Joining Corroles and Phthalocyanines in Functional Porphyrinoid Arrays
Total Page:16
File Type:pdf, Size:1020Kb
UNIVERSITÀ DEGLI STUDI DI ROMA “TOR VERGATA” UNIVERSIDAD AUTÓNOMA DE MADRID Joining Corroles and Phthalocyanines in functional porphyrinoid arrays Beatrice Berionni Berna Supervisors: Dr. Sara Nardis Prof. Tomás Torres Cebada Academic year 2016/2017 This work was developed as a joint PhD between the Department of Chemical Science and Technology of University of Rome Tor Vergata, under the supervision of Dr. Sara Nardis, and the Department of Organic Chemistry of The Autonomous University of Madrid, under the supervision of Prof. Dr. Tomás Torres Cebada. This work was presented in the following articles: • “Extending the corrole ring conjugation: preparation of β,β′-fused 2,3-[1′,2′- b]pyrazinocorroles”. B. Berionni Berna, S. Nardis, F. Mandoj, F. R. Fronczek, K. M. Smith, R. Paolesse. Org. Biomol. Chem., 2016,14, 2891-2897 • “β-Pyrrolopyrazino Annulated Corroles via a Pictet–Spengler Approach”. B. Berionni Berna, S. Nardis, P. Galloni, A. Savoldelli, M. Stefanelli, F.R. Fronczek, K.M. Smith, R. Paolesse. Org. Lett., 2016, 18, 3318–3321 Pre-doctoral stay: • Photophysical measurements were carried out in the group of Prof. Dirk M. Guldi in the Department of Chemistry and Pharmacy of Friedrich-Alexander- Universität of Erlangen-Nürnberg, Germany, May 2017. Abbreviations and acronyms Abbreviation and acronyms used in this thesis are listed in the “guidelines for authors” of J. Org. Chem. 2016, and can be found in the journal webpage: http://pubs.acs.org/paragonplus/submission/joceah/joceah_authguide.pdf A Acceptor AcOH Acetic acid Corr Corrole CR Charge recombination CS Charge separation CSR Charge separation rate CSS Charge separation state CT Charge transfer CV Cyclic voltammetry D Donor DBSA p-dodecylbenzenesulfonic acid DCTB trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2- propenylidene]malononitrile DDQ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone DFT Density functional theory DPM Dipyrromethane DSSC Dye-sensitized solar cell ESI Electrospray ionization ε Molar extinction coefficient FAB Fast atom bombardment G Guest H Host HOMO Highest occupied molecular orbital λ Wavelength L Linker LUMO Lowest unoccupied molecular orbital MALDI Matrix-assisted laser desorption ionization o-DCB o-Dichlorobenzene Φ Quantum Yield Pc Phthalocyanine PET Photoinduced electron transfer PHT Photoinduced hole transfer Por Porphyrin TBAH Tetrabutylammonium hexafluorophosphate TBAP Tetrabutylammonium perchlorate TFA Trifluoroacetic acid THF Tetrahydrofurane TMS Trimethylsilyl Table of Contents Summary….……………………………………………………………………………………………...………….……I Riassunto…………………………………………………………………………………………………………...…VII Resumen………………………………………………………………………………………………………..…….XIII Introduction…………………………………………….………………………………………………………….1 Errore. Il segnalibro non è definito. Corroles………………………………………………………………………………………………………………..3 Structure and General Properties…………………………………………………………………...…..5 Synthesis of meso-substituted A3 Corroles…………………………………...……………………10 Synthesis Using Al2O3 as a Solid Support………………………………………………………..11 Modified Rothemund method………………………………………………………………………..12 Modified Lindsey method……………………………………………………………………………...12 Modified Král method…………………………………………………………………………………...13 Synthesis of meso-substituted trans A2B Corroles……………………………………………..13 Corrole-based applications………………………………………………………………………………….16 References……………………………………………………………………………………………………….…19 General Objectives……………………………………………………….…………………..…….…...…...25 Errore. Il segnalibro non è definito. Thesis distribution………………………………………………………………………………………………27 1Chapter I………………………………………………………………………………………………………..…29 Errore. Il segnalibro non è definito. State of the Art………………………………………………………………………………………….…………30 Functionalization of aminocorroles………………………………………………………….…………..36 Nitration…………………………………………………………………………………………….……………37 Amination……………………………………………………………………………………………….……….41 Results and discussion…………………………………………………………………………….…………..44 Functionalization by one- pot reduction and condensation………………………………..44 Reaction with 1,2-cyclohexanedione……………………………………………………………...46 Reaction with 1,4-dibromo-2,3-butanedione and further functionalization……..51 Reaction with 9,10-phenanthrenequinone……………………………………………………..55 Demetalation………………………………………………………………………………………………..57 Catalytic hydrogenation and condensation……………………………………………………58 Functionalization via Pictet–Spengler approach……………………………………………..….64 Synthesis of a pyrrole moiety via a Clauson−Kaas reaction………………………….….64 π-extended β,β'-copper (II) pyrrolo[1,2-a]pyrazinocorrolates via a Pictet-Spengler reaction………………………………………………………………………….……67 Vilsmeier-Haack formilation of 2-(pyrrol-1-yl)-3-nitro corrolate……………………73 Summary and conclusions…………………………………………………………………………………...75 Experimental section…………………………………………………………………………………………..77 Materials and Instruments……………………………………………………………………………….77 Synthetic procedures……………………………………………………………………………………….78 References………………………………………………………………………………………………………….90 2. Chapter II……………………………………………………………………………………………….……95 The Energy Issue…………………………………………………………………………………………………97 Basic theory of photoinduced Electron Transfer (PET) and Excited Energy Transfer (EET)…...……………………………………………………………………………...…………….98 Marcus theory of electron transfer………………………………………………………………….101 Phthalocyanines………………………………………………………………………………...……………...103 Synthesis of Phthalocyanines……………………………………………………………......………..105 Synthesis of symmetrically substituted phthalocyanines………………………………105 Synthesis of asymmetrically substituted phthalocyanines………………………….…106 Phthalocyanines as organic synthetic artificial photosystems…………………………..107 Results and discussion………………………………………………………………………………………109 Pthalocyanine-Corrole covalent systems…………………………………………………………109 Synthesis of ethynylphenyl-substituted corroles…………………………………….……110 Synthesis of monoiodo-phthalocyanine derivative……………………………………….113 Assembly of Corr-ZnPc dyads……………………………………………………………………...114 Electrochemical Studies………………………………………………………………………………116 Calculation of HOMO-LUMO levels……………………………………………………………….119 DFT B3LYP/3-21G(*) Calculations……………………………………………………….……...120 Photophysical studies…………………………………………………………………………………122 Steady State Absorption and Emission Spectroscopy…………..………….…………122 Transient Absorption spectroscopy………………………………………………………….124 Pthalocyanine-Corrole supramolecular systems………………...…………....………………129 Synthesis of the precursors………………………...………………………………...……………..129 Host-guest interactions……………………………………………………………………………….131 NMR studies………………………………………………………………………………………...….131 Photophysical studies………………………………………………………………………………139 Summary and conclusions…………………………………...……………………………….……………143 Experimental section…………………………………………………………………………………………145 Materials and Instruments……………………………………………………………………………...145 Synthetic procedures………………………………………………………………………………...…...146 References………………………………………………………………………………………………………..155 1. Appendix……………………………………………………………………………………………………159 Summary Summary In the compendium of porphyrinoids, corroles have experienced increasing attention in the past two decades, starting from the disclosure in 1999 of simple routes for the synthesis of meso- triarylcorroles.1,2 Since then, they have been successfully used in various contexts ranging from catalysis3,4 to dye-sensitized solar cells.5,6 Peripheral modifications are important to modulate corrole properties and make them suitable for these applications. In this view, the synthetic availability of triarylcorroles has allowed a more detailed investigation of the corrole ring functionalization. Research under this heading will focus in particular on the synthesis and functionalization of new free base- and metallo- corrole derivatives. The synopsis presented here reports a concise overview of the design, synthesis, structural, photophysical, electrochemical, and molecular modelling characterization of: 1. Expanded Corroles by β-fused aromatic rings. 2. Design and synthesis of new Phthalocyanine-Corrole hybrid conjugates for application in light harvesting systems. This thesis consists of a general introduction and two chapters. Introduction In the introduction, a general description of corrole structure, reactivity and photophysical properties is presented. The main synthetic strategies to achieve symmetric and asymmetric corrole derivatives are briefly discussed, as well as their applications in different research fields. Lastly, general objectives of the present thesis are there highlighted. Chapter 1 Among the different corrole functionalizations, we focused on the fusion of aromatic substituents at the macrocyclic β-positions. It is well known that in the case of porphyrins, the introduction of fused π-conjugated units strongly modifies the electronic character of the ___________________________________________________________________________________________________ (1) Gross, Z.; Galili, N.; Saltsman, I. The First Direct Synthesis of Corroles from Pyrrole. Angew. Chem. Int. Ed. 1999, 38 (10), 1427–1429. (2) Paolesse, R.; Mini, S.; Sagone, F.; Boschi, T.; Jaquinod, L.; Nurco, D. J.; Smith, K. M. 5,10,15-Triphenylcorrole: A Product from a Modified Rothemund Reaction. Chem. Commun. 1999, 14, 1307–1308. (3) Saltsman, I.; Simkhovich, L.; Balazs, Y.; Goldberg, I.; Gross, Z. Synthesis, Spectroscopy, and Structures of New Rhodium(I) and Rhodium(III) Corroles and Catalysis Thereby. Inorganica Chim. Acta 2004, 357 (10), 3038–3046. (4) Zdilla, M. J.; Abu-Omar, M. M. Mechanism of Catalytic Aziridination with Manganese Corrole: The Often Postulated High-Valent Mn(V) Imido Is Not the Group Transfer Reagent. J. Am. Chem. Soc. 2006,