A Biomimetic Copper Corrole

Total Page:16

File Type:pdf, Size:1020Kb

A Biomimetic Copper Corrole A Biomimetic Copper Corrole – Preparation, Characterization, and Reconstitution with Horse Heart Apomyoglobin Martin Bröring, Frédérique Brégier, Burghaus Olaf, Christian Kleeberg To cite this version: Martin Bröring, Frédérique Brégier, Burghaus Olaf, Christian Kleeberg. A Biomimetic Copper Corrole – Preparation, Characterization, and Reconstitution with Horse Heart Apomyoglobin. Journal of Inorganic and General Chemistry / Zeitschrift für anorganische und allgemeine Chemie, Wiley-VCH Verlag, 2010, 636 (9-10), pp.1760. 10.1002/zaac.201000102. hal-00552467 HAL Id: hal-00552467 https://hal.archives-ouvertes.fr/hal-00552467 Submitted on 6 Jan 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ZAAC A Biomimetic Copper Corrole – Preparation, Characterization, and Reconstitution with Horse Heart Apomyoglobin Journal: Zeitschrift für Anorganische und Allgemeine Chemie Manuscript ID: zaac.201000102.R1 Wiley - Manuscript type: Article Date Submitted by the 25-Mar-2010 Author: Complete List of Authors: Bröring, Martin; Philipps-Universität Marburg, Fachbereich Chemie Brégier, Frédérique Olaf, Burghaus Kleeberg, Christian Keywords: Biohybrids, Porphyrinoids, Copper, Corrole, Bioinorganic Chemistry Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online. fig2.cdx scheme1.cdx Wiley-VCH Page 1 of 14 ZAAC 1 ARTICLE 2 3 4 DOI: 10.1002/zaac.200 ((will be filled in by the editorial staff)) 5 6 7 8 A Biomimetic Copper Corrole – Preparation, Characterization, and Reconstitution 9 with Horse Heart Apomyoglobin 10 11 12 Martin Bröring, * Frédérique Brégier, Olaf Burghaus and Christian Kleeberg 13 14 15 Dedicated to Bernd Harbrecht on the Occasion of his 60 th Birthday 16 17 18 Keywords: Biohybrids; Porphyrinoids; Copper; Corrole; Bioinorganic Chemistry 19 A copper corrole with biomimetic propionate side chains was the saponified propionate complex slowly forms an equilibrium 20 prepared as a novel heme analog by metalation of t he respective mixture with small, insoluble aggregates. The compound cleanly 21 ligand as the dimethylester with copper(II) acetate hydrate and binds in 1:1 stoichiometry to horse heart apomyoglobin without 22 subsequent saponification with LiOH. The metalated dimethylester a support by proximal histidin binding. The binding in the 23 was characterized by spectroscopic and crystallographic means and protein pocket is rather weak, and the biohybrid compound tends 24 shown by comparison to contain a divalent coppe r ion, to decompose under the slightly acidic conditions of mass 25 antiferromagnetically coupled to the radical-dianionic organic spectrometry. Reduction of the copper corrole was achieved 26 ligand. The molecular structure of this complex is characterized by with sodium dithionite inside the protein pocket and yielded an 27 a saddled macrocycle conformation. In addition, the air- and buffer stable, monoanionic, and protein bound copper 28 methylpropionate side chains are not stretched out but bent to the corrolate complex which could be identified by its EPR 29 same side of the mean copper corrole plane. In buffered solution, spectrum. 30 31 ____________ the reconstituted proteins towards small molecules, and 32 * Corresponding Author drastically change these binding interactions, especially with Fax: int (0)6421 282 5356 O . Therefore, such hybrids are not only interesting for an 33 E-Mail: [email protected] 2 34 Fachbereich Chemie understanding of the physiological properties of heme 35 Philipps-Universität proteins in general, but may also be applied for their 36 Hans-Meerweinstraße, 35032 Marburg regulation. 37 38 Introduction 39 40 The exchange of non-covalently bound cofactors in Figure 1. General sketch illustrating the cofactor exchange strategy 41 proteins against synthetic metal complexes is currently in for the preparation of biohybrid compounds. 42 the focus of many bioinorganic research activities aiming 43 towards the preparation and investigation of biohybrid 44 compounds and bioconjugated catalysts.[1] Figure 1 Very recently a first cofactor exchange study using an iron 45 provides a general graphical sketch to illustrate this corrole was reported.[7] Metal corroles are artificial one- 46 approach which makes use of the properties of the natural carbon short relatives of the ubiquitous metal porphyrins 47 proteinogenic material, i.e., site isolation, as well as chirality and have attracted considerable attention over the last 48 and micropolarity of the active site. The most successful decade.[8] The unique properties of metal corroles have now approach so far has been the exchange of heme in simple 49 advanced into topical fields like catalysis, photophysics, heme proteins, like myoglobin or horseradish peroxidase, 50 surface science, and others.[9] These metal chelates are for modified hemes or other porphyrins.[2] As the modified special with respect to their electronic structures[10] and – 51 metal porphyrins are structurally related to the natural heme often – the non-innocent behaviour of the organic ligands 52 group, novel reactivities may be introduced to the protein which tend to form radicals, stabilized by magnetic coupling 53 without significant changes at the active, heme binding to a coordinated metal centre.[11] During the course of our 54 pocket. In most cases, the propionate side chains have been studies on metal corroles[12] and on corrole-based 55 employed for the modification by substitution with different biohybrid systems the question arose whether the binding of 56 organic moieties, and new functionalities like protein- the metal corrole to histidine inside a heme apoprotein is 57 protein or protein-molecule recognition, electron transfer, or important for the stability of the compound. To probe this 58 increased chemical reactivity have been gained. Another question we thought to prepare a copper corrole 1 with 59 series of heme protein-hybrid compounds has been biomimetic propionate substitution (figure 2), which is 60 constructed using different metal porphyrinoids like devoid of any axial ligand binding capability, and study the phthalocyanines,[3] chlorins,[4] porphyrin isomers,[5] and conjugation of such a copper corrole to apomyoglobin. This other.[6] In particular iron chelates of the above paper reports the results of our study. macrocycles often have a profound impact on the affinity of 1 Wiley-VCH ZAAC Page 2 of 14 1 2 from those reported for other copper octaalkylcorroles in the 3 literature.[11c,14] Basically, this spectrum consists of two 4 major, broadened absorptions, a high-energy, so-called Soret -1 -1 5 Figure 2. Propionate substituted copper corrole 1 in the standard band at 398 nm ( ε = 94500 L mol cm ), and a Q-band at notation (left) and in the ground state resonance form (right) The 546 nm ( ε = 10600 L mol -1 cm -1). 6 arrows indicate the magnetic ordering of the unpaired spins. 7 8 Single crystals suitable for X-ray diffraction were grown 9 from complex 3 by the diffusion method (dichloromethane, Results and Discussion n-hexane, 4°C). 3 crystallizes as shiny, violet needles in the 10 triclinic system, space group P-1, with two molecules per 11 Preparation and characterization of copper corroles. The unit cell (figure 4). Two conformers are present and 12 copper ion was introduced by heating the known ligand 2[7] statistically disordered in a ratio of 73:27. Only the major 13 in the presence of excess copper(II)acetate hydrate in DMF form will be discussed below. 14 solution in air (scheme 1). The reaction can be followed by 15 naked eye as the reaction mixture gradually turns from 16 violet to red. The product complex 3 is isolated after 17 aqueous work-up and column chromatography on silica in 18 the stable, oxidized form (51% yield). The expected Figure 4. View of the unit cell with two molecules of 3 (only major 19 composition of 3 C 37 H43 CuN 4O4 was confirmed by conformer). Ellipsoids are set to 50% probability. Hydrogen atoms have been removed for the sake of clarity. Selected bond lengths 20 elemental analysis and high resolution APCI mass spectrometry. In the solid state, 3 forms fibers with a violet, /Å and angles /°: Cu-N1 1.882(2), Cu-N2 1.897(2), Cu-N3 21 metallic sheen. 1.895(2), Cu-N4 1.888(3), N1-Cu-N3 166.8(1), N2-Cu-N4 22 168.5(1). 23 24 25 The copper atom of the molecular unit of 3 is seated in a distorted square-planar environment with Cu-N distances 26 3 Scheme 1. Synthesis of the copper corrole dimethylester ; a) between 1.882 and 1.897 Å and a displacement of the 27 Cu(OAc) 2 × H 2O, DMF, O 2, ∆ 3hrs. nitrogen atoms from a mean squares CuN plane of 0.142- 28 4 0.172 Å. The short Cu-N bond lengths are characteristic for 29 copper corroles and have been found in earlier 30 3 is an open-shell compound but rendered effectively diamagnetic by the strong antiferromagnetic coupling occasions.[11c,14a,15] In comparison, the Cu-N distances in 31 2 2 copper(II) porphyrins and copper(II) porphyrin radical 32 between the spins in the metal 3d(x -y ) and the ligand b 1- type orbital.[13] Therefore, 3 may simply be analyzed by cations are typically in the range of 1.95-2.06 Å[16] while 33 1 13 for comparable Cu(III)-N-donor chelates values of 1.80-1.91 34 standard H and C NMR techniques. As for other copper corroles the 1H NMR spectrum of 3 is characterized by Å have been reported.[17] Obviously, the Cu-N bond 35 relatively broad resonance lines (figure 3 top).
Recommended publications
  • Synthesis and Spectroscopic Properties of Β-Meso Directly Linked Porphyrin–Corrole Hybrid Compounds
    Synthesis and spectroscopic properties of β-meso directly linked porphyrin–corrole hybrid compounds Baris Temelli* and Hilal Kalkan Full Research Paper Open Access Address: Beilstein J. Org. Chem. 2018, 14, 187–193. Hacettepe University, Department of Chemistry, Beytepe Campus, doi:10.3762/bjoc.14.13 06800, Ankara, Turkey Received: 09 October 2017 Email: Accepted: 05 January 2018 Baris Temelli* - [email protected] Published: 22 January 2018 * Corresponding author Associate Editor: J. Aubé Keywords: © 2018 Temelli and Kalkan; licensee Beilstein-Institut. corrole; hybrid compounds; indium(III) chloride; porphyrin; License and terms: see end of document. porphyrinoids Abstract The preparation of β-meso directly linked porphyrin–corrole hybrids was realized for the first time via an InCl3-catalyzed condensa- tion reaction of 2-formyl-5,10,15,20-tetraphenylporphyrins with meso-substituted dipyrromethanes. Hybrid compounds have been characterized by 1H NMR, 13C NMR, 2D NMR, UV–vis absorption and fluorescence spectroscopy. Introduction Porphyrins and metalloporphyrins play an important role in compounds, corroles, contracted porphyrin analogues [31-33], chemistry, biology, medical and materials sciences because of assumed an important place in porphyrin chemistry due to their their presence in biological compounds such as chlorophyll and small cavities, trianionic characters, high fluorescence quantum heme molecules that have very important functions in the yields and favorable electronic properties. Porphyrin–corrole metabolism of living organisms [1,2]. In recent years, efforts in conjugates have been successfully used as donor–acceptor porphyrin chemistry have been focused on the synthesis of systems in photoinduced charge separation processes. It was multichromophore containing compounds and their potential shown that derivatives of these conjugates could be potentially applications in molecular wires, sensors, nonlinear optical used in photovoltaic applications [21-23].
    [Show full text]
  • 1 INTRODUCTION Corroles Are Tetrapyrrolic Molecules, Maintaining
    1 Chapter 1 INTRODUCTION Corroles are tetrapyrrolic molecules, maintaining the skeletal structure of corrin, with its three meso carbon positions and one direct pyrrole-pyrrole linkage, and possessing the aromaticity of porphyrins (see figure 1.1). First reported by Johnson and Kay in 1965[1], corroles were the end product of a many step synthetic scheme, finally being formed by the photocyclization of a,c-biladienes. While this last step was simple, with 20-60% yields, the route to a,c-biladienes was far from easy. Indeed, the overall reaction from readily available starting materials to corrole was a multi-step synthesis, with poor yields in many of the reactions. Thus, while corroles have been known for more than 40 years, research in the field was slow to progress. It wasn’t until the discovery of new synthetic methods for corroles developed in 1999 by different groups working independently that research in this area really started to expand[2]. This is not to say, however, that the field of corrole research was non-existent prior to the development of the new methodologies. While it was slow growing after the initial publication, it was far from stagnant, and many of the interesting properties of corroles were investigated by different groups. Among these properties is their ability to stabilize unusually high formal oxidation states of metal ions, such as iron(IV), cobalt(IV), and cobalt(V)[3, 4]. In fact, one particular corrole available through a method developed by Zeev 2 N N H N N H H N N N N a b N N H H H N N c Figure 1.1.
    [Show full text]
  • Luminescence Features of Neodymium(III) Compounds with Various Tetrapyrrole Macrocycles Люминесцентные Свойс
    Porphyrins Paper Порфирины Статья DOI: 10.6060/mhc170621r Luminescence Features of Neodymium(III) Compounds with Various Tetrapyrrole Macrocycles Nikolay N. Semenishyn,a Sergii S. Smola,a Natalya V. Rusakova,a@ Gerbert L. Kamalov,a Yulia G. Gorbunova,b,c and Aslan Yu. Tsivadzeb,c aA.V. Bogatsky Physico-Chemical Institute, 65080 Odessa, Ukraine bA.N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, 119071 Moscow, Russia cN.S. Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences, 119991 Moscow, Russia @Corresponding author E-mail: [email protected] We considered the changes in the luminescent properties in the series of neodymium(III) complexes of various coordination types with different tetrapyrrole macrocycles (porphyrins, phthalocyanines and corroles): mono- nuclear complexes (metal-ligand ratio 1:1), sandwich type complexes (metal-ligand ratio 1:2 or 2:3), peripheral binding (on the basis of ditopic tetrapyrrole, metal-ligand ratio 1:1). 4f-Luminescence in the near infrared region is observed in all studied Nd-complexes as a result of intramolecular transfer of excitation energy. Each kind of com- plexes has its unique features, which are discussed. The peripheral complexes are dual-emissive: they display both neodymium(III) 4f-emission and molecular fluorescence. The values of quantum yield of molecular fluorescence as well as 4f-luminescence are estimated. It was found that binding type plays a key role in excited state relaxation pathways in the molecule. Corroles have unusual behaviour in terms of Nd sensitization. Keywords: Tetrapyrroles, luminescence, neodymium, porphyrin, phthalocyanine, corrole. Люминесцентные свойства соединений неодима(III) с различными тетрапиррольными макроциклами Н.
    [Show full text]
  • 5 SYNTHESES While the Initial Synthesis of Corroles Was a Very Long Procedure, the Advent of a One Pot Synthesis by Gross and Co
    5 Chapter 2 SYNTHESES While the initial synthesis of corroles was a very long procedure, the advent of a one pot synthesis by Gross and co-workers in 1999 revolutionized the process of making corroles. It is now possible to make hundreds of milligrams of free-base corrole in a single day, compared to weeks or even months of work with the previous methods. Detailed in this chapter are the synthetic methods used for the corroles studied in this work, including two different free-bases; gallium, manganese, and tin complexes of these free-bases; and work done toward the synthesis of an indium corrole. The particular corrole free-bases used in this study were 5,10,15- tris(pentafluorophenyl)corrole, and 2,17-bis(sulfonato)-5,10-15- tris(pentafluorophenyl)corrole. The structures for these two molecules are shown in figure 2.1. General Synthetic Procedures All corroles used in this work are derived from the first of these, 5,10,15- tris(pentafluorophenyl)corrole (1), which in turn is synthesized from pyrrole and pentafluorobenzaldehyde. This can be accomplished by different methods, either involving a solid support, an acid to aid the reaction, or neat. All three methods will be described at the end of this chapter. However, in all cases, the synthesis of 1 is a condensation reaction 6 a b C6F5 C6F5 N N N N H H C F C F C F 6 5 H H 6 5 6 5 H H C6F5 N N N N SO3H SO3H Figure 2.1. Structures of the two free-base corroles used in this study.
    [Show full text]
  • Old Dog, New Tricks: Innocent, Five-Coordinate Cyanocobalt Corroles
    Old Dog, New Tricks: Innocent, Five-coordinate Cyanocobalt Corroles W Osterloh, Nicolas Desbois, Valentin Quesneau, Stéphane Brandès, Paul Fleurat-Lessard, Yuanyuan Fang, Virginie Blondeau-Patissier, Roberto Paolesse, Claude P Gros, Karl M Kadish To cite this version: W Osterloh, Nicolas Desbois, Valentin Quesneau, Stéphane Brandès, Paul Fleurat-Lessard, et al.. Old Dog, New Tricks: Innocent, Five-coordinate Cyanocobalt Corroles. Inorganic Chemistry, American Chemical Society, 2020, 59 (12), pp.8562-8579. 10.1021/acs.inorgchem.0c01037. hal-03198113 HAL Id: hal-03198113 https://hal.archives-ouvertes.fr/hal-03198113 Submitted on 7 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Old Dog, New Tricks: Innocent, Five-coordinate Cyanocobalt Corroles W. Ryan Osterloh, Nicolas Desbois, Valentin Quesneau, Stephané Brandes,̀ Paul Fleurat-Lessard, Yuanyuan Fang, Virginie Blondeau-Patissier, Roberto Paolesse,* Claude P. Gros,* and Karl M. Kadish* ABSTRACT: Three mono-CN ligated anionic cobalt A3-triarylcorroles were synthesized and investigated as to their spectroscopic and electrochemical properties in CH2Cl2, pyridine (Py), and dimethyl sulfoxide (DMSO). The newly synthesized corroles provide the first examples of air-stable cobalt corroles with an anionic axial ligand and are represented III − + as [(Ar)3CorCo (CN)] TBA , where Cor is the trivalent corrole macrocycle, Ar is p-(CN)Ph, p-(CF3)Ph, or p-(OMe)Ph, and TBA+ is the tetra-n-butylammonium (TBA) cation.
    [Show full text]
  • Triphenylamine Corrole Dyads: Synthesis, Characterization and Substitution Effect on Photophysical Properties
    J. Chem. Sci. Vol. 129, No. 2, February 2017, pp. 223–237. c Indian Academy of Sciences. DOI 10.1007/s12039-016-1219-5 REGULAR ARTICLE Triphenylamine corrole dyads: Synthesis, characterization and substitution effect on photophysical properties KOLANU SUDHAKAR and LINGAMALLU GIRIBABU∗ Inorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana, 500 007, India Email: [email protected] MS received 10 November 2016; revised 7 December 2016; accepted 8 December 2016 Abstract. We present our results on the effect of substitution on the photophysical properties of donor- acceptor (D-A) systems in which triphenylamine is the donor and substituted corroles i.e., 5,15-phenyl-10- triphenylaminecorrole TPACor 1, 5,15-di(3,5-ditertbutylphenyl)-10-triphenylaminecorrole TPACor 2, and 5,15-(4-nitrophenyl)-10-triphenylaminecorrole TPACor 3 is the acceptor. All three dyads have been character- ized by elemental analysis, MALDI-MS, cyclic voltammetry, UV-Vis and fluorescence (steady state and time- resolved) spectroscopies. Both Soret and Q bands of TPACor 3 are red-shifted when compared to other two dyads due to the presence of electron withdrawing nitro group. Similarly, redox properties of TPACor 3 are altered, when correlated to TPACor 1 and TPACor 2 dyads. However, the fluorescence emission of tripheny- lamine in all three dyads was quenched significantly (>90%) compared to its monomeric unit. The presence of either electron releasing or electron withdrawing group on corrole moiety has not much effect on the photo- physical properties. The quenched emission was attributed to intramolecular excitation energy transfer and the photoinduced electron transfer reactions contested in these dyads.
    [Show full text]
  • Corrole Synthesis and Catalytic Applications Toward Cobalt(III)- Catalyzed Epoxidation, N-H Insertion, and Cyclopropanation
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 12-31-2010 Corrole Synthesis and Catalytic Applications Toward Cobalt(III)- Catalyzed Epoxidation, N-H Insertion, and Cyclopropanation Chung Sik Kim University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons, and the Chemistry Commons Scholar Commons Citation Kim, Chung Sik, "Corrole Synthesis and Catalytic Applications Toward Cobalt(III)-Catalyzed Epoxidation, N- H Insertion, and Cyclopropanation" (2010). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/3459 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Corrole Synthesis and Catalytic Applications Toward Cobalt (III)-Catalyzed Epoxidation, N-H Insertion, and Cyclopropanation by Chung Sik Kim A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Chemistry College of Arts and Sciences University of South Florida Major Professor: X. Peter Zhang, Ph.D. Jon Antilla, Ph.D. Roman Manetsch, Ph.D. Mark McLaughlin, Ph.D. Date of Approval: Oct 20, 2010 Keywords: Corroles, Cobalt(III) Complex, Epoxidation, N-H Insertion, and Cyclopropanation Copyright © 2010, Chung Sik Kim Special Thanks To my God To my
    [Show full text]
  • Synthesis and Characterization of Meso-Substituted A2B Corroles with Extended P-Electronic Structure
    Monatsh Chem https://doi.org/10.1007/s00706-017-2114-6 ORIGINAL PAPER Synthesis and characterization of meso-substituted A2B corroles with extended p-electronic structure 1 1 2 1 Michael Haas • Sabrina Gonglach • Stefan Mu¨llegger • Wolfgang Scho¨fberger Received: 14 November 2017 / Accepted: 20 November 2017 Ó The Author(s) 2017. This article is an open access publication Abstract We report the chemical synthesis and charac- Keywords A2B corrole Á Pyrene Á terization of the stable 5,15-bis(pentafluorophenyl)-10- Sila-Sonogashira coupling Á p-Conjugation Á Copper Á (trimethylsilylethynyl)corrole which serves as a precursor Electron paramagnetic resonance for the subsequent in situ sila-Sonogashira-cross-coupling reaction and metalation with copper(II) acetate. Under ambient conditions and a common catalyst system the Introduction reaction with 1-iodopyrene occurred within five hours. Due to the direct conjugation of the 18p-electronic system of The establishment of novel synthesis routes towards sym- the corrole macrocycle over the alkynyl group to the pyr- metric and asymmetric corroles increased significantly ene moiety the optical transitions in the Soret (B-) band over the past two decades [1–5]. This trend was triggered Q-band region are significantly altered. The copper corrole by the first published one-pot synthesis of corroles reported exhibited complex hyperfine and superhyperfine structure in 1999 by Gross and Paolesse [6, 7]. Since then, the scope in the EPR spectrum. The assignment of the EPR spectrum of corrole application grew tremendously including reveals the existence of an axial [CuII-cor•?] species. examples in the fields of catalysis, photochemical sensors, Graphical abstract molecular electronics, and biomedicinal applications [8–13].
    [Show full text]
  • And Tris(Pentafluorophenyl))Corrole [Chemistry]
    City University of New York (CUNY) CUNY Academic Works Open Educational Resources LaGuardia Community College 2019 Microwave Solventless Synthesis of Meso-Tetrakis (Pentafluorophenyl)Poprphyrin (TPPF20) and Tris(Pentafluorophenyl))Corrole [Chemistry] Sunaina Singh CUNY La Guardia Community College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/lg_oers/87 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Dr. Sunaina Singh Organic Chemistry I-SCC 251 Biology/Environmental Science Natural Sciences Department, LaGuardia Community College, CUNY Assignment Title: Microwave Solventless Synthesis of Meso-Tetrakis (Pentafluorophenyl)Poprphyrin (TPPF20) and Tris(Pentafluorophenyl))Corrole Organic chemistry is a two-semester course (Organic Chemistry I, SCC 251 and Organic Chemistry II, SCC 252) required for majors in Biology. The SCC 251 course has been designated for the Integrative Learning Core Competency as well the Digital Communication Ability. This course emphasizes the synthesis, structure, reactivity, and mechanisms of reaction of organic compounds. Laboratory stresses various organic synthetic and analytic techniques (distillation, extraction, chromatography and spectroscopy). This lab provided an opportunity for students to go deeper with the chemistry content by correlating to the concepts they learned in General Chemistry courses such as
    [Show full text]
  • Cell-Penetrating Protein/Corrole Nanoparticles Matan Soll1, Tridib K
    www.nature.com/scientificreports OPEN Cell-Penetrating Protein/Corrole Nanoparticles Matan Soll1, Tridib K. Goswami1, Qiu-Cheng Chen 1, Irena Saltsman1, Ruijie D. Teo 3, Mona Shahgholi3, Punnajit Lim 2, Angel J. Di Bilio3, Sarah Cohen1, John Termini2, 3 1 Received: 19 June 2018 Harry B. Gray & Zeev Gross Accepted: 18 December 2018 Recent work has highlighted the potential of metallocorroles as versatile platforms for the development Published: xx xx xxxx of drugs and imaging agents, since the bioavailability, physicochemical properties and therapeutic activity can be dramatically altered by metal ion substitution and/or functional group replacement. Signifcant advances in cancer treatment and imaging have been reported based on work with a water-soluble bis-sulfonated gallium corrole in both cellular and rodent-based models. We now show that cytotoxicities increase in the order Ga < Fe < Al < Mn < Sb < Au for bis-sulfonated corroles; and, importantly, that they correlate with metallocorrole afnities for very low density lipoprotein (VLDL), the main carrier of lipophilic drugs. As chemotherapeutic potential is predicted to be enhanced by increased lipophilicity, we have developed a novel method for the preparation of cell-penetrating lipophilic metallocorrole/serum-protein nanoparticles (NPs). Cryo-TEM revealed an average core metallocorrole particle size of 32 nm, with protein tendrils extending from the core (conjugate size is ~100 nm). Optical imaging of DU-145 prostate cancer cells treated with corrole NPs (≤100 nM) revealed fast cellular uptake, very slow release, and distribution into the endoplasmic reticulum (ER) and lysosomes. The physical properties of corrole NPs prepared in combination with transferrin and albumin were alike, but the former were internalized to a greater extent by the transferrin-receptor-rich DU-145 cells.
    [Show full text]
  • Synthesis and Characterization of Metallocorrole Complexes By
    Synthesis and Characterization of Metallocorrole Complexes By Heather Louisa Buckley A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor John Arnold, Chair Professor Kenneth Raymond Professor Ronald Gronsky Fall 2014 Synthesis and Characterization of Metallocorrole Complexes Copyright © 2014 By Heather Louisa Buckley 2 Abstract Synthesis and Characterization of Metallocorrole Complexes By Heather Louisa Buckley Doctor of Philosophy in Chemistry University of California Berkeley Professor John Arnold, Chair Chapter 1: Recent Developments in Out-of-Plane Metallocorrole Chemistry Across the Periodic Table A brief review of recent developments in metallocorrole chemistry, with a focus on species with significant displacement of the metal from the N4 plane of the corrole ring. Comparisons based on X-ray crystallographic data are made between a range of heavier transition metal, lanthanide, actinide, and main group metallocorrole species. Chapter 2: Synthesis of Lithium Corrole and its Use as a Reagent for the Preparation of Cyclopentadienyl Zirconium and Titanium Corrole Complexes The unprecedented lithium corrole complex (Mes2(p-OMePh)corrole)Li3·6THF (2- 1·6THF), prepared via deprotonation of the free-base corrole with lithium amide, acts as precursor for the preparation of cyclopentadienyl zirconium(IV) corrole (2-2) and pentamethylcyclopentadienyl titanium(IV) corrole (2-3).
    [Show full text]
  • Selectivity of Cobalt Corrole for CO Vs. O2 and N2 in Indoor Pollution Xia Sheng1, Hailiang Zhao1,2 & Lin Du 2
    www.nature.com/scientificreports OPEN Selectivity of Cobalt Corrole for CO vs. O2 and N2 in Indoor Pollution Xia Sheng1, Hailiang Zhao1,2 & Lin Du 2 Coal combustion causes indoor pollution of CO. In this work, DFT calculations on cobalt corrole Received: 4 September 2017 (Co(Cor)) with three most common indoor gas molecules (N2, O2 and CO) were performed. The Mulliken Accepted: 23 October 2017 spin densities show that the ground states of Co(N2)(Cor), Co(CO)(Cor) and Co(OC)(Cor) have an anti- 2 Published: xx xx xxxx ferromagnetic coupling fashion of the electrons on the Co 3dz orbital and the π orbital of the corrole ring. However, Co(O2)(Cor) has a triplet ground state. With the spin contamination corrections, the −1 Co(N2)(Cor) binding energy was obtained at −50.6 kcal mol (B3LYP-D3). While CO can interact with Co(Cor) in two diferent ways, and their binding energies were −22.8 and −10.9 kcal mol−1 (B3LYP-D3) for Co(CO)(Cor) and Co(OC)(Cor), respectively. The natural bond orbital charges on the axial ligands (NO, CO, OC) are increased upon the chemical bond formation. These are the cause of the shorten metal- ligand bond and the increase of the wavenumber of the metal-ligand bond vibrational transitions. While the charges for O2 are decreased, leading to bond elongation as well as the decrease of the wavenumber upon complexation. Overall, O2 was found to be hardly coordinated with Co(Cor). This study provides a detailed molecular understanding of interactions between a gas sensor and gaseous indoor air- pollutants.
    [Show full text]