Antlions Are Sensitive to Subnanometer Amplitude Vibrations Carried by Sand Substrates

Total Page:16

File Type:pdf, Size:1020Kb

Antlions Are Sensitive to Subnanometer Amplitude Vibrations Carried by Sand Substrates bioRxiv preprint doi: https://doi.org/10.1101/429209; this version posted October 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Antlions are sensitive to subnanometer amplitude vibrations carried by sand substrates Vanessa Martineza,c, Elise Nowbaharia, David Sillam-Dussèsa,b, and Vincent Lorentc, aLaboratoire d’éthologie expérimentale et comparée, Université Paris 13, Sorbonne Paris Cité, 99 av. J-B Clément, 93430 Villetaneuse, France bIRD - Sorbonne Universités, iEES-Paris, U 242, Bondy, France cLaboratoire de physique des lasers, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, CNRS, 99 av J-B Clément, 93430 Villetaneuse, France European pit-building antlions (Myrmeleon inconspicuus / Ram- avalanche alerting the antlion hiding below a layer of sand at bur 1842) are studied in their capacity to detect vibrations gen- the bottom of the trap. The avalanche is maintained by the erated by the locomotion of an ant (Cataglyphis cursor) outside antlion tossing sand towards the prey by the intermediate of the pit. These locomotions have been recorded by laser ve- his eventually closed mandibles. The probability for a prey locimetry and copied in detail in their time sequences. The se- to escape from the pit is very low. quences are replicated by micro-controllers digital outputs act- Since the senses of vision and chemoreception can be dis- ing on piezoelectric transducers placed several centimeters out- side the peripheries of the pits: their actions on the surface of carded (see D. Devetak in (3) chapter 16), we can associate a sand media create surface waves with particle accelerations the prey reception to sand movements either by avalanche or that are 3 orders of magnitude less than g, alleviating any pos- vibrations. The study explained hereafter focuses on vibra- sibility of sand avalanche towards the bottom of the pit. De- tion reception only. It is mostly inspired by the works of Le pending on the amplitude of the vibrations, the antlions answer Faucheux (4), Fertin and Casas (5) and Mencinger-Vrackoˇ back, generally by sand tossing. One remarkable feature is the and Devetak (6) who identified the tufts of bristles around time delay from the start of the cue and the aggressive behavior the body of the antlion as possible mechanoreceptive sensors. induced by this cue. This time delay is studied versus the cue While the seminal work of Le Faucheux concentrate in iden- amplitude. The result of this work is that anlions answer back tifying the bristles as mechanoreceptors by selectively ablat- within minutes to cues with amplitudes between 1 to 2 nanome- ing those, the independent studies in the groups of Casas and ters at the level of their mechanosensors, and within seconds to Devetak demonstrated the ability of the antlion to localize its these same cues if they are preceded by a sequence of signals at the Ångström amplitude. This induced aggressive behaviour prey in evidencing the strong correlation of sand tossing di- evidences the sensitivity to vibrations at extremely low level. rection and prey direction. Our study is made with no interference with the behavioural arthropod sensors | behaviour physiology | vibration propagation in granular media | biomechanics repertoire of the antlion, whereas the preys are replaced by Correspondence: [email protected] artificial cues with a total control of the amplitude of the vi- bration: the vibration induced are far from originating any avalanche leaving only vibrations as a signalization of the 1. Introduction presence of a prey. In this framework we specifically address The question of vibrational communication intermediated by the question of a threshold in the perception of vibration. mechanoreceptors in arthropods has received many attentions particularly in arachnids. Spiders have been the object of 2. Material and Methods an extensive study (for a complete overview seeDRAFT the book of Friederich G. Barth (1)). The seminal work of Philip H. (a) Choice of animal model. The ecology of antlions in- Brownell (2) in the seventies was devoted to the study of forms us that 10 % of the species (7) are digging a pit in how desert scorpions locate their prey. The desert scorpions the sand or in a similar granular media. Once this construc- are poorly equipped with visual auditory and olfactory senses tion done, the antlion waits at the bottom of the trap for a and hence their prey detection is by a large extend due to the prey to descend the slope of this funnel. Depending of the vibration reception through their sensilla located at the tarsi. size and weight of the prey, this last one might eventually be In terms of sensory systems, the antlion larvae is similar to able to climb up the sand slope (8). On the other hand, the the desert scorpion in its low ability in seeing and high sen- antlion, alerted by the sand avalanche and/or the sand vibra- sitivity in vibration detection. In term of biotope, the antlion tion, tosses sand in the direction of the prey to aggravate the shares also similarities with the desert scorpion, at least for falling of the prey. We concentrate our study to the perception the perception of the vibrations: in both cases, those vi- of vibrations by the antlion, alleviating any chance that this brations are propagated through a granular media. Unlike antlion is alerted by sand avalanche. Euroleon nostras has the desert scorpion, the hunting strategy of the sand dig- been studied extensively in the context of the mechanorecep- ging antlion is to sit and wait for its prey. A funnel conical tors physiology (4,6,9) and in the context of environmental shape built by the antlion inside a granular media (generally factors and conditioning (10–12). Among the sit and wait sand) serves as a trap for any arthropod of reasonable size antlions, Euroleon nostras and Myrmeleon inconspicuus are adventuring into it. Usually the presence of a prey creates an very similar in their behavior (13) therefore we considered V Lorent et al. | bioRχiv | October 1, 2018 | 1–10 bioRxiv preprint doi: https://doi.org/10.1101/429209; this version posted October 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. that Myrmeleon inconspicuus antlions collected in the for- (Fig.1). The ant crawls over a 10 cm × 5 cm paper surface est of Fontainebleau to be a good model for the studies con- centrated to the mechano-perception of preys. The antlions selected for the study have been characterized in size and weight (see Supplementary Note-Subjects Table SN1). (b) Analysis of a natural cue inducing an agonistic behaviour of the antlion. It is usually evidenced that the antlion attacks the prey while it falls into its pit, and there is generally no such a behaviour when the prey is outside the pit. An agonistic behaviour is usually not demonstrated when the prey is outside the pit but some antlions, while they are in the process of digesting their prey nevertheless pay attention to their environment. It has been evidenced that an antlion is violently throwing away the caught prey if another ant is crawling at some distance (a distance up to 20 cm away from the border of the pit has been noticed in the laboratory). This last behaviour gives an hint about the mechano-sensory per- formance of an antlion. A first approach to quantify the am- plitude of the signal received by the antlion would then be to Fig. 1. The figures above displays the transverse velocity of a 10 cm × 5 cm paper measure the vibration signal propagating through the surface surface measured by laser velocimetry. This surface acts as a drumhead while a −1 of the sand when this vibration is induced by an ant passing Cataglyphis cursor ant is walking on it. The vertical scale is in ms . The figure above is a velocimetry recording during 22 s. The figure below is a detail of this by. We made an attempt to measure these vibration in the fol- recording during 40 ms. lowing procedure: a Cataglyphis cursor ant, weighting 4 mg was placed around the pit of an antlion, while the antlion re- illuminated from beneath by the laser beam of a commercial moved. At the bottom of the pit there is a 5 mm2 reflective laser velocimeter (Polytech pdv-100). Velocimetry data has stamp, adhesive on one side (that makes it embedded with been acquired in conjunction with video screening in order the surface sand). The laser beam of the velocimeter strikes to exclude data resulting from the eventual contact of the ant upon that small stamp. One films the ant in synchroniza- with the boundaries of the paper drumhead. Hereafter the se- tion with the velocimetry recording. Given the noise level 1 lected velocimetry data has been replicated in the time inter- , no velocimetry signal can be retrieved while the ant is out- vals. A microprocessor board (Arduino Uno) is then coded to side the pit. Inside the pit, two different types of signals are produce a 5 volt digital output pulse of 350 microseconds du- recorded, identified mainly by their amplitudes: while the ant ration replicating these recorded time lapses. Whereas Fertin crawls back to exit the pit some avalanches are created with and Casas (5) choose to produce signals based on regular amplitudes in the 1 µm − 10 µm scale and signals of ampli- pulses of fragmented 4 kHz sinusoidal of 350 microsecond tudes between 0.05 µm to 0,5 µm with frequencies around duration, we choose to apply 350 microsecond square pulses 1200 Hz, typical of the vibration propagation induced by a on the surface of the sand trough the action of the active sur- stepping function or an impulse on a sand surface.
Recommended publications
  • GIS-Based Modelling Reveals the Fate of Antlion Habitats in the Deliblato Sands Danijel Ivajnšič1,2 & Dušan Devetak1
    www.nature.com/scientificreports OPEN GIS-based modelling reveals the fate of antlion habitats in the Deliblato Sands Danijel Ivajnšič1,2 & Dušan Devetak1 The Deliblato Sands Special Nature Reserve (DSSNR; Vojvodina, Serbia) is facing a fast successional process. Open sand steppe habitats, considered as regional biodiversity hotspots, have drastically decreased over the last 25 years. This study combines multi-temporal and –spectral remotely sensed data, in-situ sampling techniques and geospatial modelling procedures to estimate and predict the potential development of open habitats and their biota from the perspective of antlions (Neuroptera, Myrmeleontidae). It was confrmed that vegetation density increased in all parts of the study area between 1992 and 2017. Climate change, manifested in the mean annual precipitation amount, signifcantly contributes to the speed of succession that could be completed within a 50-year period. Open grassland habitats could reach an alarming fragmentation rate by 2075 (covering 50 times less area than today), according to selected global climate models and emission scenarios (RCP4.5 and RCP8.5). However, M. trigrammus could probably survive in the DSSNR until the frst half of the century, but its subsequent fate is very uncertain. The information provided in this study can serve for efective management of sand steppes, and antlions should be considered important indicators for conservation monitoring and planning. Palaearctic grasslands are among the most threatened biomes on Earth, with one of them – the sand steppe - being the most endangered1,2. In Europe, sand steppes and dry grasslands have declined drastically in quality and extent, owing to agricultural intensifcation, aforestation and abandonment3–6.
    [Show full text]
  • Prey Recognition in Larvae of the Antlion Euroleon Nostras (Neuroptera, Myrrneleontidae)
    Acta Zool. Fennica 209: 157-161 ISBN 95 1-9481-54-0 ISSN 0001-7299 Helsinki 6 May 1998 O Finnish Zoological and Botanical Publishing Board 1998 Prey recognition in larvae of the antlion Euroleon nostras (Neuroptera, Myrrneleontidae) Bojana Mencinger Mencinger, B., Department of Biology, University ofMaribor, Koro&a 160, SLO-2000 Maribor, Slovenia Received 14 July 1997 The behavioural responses of the antlion larva Euroleon nostras to substrate vibrational stimuli from three species of prey (Tenebrio molitor, Trachelipus sp., Pyrrhocoris apterus) were studied. The larva reacted to the prey with several behavioural patterns. The larva recognized its prey at a distance of 3 to 15 cm from the rim of the pit without seeing it, and was able to determine the target angle. The greatest distance of sand tossing was 6 cm. Responsiveness to the substrate vibration caused by the bug Pyrrhocoris apterus was very low. 1. Introduction efficient motion for antlion is to toss sand over its back (Lucas 1989). When the angle between the The larvae of the European antlion Euroleon head in resting position and the head during sand nostras are predators as well as the adults. In loose tossing is 4S0, the section of the sand tossing is substrate, such as dry sand, they construct coni- 30" (Koch 1981, Koch & Bongers 1981). cal pits. At the bottom of the pit they wait for the Sensitivity to vibration in sand has been stud- prey, which slides into the trap. Only the head ied in a few arthropods, e.g. in the nocturnal scor- and sometimes the pronotum of the larva are vis- pion Paruroctonus mesaensis and the fiddler crab ible; the other parts of the body are covered with Uca pugilator.
    [Show full text]
  • A New Type of Neuropteran Larva from Burmese Amber
    A 100-million-year old slim insectan predator with massive venom-injecting stylets – a new type of neuropteran larva from Burmese amber Joachim T. haug, PaTrick müller & carolin haug Lacewings (Neuroptera) have highly specialised larval stages. These are predators with mouthparts modified into venom­injecting stylets. These stylets can take various forms, especially in relation to their body. Especially large stylets are known in larva of the neuropteran ingroups Osmylidae (giant lacewings or lance lacewings) and Sisyridae (spongilla flies). Here the stylets are straight, the bodies are rather slender. In the better known larvae of Myrmeleontidae (ant lions) and their relatives (e.g. owlflies, Ascalaphidae) stylets are curved and bear numerous prominent teeth. Here the stylets can also reach large sizes; the body and especially the head are relatively broad. We here describe a new type of larva from Burmese amber (100 million years old) with very prominent curved stylets, yet body and head are rather slender. Such a combination is unknown in the modern fauna. We provide a comparison with other fossil neuropteran larvae that show some similarities with the new larva. The new larva is unique in processing distinct protrusions on the trunk segments. Also the ratio of the length of the stylets vs. the width of the head is the highest ratio among all neuropteran larvae with curved stylets and reaches values only found in larvae with straight mandibles. We discuss possible phylogenetic systematic interpretations of the new larva and aspects of the diversity of neuropteran larvae in the Cretaceous. • Key words: Neuroptera, Myrmeleontiformia, extreme morphologies, palaeo­ evo­devo, fossilised ontogeny.
    [Show full text]
  • Bergmann's Rule in Larval Ant Lions
    Ecological Entomology (2003) 28, 645–650 Bergmann’s rule in larval ant lions: testing the starvation resistance hypothesis AMY E. ARNETT andNICHOLAS J. GOTELLI Department of Biology, University of Vermont, U.S.A. Abstract. 1. Body size of the ant lion Myrmeleon immaculatus follows Bergmann’s rule – an increase in body size towards higher latitudes. The hypothesis that ant lion body size is larger in the north as an adaptation for starvation resistance was tested. 2. In a laboratory experiment testing starvation resistance, survivorship curves differed among 10 ant lion populations for both a starved and a fed treatment. 3. The average number of months survived by each population was correlated positively with latitude for both treatments. Across both treatments and all populations, large individuals survived longer than small individuals; however individuals from high latitudes had higher survivorship, even after factoring out variation due to initial body size. 4. These results suggest that starvation resistance may be an adaptation for coping with reduced prey availability in high latitudes. Starvation resistance may contribute to latitudinal gradients in body size of ant lions and other ectotherms. Key words. Ant lion, Bergmann’s rule, body size, latitudinal gradients, Myrmeleon immaculatus, starvation resistance. Introduction body size (Cushman et al., 1993). If food availability decreases at high latitudes, starvation resistance may be Bergmann’s rule – an increase in body size with latitude – is genetically based and promote large body size at high lati- a common geographic pattern that has been described for tudes. Size-dependent resistance to starvation is supported many taxa including birds (James, 1970; Graves, 1991), by many studies of both endotherms and ectotherms mammals (Boyce, 1978; Sand et al., 1995; Sharples et al., (Brodie, 1975; Kondoh, 1977; Boyce, 1978; Lindstedt & 1996), fish (L’Abe´e-Lund et al., 1989; Taylor & Gotelli, Boyce, 1985; Murphy, 1985; Cushman et al., 1993).
    [Show full text]
  • From Chewing to Sucking Via Phylogeny—From Sucking to Chewing Via Ontogeny: Mouthparts of Neuroptera
    Chapter 11 From Chewing to Sucking via Phylogeny—From Sucking to Chewing via Ontogeny: Mouthparts of Neuroptera Dominique Zimmermann, Susanne Randolf, and Ulrike Aspöck Abstract The Neuroptera are highly heterogeneous endopterygote insects. While their relatives Megaloptera and Raphidioptera have biting mouthparts also in their larval stage, the larvae of Neuroptera are characterized by conspicuous sucking jaws that are used to imbibe fluids, mostly the haemolymph of prey. They comprise a mandibular and a maxillary part and can be curved or straight, long or short. In the pupal stages, a transformation from the larval sucking to adult biting and chewing mouthparts takes place. The development during metamorphosis indicates that the larval maxillary stylet contains the Anlagen of different parts of the adult maxilla and that the larval mandibular stylet is a lateral outgrowth of the mandible. The mouth- parts of extant adult Neuroptera are of the biting and chewing functional type, whereas from the Mesozoic era forms with siphonate mouthparts are also known. Various food sources are used in larvae and in particular in adult Neuroptera. Morphological adaptations of the mouthparts of adult Neuroptera to the feeding on honeydew, pollen and arthropods are described in several examples. New hypoth- eses on the diet of adult Nevrorthidae and Dilaridae are presented. 11.1 Introduction The order Neuroptera, comprising about 5820 species (Oswald and Machado 2018), constitutes together with its sister group, the order Megaloptera (about 370 species), and their joint sister group Raphidioptera (about 250 species) the superorder Neuropterida. Neuroptera, formerly called Planipennia, are distributed worldwide and comprise 16 families of extremely heterogeneous insects.
    [Show full text]
  • Preference of Antlion and Wormlion Larvae (Neuroptera: Myrmeleontidae; Diptera: Vermileonidae) for Substrates According to Substrate Particle Sizes
    Eur. J. Entomol. 112(3): 000–000, 2015 doi: 10.14411/eje.2015.052 ISSN 1210-5759 (print), 1802-8829 (online) Preference of antlion and wormlion larvae (Neuroptera: Myrmeleontidae; Diptera: Vermileonidae) for substrates according to substrate particle sizes Dušan DEVETAK 1 and AMY E. ARNETT 2 1 Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia; e-mail: [email protected] 2 Center for Biodiversity, Unity College, 90 Quaker Hill Road, Unity, ME 04915, U.S.A.; e-mail: [email protected] Key words. Neuroptera, Myrmeleontidae, Diptera, Vermileonidae, antlions, wormlions, substrate particle size, substrate selection, pit-builder, non-pit-builder, habitat selection Abstract. Sand-dwelling wormlion and antlion larvae are predators with a highly specialized hunting strategy, which either construct efficient pitfall traps or bury themselves in the sand ambushing prey on the surface. We studied the role substrate particle size plays in these specialized predators. Working with thirteen species of antlions and one species of wormlion, we quantified the substrate particle size in which the species were naturally found. Based on these particle sizes, four substrate types were established: fine substrates, fine to medium substrates, medium substrates, and coarse substrates. Larvae preferring the fine substrates were the wormlion Lampromyia and the antlion Myrmeleon hyalinus originating from desert habitats. Larvae preferring fine to medium and medium substrates belonged to antlion genera Cueta, Euroleon, Myrmeleon, Nophis and Synclisis and antlion larvae preferring coarse substrates were in the genera Distoleon and Neuroleon. In addition to analyzing naturally-occurring substrate, we hypothesized that these insect larvae will prefer the substrate type that they are found in.
    [Show full text]
  • Comparative Study of Sensilla and Other Tegumentary Structures of Myrmeleontidae Larvae (Insecta, Neuroptera)
    Received: 30 April 2020 Revised: 17 June 2020 Accepted: 11 July 2020 DOI: 10.1002/jmor.21240 RESEARCH ARTICLE Comparative study of sensilla and other tegumentary structures of Myrmeleontidae larvae (Insecta, Neuroptera) Fernando Acevedo Ramos1,2 | Víctor J. Monserrat1 | Atilano Contreras-Ramos2 | Sergio Pérez-González1 1Departamento de Biodiversidad, Ecología y Evolución, Unidad Docente de Zoología y Abstract Antropología Física, Facultad de Ciencias Antlion larvae have a complex tegumentary sensorial equipment. The sensilla and Biológicas, Universidad Complutense de Madrid, Madrid, Spain other kinds of larval tegumentary structures have been studied in 29 species of 2Departamento de Zoología, Instituto de 18 genera within family Myrmeleontidae, all of them with certain degree of Biología- Universidad Nacional Autónoma de psammophilous lifestyle. The adaptations for such lifestyle are probably related to México, Mexico City, Mexico the evolutionary success of this lineage within Neuroptera. We identified eight types Correspondence of sensory structures, six types of sensilla (excluding typical long bristles) and two Fernando Acevedo Ramos, Departamento de Biodiversidad, Ecología y Evolución, Unidad other specialized tegumentary structures. Both sensilla and other types of structures Docente de Zoología y Antropología Física, that have been observed using scanning electron microscopy show similar patterns in Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain. terms of occurrence and density in all the studied
    [Show full text]
  • Of the World
    OCCASIONAL PAPERS OF THE CALIFORNIA ACADEMY OF SCIENCES No. 147, 94 pages. December 2, 1991 GENUS-GROUP NAMES OF THE NEUROPTERA, MEGALOPTERA AND RAPHIDIOPTERA OF THE WORLD By John D. Oswald Department of Entomology, Cornell University, Ithaca, New York 14853-0999 and Norman D. Penny Department of Entomology, California Academy of Sciences, San Francisco, California 94118-4599 Abstract: Alphabetical listings of the genus-group names of extant Megaluptcra, Raphidioptera, and = Neuroptera (s. str. Planipennia) are presented. Taxonomic and nomenclatural data for each name are given. Summaries of new genus-group synonyms, unreplaced junior homonyms, names without valid type species fixations, and names based on misidentified type species are given. Complete bibliographic references are given for all names and nomenclatural acts. Contents Introduction Inlroduciion (1) The last worldwide species-level catalog of Scope (2) the order str. = Nomenclature (2) Neuroptera (s. Planipennia), and Format Arrangement of Entries (2) Hermann Hagen's 1866 Hemerobidarum Syn- General Arrangement (2) opsis Synonymica, has long been obsolete, as Subgenera (2) are the most recent revisions Synonymy (2) comprehensive Character Formals (3) of the orders Megaloptera (i.e.. Van dcr Publication Dates (3) Weele 1910) and Raphidioptera (i.e., Navas Type Species (3) [1919e] 1918). In the 120+ years since 1866, Unavailable Names (3) the number of available Homonymy (4) nomenclaturally Family-Group Taxa (4) genus-group names in the order Neuroptera Selected Taxonomic References
    [Show full text]
  • Review of Japanese Myrmeleontidae (Neuroptera)
    Title Review of Japanese Myrmeleontidae (Neuroptera) Author(s) SEKIMOTO, Shigeyuki Insecta matsumurana. New series : journal of the Faculty of Agriculture Hokkaido University, series entomology, 70, 1- Citation 87 Issue Date 2014-10 Doc URL http://hdl.handle.net/2115/57386 Type bulletin (article) File Information 01:01-87p.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP INSECTA MATSUMURANA NEW SERIES 70: 1–87 OCTOBER 2014 REVIEW OF JAPANESE MYRMELEONTIDAE (NEUROPTERA) By SHIGEYUKI SEKIMOTO Abstract SEKIMOTO, S., 2014. Review of Japanese Myrmeleontidae (Neuroptera). Ins. matsum. n. s. ±¿JV -DSDQHVHVSHFLHVRIWKHIDPLO\0\UPHOHRQWLGDHDUHUHYLVHG7KHIROORZLQJ VSHFLHVDUHUHFRJQL]HGMyrmeleon formicarius Linnaeus, M. bore (Tjeder), M. solers Walker, M. taiwanensis0LOOHU 6WDQJH QHZUHFRUGIURP-DSDQ Baliga micans (McLachlan), Dendroleon pupillaris (Gerstaecker), Gatzara jezoensis (Okamoto), Epacanthaclisis moiwana (Okamoto), Distoleon nigricans (Okamoto), Di. contubernalis (McLachlan), Di. bistrigatus (Rambur), Di. boninensis Adams, Neuroleon parvulus (Okamoto) n. comb., Paraglenurus japonicus (McLachlan), Pa. okinawensis (Okamoto), Pseudoformicaleo nubecula (Gerstaecker) and Synclisis japonica (McLachlan). The male of Di. boninensisLVUHFRUGHGIRUWKH¿UVWWLPH$OO-DSDQHVHVSHFLHVRI0\UPHOHRQWLGDH are redescribed and illustrated, except for M. taiwanensis for which detailed male and IHPDOHWHUPLQDOVWUXFWXUHVZHUHUHFHQWO\LOOXVWUDWHG$NH\WRWKHWULEHVJHQHUDDQG species of Japanese antlions is provided. In appendix,
    [Show full text]
  • Neuroptera in Two Protected Sand Dune Areas in the Southern Rim of the Pannonian Plain
    15 December 2019 Neuroptera in two sand dune areas in the Pannonian Plain Neuroptera in two protected sand dune areas in the southern rim of the Pannonian Plain Dušan Devetak1,3, Predrag Jakšić2, Tina Klenovšek1, Vesna Klokočovnik1, Jan Podlesnik1, Franc Janžekovič1 & Danijel Ivajnšič1 1 Department of Biology & Institute for Biology, Ecology and Nature Conservation, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia 2 Čingrijina 14/25, Zvezdara, 11000 Beograd, Serbia 3 Corresponding author: [email protected] Received 9th September 2018; revised and accepted 1st February 2019 Abstract. The Pannonian Plain is large sedimentary lowlands in Central/south-eastern Europe. Two protected sand dune areas in the southern rim of the Pannonian Plain were surveyed for the presence of Neuroptera. Đurđevac sands in Croatia is a special geographical and botanical reserve, occupying only about 0.2 km², whereas Special Nature Reserve Deliblato sands in the Vojvodina province, Serbia, covers about 300 km². Among other lacewings, a few rare antlion species were observed in these reserves. Thegreen lacewing Chrysopa commata was recorded for the first time in Croatia. The vegetation dynamics of the study areas was determined with a mul- tispectral LANDSAT satellite imagery. As a result of the ecological succession (in both reserves) and afforestation (in Deliblato sands) in the past, the rate of the habitat loss and degradation processes of the sand dune ecosystems have increased to a level less suitable for the antlions as- semblages. Further key words. Antlions, nature conservation, habitat loss, Croatia, Serbia Introduction The Pannonian Plain is large sedimentary lowlands in Central to south-eastern Europe.
    [Show full text]
  • Commagene Journal of Biology Tusun & Bozdoğan (2020) Comm
    Commagene Journal of Biology Tusun & Bozdoğan (2020) Comm. J. Biol. 4(2): 100-103. e-ISSN 2602-456X DOI: 10.31594/commagene.783479 Research Article / Araştırma Makalesi Effects of Soil Substrate on the Ecological Features of the Sand Pit- building Antlions Myrmeleon formicarius Linnaeus, 1767 (Neuroptera: Myrmeleontidae) Larvae in the Amanos Mountains of Turkey Sadreddin TUSUN*,1, Hakan BOZDOĞAN2 1Faculty of Ziya Gökalp Education, Department of Biology, University of Dicle, 21280, Diyarbakır, Turkey 2Department of Herbal and Animal Production, Vocational School of Technical Sciences, University of Kırşehir Ahi Evran, 40100, Kırşehir, Turkey ORCID ID: Sadreddin TUSUN: https://orcid.org/0000-0002-0696-4244; Hakan BOZDOĞAN: https://orcid.org/0000-0002-6836-4383 Received: 21.08.2020 Accepted: 30.09.2020 Published online: 14.10.2020 Issue published: 31.12.2020 Abstract: The hunting behavior of antlion larvae is unique in the insect world and the soil characteristics may strongly affect their microhabitat selection. Therefore, the substrate type of sand pit construction is expected to have an important role in their traps. Different types of soil substrates can be inhabited by Myrmeleon formicarius Linnaeus, 1767 larvae. This study was conducted during 2018-2019 June-August in the Amanos Mountains of Turkey to examine the relationship between the microhabitat preference of larvae of M. formicarius. In this study, five substrate types were determined as particularly according to their habitat preference. In this study, the preference of fine-grained soils is found more adaptive because the pits are constructed in these substrates are more functional for longer periods and they are much more successful in trapping their prey than the coarse-grained soil pits.
    [Show full text]
  • On the Occurrence of Euroleon Nostras (Fourcroy, 1785) in the Turkish Ant-Lion Fauna (Neuroptera, Myrmeleontidae)
    Boletín Sociedad Entomológica Aragonesa, n1 40 (2007) : 232. NOTAS BREVES On the occurrence of Euroleon nostras (Fourcroy, 1785) in the Turkish ant-lion fauna (Neuroptera, Myrmeleontidae) Savaş Canbulat Sakarya University, Arts and Sciences Faculty, Department of Biology, 54140 Sakarya, Turkey [email protected] Abstract: The author collected pit building ant-lion larvae in Ankara province in order to breed them. The larvae were kept in normal lab conditions and fed with ants. The hatched imago was identified as a female of Euroleon nostras (Fourcroy, 1785), which is recorded from Turkey for the second time. Some remarks are made on the biology and distribution of the species as well. Key words: Neuroptera, Myrmeleontidae, Turkey. Introduction Larvae of ant-lions (Myrmeleontidae) look familiar to many people through the funnel-shaped pitfall traps constructed in the loose soil especially in the arid or semiarid areas. The function of these ob- jects is capturing preys (Bongers & , 1984) and they play important roles in the temperature tolerance of the larvae (Ábrahám, 2003). Material and methods During a fieldwork carried out in Ankara province a third instar of ant-lion living in sheltered habitat was collected in the vicinity of Lezgi village near Kazan (40º08’N, 32º44’E) at 1080 m asl., on 11.05.2002. The microhabitat of the larva was protected from direct sunshine and wind under rocks overhangs, in a pine forest. The larva was put into a glass container which was previously filled with loose soil from their natural habitat and the larva was fed with ants. It always moved only backwards while building its pitfall.
    [Show full text]