Affordable Coastal Protection in the Pacific Islands

Total Page:16

File Type:pdf, Size:1020Kb

Affordable Coastal Protection in the Pacific Islands Affordable coastal protection in the Pacific islands DESKTOP REVIEW Tonkin + Taylor, in association with the University of New South Wales Water Research Laboratory (WRL), was engaged by the Pacific Region Infrastructure Facility (PRIF) to undertake an engineering study of affordable options for coastal protection. The objective is to build on existing knowledge in an effort to develop innovative solutions to protect coastlines in such a way that will maximise the use of local materials and labour while, at the same time, minimising the need for imported goods and equipment. This report not only catalogues the existing approaches to shoreline protection in the Pacific region, based on technical, social and environmental criteria; it also provides an evaluation of each. This report is published by PRIF, a multi-development partner coordination, technical assistance and research facility that supports infrastructure development in the Pacific. PRIF member agencies: Asian Development Bank (ADB), Australian Department of Foreign Affairs and Trade (DFAT), European Investment Bank (EIB), European Union (EU), Japan International Cooperation Agency (JICA), New Zealand Ministry of Foreign Affairs and Trade (NZMFAT), and the World Bank Group. The views expressed in this report are those of the authors and do not necessarily reflect the views and policies of ADB, its Board of Governors, the governments they represent, or any of the other PRIF member agencies. None of the above parties guarantees the accuracy of the data included in this publication or accepts responsibility for any consequence of their use. The use of information contained in this report is encouraged with appropriate acknowledgement. The report may only be reproduced with the permission of the PRIF Coordination Office. February 2017. More information and copies of this review can be obtained from: PRIF Coordination Office c/- Asian Development Bank Level 20, 45 Clarence Street Sydney, New South Wales, Australia, 2000 Email: [email protected] Phone: +61 2 8270 9444 Web: www.theprif.org Cover photo: ©World Bank. Photo by Lauren Day, building seawalls, Tarawa, Kiribati. Acknowledgements Acknowledgement is given to the following individuals and the organisations they represent for their contribution to the research: Name Organisation Yann Balouin BRGM, Orléans, France Jacqueline Bell Bioresearches Group Ltd., Auckland, New Zealand Sofia Bettencourt World Bank, Washington, DC, USA Stuart Bettington AECOM, Los Angeles, California, USA Chris Brown Chris Brown Consulting, Sacramento, California, USA Gillian Cambers Secretariat of the Pacific Community, Suva, Fiji Gildas Colleter Aurecon, Australia Nicolas Desramaut World Bank, Washington, DC, USA Siulai Fioana Elisala Tuvalu Alessio Giardino Deltares, Delft, The Netherlands Angus Gordon Coastal Zone Management and Planning Niels Holm-Nielsen World Bank, Washington, DC, USA Misti Hood TropSEA Engineering & Environmental, Queensland, Australia John Hughes Ministry of Infrastructure Development, Honiara, Soloman Islands Ian Iercet Public Works Department, Port Vila, Vanuatu Cliff Juillerat Ocean Caraibes—Coastal Environmental and Water Resources Engineers, Dominica Hugh Milliken Downer Group, Auckland, New Zealand Ken Munro Ministry of Infrastructure Development, Honiara, Soloman Islands Heather O’Keeffe GHD, USA Simon Restall International GeoSynthetic Society, Florida, USA Steven Sapalo World Bank, Washington, DC, USA Nick Smith McConnell Dowell, Victoria, Australia Helen Sykes Marine Ecology Consulting, Fiji Yusuke Taishi United Nations Development Programme, New York, USA Liz Watson Go Logistics (NZ) Ltd., Auckland, New Zealand In addition, thanks is given to the PRIF project team, comprising the Project Manager Lorena Estigarribia, Sanjivi Rajasingham, Oliver Whalley and Jack Whelan for their review, input and discussions relating to the project. Additional comments were provided by the PRIF Transport Sector Working Group and by the external reviewer, Doug Treloar of Cardno Emerging Markets (Australia) Pty. Ltd. Gratitude is also expressed to the authors of the review, Dr. Tom Shand from Tonkin + Taylor and James Carley from the University of New South Wales Water Research Laboratory, as well as to Margie Peters- Fawcett who copy edited the publication. Abbreviations ARI Annual Recurrence Interval BoM Bureau of Meteorology ENSO El Niño-Southern Oscillation km kilometre m3 Cubic metre MSL Mean sea level PIC Pacific island country PRIF Pacific Region Infrastructure Facility PVC Polyvinyl chloride ii Affordable coastal protection in the Pacific islands DESKTOP REVIEW Table of Contents 1 Introduction...........................................................................................................................................................1 1.1 Background and study objective..................................................................................................................................1 1.2 Scope of works ...................................................................................................................................................................2 1.3 Report outline ....................................................................................................................................................................2 2 Pacific environmental context .............................................................................................................................3 2.1 Introduction ........................................................................................................................................................................3 2.2 Geology .................................................................................................................................................................................4 2.3 Climate ..................................................................................................................................................................................6 2.3.1 Tropical cyclones .................................................................................................................................................7 2.4 Water levels .........................................................................................................................................................................8 2.4.1 Mean water levels ...............................................................................................................................................8 2.4.2 Tides ........................................................................................................................................................................9 2.4.3 Storm surge ........................................................................................................................................................10 2.4.4 Sea level rise......................................................................................................................................................11 2.5 Waves .................................................................................................................................................................................13 2.6 Reef-top processes ........................................................................................................................................................13 2.7 Sediment transport .......................................................................................................................................................14 2.8 Shoreline processes ......................................................................................................................................................15 3 Coastal protection in Pacific island countries .................................................................................................16 3.1 Introduction .....................................................................................................................................................................16 3.2 Alternatives to hard protection .................................................................................................................................18 3.2.1 Avoidance of or retreat from hazard .........................................................................................................18 3.2.2 Maintaining sediment budgets ...................................................................................................................18 3.2.3 Ecological-based approaches ......................................................................................................................18 3.3 Coastal protection structures ...................................................................................................................................19 3.3.1 Structural type ..................................................................................................................................................20 3.3.2 Failure mechanisms .......................................................................................................................................22 3.3.3 Effects of seawalls on beaches ..................................................................................................................23 3.4 Overview of coastal protection in Pacific island countries .............................................................................24
Recommended publications
  • Coastal and Ocean Engineering
    May 18, 2020 Coastal and Ocean Engineering John Fenton Institute of Hydraulic Engineering and Water Resources Management Vienna University of Technology, Karlsplatz 13/222, 1040 Vienna, Austria URL: http://johndfenton.com/ URL: mailto:[email protected] Abstract This course introduces maritime engineering, encompassing coastal and ocean engineering. It con- centrates on providing an understanding of the many processes at work when the tides, storms and waves interact with the natural and human environments. The course will be a mixture of descrip- tion and theory – it is hoped that by understanding the theory that the practicewillbemadeallthe easier. There is nothing quite so practical as a good theory. Table of Contents References ....................... 2 1. Introduction ..................... 6 1.1 Physical properties of seawater ............. 6 2. Introduction to Oceanography ............... 7 2.1 Ocean currents .................. 7 2.2 El Niño, La Niña, and the Southern Oscillation ........10 2.3 Indian Ocean Dipole ................12 2.4 Continental shelf flow ................13 3. Tides .......................15 3.1 Introduction ...................15 3.2 Tide generating forces and equilibrium theory ........15 3.3 Dynamic model of tides ...............17 3.4 Harmonic analysis and prediction of tides ..........19 4. Surface gravity waves ..................21 4.1 The equations of fluid mechanics ............21 4.2 Boundary conditions ................28 4.3 The general problem of wave motion ...........29 4.4 Linear wave theory .................30 4.5 Shoaling, refraction and breaking ............44 4.6 Diffraction ...................50 4.7 Nonlinear wave theories ...............51 1 Coastal and Ocean Engineering John Fenton 5. The calculation of forces on ocean structures ...........54 5.1 Structural element much smaller than wavelength – drag and inertia forces .....................54 5.2 Structural element comparable with wavelength – diffraction forces ..56 6.
    [Show full text]
  • 1 Single-Layer Breakwater Armouring: Feedback on The
    SINGLE-LAYER BREAKWATER ARMOURING: FEEDBACK ON THE ACCROPODE™ TECHNOLOGY FROM SITE EXPERIENCE GIRAUDEL Cyril1, GARCIA Nicolas2, LEDOUX Sébastien3 The single-layer technique appeared at the beginning of the 1980s, with the ACCROPODE™ unit, and is thus entering its third decade. At the time, this solution was a real innovation, reducing the amount of concrete and steepening armour facing slopes, hence reducing the volume of materials required. After three decades in use and more than 200 projects to date, it was important to summarize the lessons learned during this period and to inspect (above and below water) some of these structures in order to assess their behaviour and particularly to confirm the validity of the unit placing rules. In addition to the aspects related to armour stability, the focus has been given to the colonization by marine life of the structures, including the bedding layers, toe berms, underlayer, armour units. The purpose of this paper is to share the experience gained throughout the inspections undertaken since 2010 on structures built more than 10 years ago. A large panel of structures has been inspected, of different ages and at various locations worldwide. Keywords: rubble-mound breakwater; single-layer armouring; ACCROPODE™ units; biodiversity INTRODUCTION The ACCROPODE™ armour unit, well known today, is a plain concrete unit designed to protect the breakwaters, in aiming to reducing considerably the use of material while implementing steeper slopes and a single layer of concrete units (Figure 1). Invented in 1981 thanks to the bases and knowledge acquired with the Tetrapod invented by the same engineering company in 1953, the technology is still currently used and more than 200 applications have been built worldwide.
    [Show full text]
  • Quantifying Short- to Long-Term Beach and Shoreline Changes in the Gold Beach, Nesika Beach, and Netarts Littoral Cells, Curry and Tillamook Counties, Oregon
    State of Oregon Oregon Department of Geology and Mineral Industries Vicki S. McConnell, State Geologist OPEN-FILE REPORT O-13-07 OREGON BEACH SHORELINE MAPPING AND ANALYSIS PROGRAM: QUANTIFYING SHORT- TO LONG-TERM BEACH AND SHORELINE CHANGES IN THE GOLD BEACH, NESIKA BEACH, AND NETARTS LITTORAL CELLS, CURRY AND TILLAMOOK COUNTIES, OREGON TECHNICAL REPORT TO THE OREGON DEPARTMENT OF LAND CONSERVATION AND DEVELOPMENT by Jonathan C. Allan and Laura L. Stimely Oregon Department of Geology and Mineral Industries Coastal Field Office, 313 SW 2nd Street, Suite D, Newport, OR 97365 G E O L O G Y F A N O D T N M I E N M E T R R A A L P I E N D D U N S O T G R E I R E S O 1937 2013 Quantifying Short- to Long-Term Beach and Shoreline Changes in the Gold Beach, Nesika Beach, and Netarts Littoral Cells NOTICE This product is for informational purposes and may not have been prepared for or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information. This publication cannot substitute for site specific investigations by qualified practitioners. Site specific data may give results that differ from the results shown in the publication. Cover photograph: Looking north along the coastal bluffs of Nesika Beach, Curry County. Erosion of the Nesika Beach bluffs reflects some of the highest rates of coastal retreat observed on the Oregon coast. (Photo by J.
    [Show full text]
  • Coastal Management Software to Support the Decision-Makers to Mitigate Coastal Erosion
    Journal of Marine Science and Engineering Article Coastal Management Software to Support the Decision-Makers to Mitigate Coastal Erosion Carlos Coelho * , Pedro Narra, Bárbara Marinho and Márcia Lima RISCO & Civil Engineering Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; [email protected] (P.N.); [email protected] (B.M.); [email protected] (M.L.) * Correspondence: [email protected] Received: 4 December 2019; Accepted: 8 January 2020; Published: 11 January 2020 Abstract: There are no sequential and integrated approaches that include the steps needed to perform an adequate management and planning of the coastal zones to mitigate coastal erosion problems and climate change effects. Important numerical model packs are available for users, but often looking deeply to the physical processes, demanding big computational efforts and focusing on specific problems. Thus, it is important to provide adequate tools to the decision-makers, which can be easily interpreted by populations, promoting discussions of optimal intervention scenarios in medium to long-term horizons. COMASO (coastal management software) intends to fill this gap, presenting a group of tools that can be applied in standalone mode, or in a sequential order. The first tool should map the coastal erosion vulnerability and risk, also including the climate change effects, defining a hierarchy of priorities where coastal defense interventions should be performed, or limiting/constraining some land uses or activities. In the locations identified as priorities, a more detailed analysis should consider the application of shoreline and cross-shore evolution models (second tool), allowing discussing intervention scenarios, in medium to long-term horizons. After the defined scenarios, the design of the intervention should be discussed, both in case of being a hard coastal structure or an artificial nourishment (third type of tools).
    [Show full text]
  • RSN 06-04 Dynamic Revetments.Pub
    Research Notes Oregon Department of Transportation RSN 06-04 December 2005 Defending the Coast with Dynamic Revetments Many portions of the Oregon coastline are subject armoring. Since they are dynamic features, they to erosion due to wave action. This natural can absorb more of the wave energy rather than evolution of the shore becomes a problem when reflecting much of it the way riprap does. This highways or other structures have been constructed mitigates some of the functional problems close to the shore. The traditional approach to associated with riprap. preventing coastal erosion from threaten constructed features is to armor the shoreline with riprap. There are aesthetic, environmental, and functional problems with riprap that often make it an unacceptable solution. Natural cobble beach at Cove Beach near Cannon Beach, Oregon. The Oregon coast has a number of naturally Traditional rip rap shore protection near Neskowin, Oregon. occurring cobble or gravel beaches, so a man made dynamic revetment would not appear out of place. Natural cobble or gravel berm beaches have long been observed to be generally more stable than The Oregon Department of Transportation worked sand beaches. This has led them to be used as an with the Oregon Department of Geology and alternative approach to shore protection. This type Mineral Industries to conduct research aimed at of shoreline protection has been referred to as a, eventually using dynamic revetments to protect the dynamic revetment, or cobble berm. Since this coast highway or its bridges. The research had two type of shoreline occurs naturally, in some settings main objectives. The first was to observe the it could be more aesthetically and environmentally geometry of natural cobble and gravel beaches and acceptable than riprap.
    [Show full text]
  • Concrete Armour Units for Rubble Mound
    ftt*attlsReserctt Mhlingrford CONCRETEARMOUR UNITS FOR RUBBLE MOUNDBREAKWATERS AND SEA WALLS: RECENTPROGRESS N I.f H Allsop BSc, C Eng, MICE Report SR 100 March 1988 Registered Office: Hydriulics Research Wallingford, Oxfordshire OXIO 8BA. Telephone: (X91 35381. Telex: 84.8552 This report describes work jointly funded by the Department of the Environment and the l,linistry of Agriculture Fisheries and Food. The Department of the Environment contract number was PECD7 16152 for which the nominated officer rras Dr R P Thorogood. The Ministry of Agriculture Fisheries and Food contribution was lrithin the Research Connission (Marine Flooding) CSA 557 for which the nominated officer was l{r A J ALlison. The work was carried out in the Maritime Engineering Department of Hydraulice Research, lfall-ingford under the rnanagementof Dr S I,l Huntington. The report is published on behalf of both DoE and I'|AFF, but any opinions expressed in this report are not necesearily those of the funding Departments. @ Crown copyright 1988 Publiehed by permission of the Controller of lter Majestyts Stationery Office. Goncrete,armour "unite.for' rubble mound breakwaters, sea val,ls and. revetuentsS recent :pfogf,eas, N lJ H Alleop Report SR 100, ilarch 1988 Eydraulics Reeearch, Wallingford Abetract ilany deep water breakrvatera constructed in,the laet 2O-50 years are of rubble sound construction, proteeted againat the effects of rave aetion by concrete armour nnite. Ttrese units are oftea of complex ehape; Ttrey are generally produced in unreinforced concrete ia eizee between around 2-50 tonnea depending apon the local water depth, the eeverity of the locel save eonditione, and on the efficiencl and: stsbiiity of the unit type selected.
    [Show full text]
  • Strategies for Shore Protection: the Construction of a Cobble Berm and Artificial Dune in an Oregon State Park
    Paul D. Komar and Jonathan C. Allan 117 “Design with Nature” Strategies for Shore Protection: The Construction of a Cobble Berm and Artificial Dune in an Oregon State Park Paul D. Komar1 and Jonathan C. Allan2 Introduction The book “Design with Nature” was written by the Scotsman Ian McHarg, a town planner and landscape architect. With the advances in the science of ecology during the 1960s, the focus of his book (published in 1969) concerned what constitutes a natural, sustainable environment, with one chapter having been devoted to the preservation of barrier islands. On the basis of our investigations of the designs of environmentally compatible shore‑protection structures as substitutes for conventional armor‑stone revetments or seawalls, we have expanded on McHarg’s concept to include the idea that we can learn from nature in the search for improved ways to protect our shores from the extremes of waves Figure 1. Natural cobble beach on the shore of Oceanside, Oregon, which has and tides (Komar, 2007). Our goal is to protected the sea cliff from erosion, evident in its extensive cover of vegetation. design structures that are more natural in appearance, while at the same time providing an acceptable degree of protection to coastal presence of a natural cobble beach can provide a significant properties. degree of protection to ocean‑front properties. Figure 1 shows Our interest in this philosophy was initiated by the an example of such a beach on the shore of the community erosion experienced in a state park on the Oregon coast, of Oceanside, where the absence of erosion is evident in the where a high protective dune ridge had been eroded away, heavy vegetation that covers the sea cliff, with photos dating followed by a major storm in 1999 that washed through the back to the early 20th century being essentially identical.
    [Show full text]
  • Design & Construction of Coastal Structures
    DESIGN & CONSTRUCTION OF COASTAL STRUCTURES A.V. SITARAMA SARMA, Research Officer Central Water & Power Research Station, Pune 1. INTRODUCTION Coastal structures are the marine structure located in coastal waters. Marine structures can be broadly classified into two types: a) Offshore Structures and b) Near-shore Structures The design of Near-shore structures and offshore structures varies greatly in terms of environmental factors, depth of water etc. Offshore structures are located in deepwater and are subjected to forces due to short crested multi-directional waves, which are predominant, apart from other forces due to wind, ocean currents etc. The different types of offshore structure are:- Gravity Type Structures Pile Supported Structures Floating Structures Submarine Pipelines The near-shore structures can be grouped into:- Rigid structure – Sheet piles, Walls Semi-rigid or Composite structures – Caissons or cells on rubble base Flexible Structures – Rubblemound breakwaters, Sea walls Fig 1: Types of Near-shore Structures Training Course on Coastal Engineering & Coastal Zone Management Thus these near shore structures are subjected to various marine environmental forces due to waves, winds and currents. The wave forces are the dominant forces and are decisive in the design of near shore coastal structures. Rubblemound structures are the most commonly applied type for breakwater and seawall. The stability of rubblemound coastal structures depends primarily upon the stability of individual armour units on its seawards slope. The other hydrodynamic aspects of the effect of waves on the rubblemound are wave run-up, rundown, overtopping, reflection and transmission. Design of flexible rubblemound structures is complex as it involves various aspects such as wave-structure interaction interlocking, characteristics of armour, friction between armour and secondary layer etc.
    [Show full text]
  • Set-Up to Design Guidance for the Crablock Armour Unit Comparison of Single Layer Armour Units Investigation
    Set-up to design guidance for the Crablock armour unit Comparison of single layer armour units investigation The Netherlands, 26/09/2014 Dutch Professor: J.W Van der Meer Tutor: Ali Dastgheib Student: Flavia Bonfantini Design guidance for a new single layer armour unit as result of a comparison in previous investigation on Accropode and Xbloc. Contents 1 Introduction .................................................................................................................................. 7 1.1 General .................................................................................................................................. 7 1.2 Objectives .............................................................................................................................. 8 1.3 Approach ............................................................................................................................... 8 2 Existing knowledge .................................................................................................................... 10 2.1 History of types ................................................................................................................... 10 2.2 Single layer units ................................................................................................................. 11 2.3 Xbloc as lead for Crablock .................................................................................................. 13 2.3.1 Introduction of Crablock .............................................................................................
    [Show full text]
  • SUPPLEMENT Revised Final Environmental Assessment
    SUPPLEMENT To the Revised Final Environmental Assessment Columbia River at the Mouth, Oregon and Washington Rehabilitation of the Jetty System at the Mouth of the Columbia River Clatsop County, Oregon, and Pacific County, Washington May, 2013 Supplemental EA, South Jetty Foredune Augmentation Related to Rehabilitation of Jetty System at MCR Table of Contents: 1. Introduction .......................................................................................................................................... 1 2. Brief Description of Project History and Need ...................................................................................... 2 3. Revised Preferred Alternative ............................................................................................................... 5 3.1. Updated Details for South Jetty Foredune Augmentation ........................................................... 6 3.2. Updated Construction Access, Storage and Staging Areas ......................................................... 11 4. Affected Environment ......................................................................................................................... 14 4.1. Aquatic Resources ....................................................................................................................... 14 4.1.1. Surrounding Water Resources ............................................................................................ 14 4.1.2. Wetlands ............................................................................................................................
    [Show full text]
  • REDESIGN of CORE GROYNE USING NATURAL MATERIALS Maulida Amalia Rizki Civil Engineering Faculty Narotama University Surabaya Jl
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Universitas Narotama Surabaya (UNNAR): Journals Volume 03 Number 01 September 2019 REDESIGN OF CORE GROYNE USING NATURAL MATERIALS Maulida Amalia Rizki Civil Engineering Faculty Narotama University Surabaya Jl. Arif Rahman Hakim 51 Surabaya [email protected] ABSTRACT Coastal abrasion is one of the serious problems with shoreline change. In addition to natural processes, such as wind, currents and waves. One method for overcoming coastal abrasion is the use of coastal protective structures, where the structure functions as a wave energy damper at a particular location. Coastal buildings are used to protect the beach against damage due to wave and current attacks. Groyne is a coastal safety structure that is built protrudes relatively perpendicular to the direction of the coast, the importance of built coastal security with a groyne structure on the Jetis beach is as a flood control infrastructure that is as a final disposal of floods in the Ijo Watershed system, addressing coastal abrasion in detail. So we get the design drawings of sediment control buildings to reduce sedimentation / siltation from the direction of the sea into the river mouth, material structure costs and time schedule. Keywords: Abrasion, Groin, Material, Cost, Time Schedule. INTRODUCTION Research Background The problem at the Jetis beach is a estuary sedimentation, so that the flood discharge and economic activities of the people who use the river estuary channel as their fishing boat route are disrupted. Jetty or Groin which was built for the purpose of protecting the channel protrudes towards the sea to a distance of 300 m, with such conditions the river mouth is expected to get optimal protection.
    [Show full text]
  • Conceptual Mitigation Options, Golder Associates, 2017 (.Pdf)
    CONCEPTUAL MITIGATION OPTIONS Westport by the Sea Condominiums Submitted To: Robert N. Parnell, President Westport by the Sea HOA-3 P.O. Box 1563 Westport, WA 98595 Submitted By: Golder Associates Inc. 18300 NE Union Hill Road, Suite 200 Redmond, WA 98052 USA In conjunction with REPORT BergerABAM 33301 Ninth Avenue South, Suite 300 Federal Way, WA 98003 Distribution: Paul Opgrande, Westport by the Sea HOA-1/2 September 6, 2017 Project No. 1773866 Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation September 2017 i 1773866 Table of Contents 1.0 INTRODUCTION .............................................................................................................................. 1 2.0 TASK 1 - DATA REVIEW ................................................................................................................. 2 2.1 Background .................................................................................................................................. 2 2.2 Wave Climate ............................................................................................................................... 2 2.3 Water Levels ................................................................................................................................ 6 2.3.1 Additional Studies .................................................................................................................... 7 2.4 Beach Profiles .............................................................................................................................
    [Show full text]