons of the data on crop variety distribution, on farmers' answers to questions about change in their crop repertoires, and on the limited comparisons possible with a 1935 survey of Hopi seed sources. Because ours is a small, nonprobabilistic sample it is not possible to make valid extrapolations to Hopi farmers in general. -
Health Benefits of Purple Corn (Zea Mays L.) Phenolic Compounds
Health Benefits of Purple Corn (Zea mays L.) Phenolic Compounds Fei Lao, Gregory T. Sigurdson, and M. Monica´ Giusti Abstract: Purple corn (Zea mays L.), a grain with one of the deepest shades in the plant kingdom, has caught the attention of the food industry as it could serve as a source for alternatives to synthetic colorants. Also being rich in phenolic compounds with potential health-promoting properties, purple corn is becoming a rising star in the novel ingredients market. Although having been widely advertised as a “healthy” food, the available information on purple corn health benefits has not yet been well reviewed and summarized. In this review, we present compositional information focused on the potential functional phenolic compounds correlated to health-promoting effects. Studies evaluating potential health-benefitting properties, including in vitro tests, cell models, animal and human trials, are also discussed. This paper emphasizes research using purple corn, or its extracts, but some other plant sources with similar phenolic composition to purple corn are also mentioned. Dosage and toxicity of purple corn studies are also reviewed. Purple corn phenolic compounds have been shown in numerous studies to have potent antioxidant, anti-inflammatory, antimutagenic, anticarcinogenic, and anti-angiogenesis properties. They were also found to ameliorate lifestyle diseases, such as obesity, diabetes, hyperglycemia, hypertension, and cardiovascular diseases, based on their strong antioxidant power involving biochemical regulation amelioration. With promising evidence from cell and animal studies, this rich source of health-promoting compounds warrants additional attention to better understand its potential contributions to human health. Keywords: anthocyanins, antioxidants, bioactive compounds, dosage, phenolics Introduction orant has been increasing around the world in recent decades, as Purple corn (Zea mays L.), also known as purple maize, is observed by the increasing importation of purple corn and color native to the Andes region of what is now Peru. -
Traditional Resource Use of the Flagstaff Area Monuments
TRADITIONAL RESOURCE USE OF THE FLAGSTAFF AREA MONUMENTS FINAL REPORT Prepared by Rebecca S. Toupal Richard W. Stoffle Bureau of Applied Research in Anthropology University of Arizona Tucson, AZ 86721 July 19, 2004 TRADITIONAL RESOURCE USE OF THE FLAGSTAFF AREA MONUMENTS FINAL REPORT Prepared by Rebecca S. Toupal Richard W. Stoffle Shawn Kelly Jill Dumbauld with contributions by Nathan O’Meara Kathleen Van Vlack Fletcher Chmara-Huff Christopher Basaldu Prepared for The National Park Service Cooperative Agreement Number 1443CA1250-96-006 R.W. Stoffle and R.S. Toupal, Principal Investigators Bureau of Applied Research in Anthropology University of Arizona Tucson, AZ 86721 July 19, 2004 TABLE OF CONTENTS LIST OF TABLES................................................................................................................... iv LIST OF FIGURES .................................................................................................................iv CHAPTER ONE: STUDY OVERVIEW ..................................................................................1 Project History and Purpose...........................................................................................1 Research Tasks...............................................................................................................1 Research Methods..........................................................................................................2 Organization of the Report.............................................................................................7 -
Corn – a Whole Grain for Global Nourishment Resource List
HEALTHY FOR LIFE® EDUCATIONAL EXPERIENCES GIHC3 GLOBALLY INSPIRED HOME COOKING Corn – A Whole Grain for OBJECTIVES: Describe the nutritional Global Nourishment benefits of eating corn, a whole grain, versus eating Time: 75 Minutes (1 recipe prepared); 95 Minutes (2 recipes prepared) refined grains. List two healthy cooking tips Understand why corn, a whole grain, is a healthy side dish and a for corn. beneficial added ingredient for soups, stews, and salads. Since corn has become a culinary staple across the globe, learn how various countries Describe cooking traditions for corn in other make this versatile whole grain their own with unique preparations. countries. SETUP ACTIVITY (20-40 Minutes) • Review the resource list and print it out. • The class will divide into two groups. Each will Purchase all necessary supplies after reviewing prepare the same or a different corn recipe. the HFL Cost Calculator. • Set up stations for participants with the RECAP (10 Minutes) necessary activity supplies. • Pass out handout(s) and invite participants • Provide computer, internet access, and to taste the healthy dish or dishes. Ask each projector, if available. participant to share one learning from the lesson. INTRO (10 Minutes) • Welcome participants and introduce yourself. GOAL SETTING/CLOSING (15 Minutes) • Take care of any housekeeping items (closest • Engage in a goal setting activity from the bank bathroom, water fountain, etc.). of options provided in the Welcome Toolkit. Pass out the Setting SMART Goals handout to • Give a brief description of the educational participants. experience. • Thank participants and encourage them to • Engage in an icebreaker to gauge topic join the next activity. -
Fake Trillions, Real Billions, Beetcoin and the Great American Do-Over a Nurture Capitalist’S Notebook
AHA! —————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————- Fake Trillions, Real Billions, Beetcoin and the Great American Do-Over A Nurture Capitalist’s Notebook Woody Tasch © Woody Tasch July, 2020 2 To Washing Bear and Wendell Berry This is the 1st installment of a 7-part series brought to you by Beetcoin.org and the Slow Money Institute. 3 Fixed like a plant on his peculiar spot, To draw nutrition, propagate, and rot; Or meteor-like, flame lawless thro’ the void, Destroying others, by himself destroy’d. —Alexander Pope What happiness! Look how earth, rain, and the odors of dung and the lemon trees all combine and become one with man’s heart! Truly, man is soil. That is why he, like the soil, enjoys the calm caressing rains of spring so very much. My heart is being watered. It cracks open, sends forth a shoot. —Nikos Kazantzakis The day flew by as we looked at the various sheep breeds, many of which I had never seen: short sheep, tall sheep, thin sheep, fat sheep, sheep with black faces, sheep with white faces, and sheep with red faces. Zwartbles, Rouge de l’Ouest, Clun Forest, and a blue- tinted breed called Bleu du Maine. —Linda Faillace Have we forgotten that the most productive investing is the simplest investing, the most peaceable investing? —John Bogle 4 CONTENTS Prologue I AHA! II MYTH III MONEY IV FOOD V THOUGHT Epilogue 5 Deadly Serious is Dead! Long live Lively Serious! 6 PROLOGUE In 1970, Alvin Toffler wrote the bestseller Future Shock, heralding an era of unprecedented innovation and acceleration. We couldn’t quite know how right he was, although the resonance of his message was ineluc- table.