Coastal Geomorphology

Total Page:16

File Type:pdf, Size:1020Kb

Coastal Geomorphology Goal 18: Pre-1977 Development Focus Group Meeting #2 MARCH 6, 2019 Beachfront Protective Structure > Looking to clarify static/structural vs. dynamic erosion- control options > Conceptual definition (for all or unknown treatments) plus a list of examples > Goal 18 does not prohibit all forms of shorefront protection for post-77 development, only the use of “structures” Coastal Erosion: Approaches for Mitigation Jonathan Allan and Meg Reed OPTIONS (ordered from most passive to most active) • Do nothing! • Retreat or relocate • Coastal Engineering: need to distinguish between “soft” vs “hard” options – Soft coastal engineering includes: • Sand beach renourishment (few examples implemented (lots East Coast)) • Gravel beach (dynamic revetment) • Willow plantings – Hard coastal engineering (erosion control structures) includes: • Seawalls • Riprap = most common on the Oregon coast • Bulkheads (wooden) • Sand burritos/sand bags • Offshore breakwaters (none on the OR coast) • Groins Sand Renourishment (‘soft’ engineering): • Involves placement of sediment either on the beach or in the nearshore; • Maintains natural beach; • Typically involves using sediment coarser than what is on the natural beach; • Few examples in Oregon (e.g. Tillamook Bay north jetty (5,000 yd3)) • Expensive… several million/mile of beach; Mark Gadsby https://commons.wikimedia.org/wiki/File:Beach_Replenishment._- Bryan Oakley, Rhode Island Sea Grant _geograph.org.uk_-_319208.jpg https://seagrant.gso.uri.edu/cashing-in-on-offshore-sand-deposits/ Seawalls/Bulkheads/Riprap (‘hard’ engineering) • ‘Fixes’ the shoreline in place, while rest of coast may continue to recede (beach may narrow due to rising sea levels); • Uses mass to mitigate the erosion; • Expensive (particularly walls) Nelscott, Lincoln City. J. Allan DOGAMI Neskowin, Tillamook County. J. Allan DOGAMI Sand Burrito/Bags (‘hard’ engineering) • Burrito’s are not too dissimilar from walls/revetments in that they ‘fix’ the shoreline in place, while rest of coast may continue to recede (beach may narrow due to rising sea levels); • Temporary fix; • Uses mass to mitigate the erosion; • Can be expensive. Easily damaged. Sutton Lake, OR. J. Allan DOGAMI Manitoba, TITANtubes North Carolina, O. Pilkey https://commons.wikimedia.org/wiki/File:TLB_Geo Tubes.jpg Offshore Breakwaters (‘hard’ engineering) • Shore parallel structures that provide protection by reflecting, dissipating and refracting waves, which reduces the wave energy and littoral sand transport in their lee at the shore; • Structures may be either detached or attached to the shore; • Very expensive to construct (challenging environment), may enhance rip development, large visual impact; • Due to the lower energy in their lee, sand accumulates forming a bulge (a salient), which eventually may attach to the breakwater (becomes a tombolo,… e.g. Haystack Rock, Cannon Beach); and, • Was considered by the USACE as an engineering solution to ongoing erosion of coastal bluffs near the Spencer Creek bridge (Beverly Beach)… to protect Highway 101. Jeremy Bolwell, Borth, United Kingdom, 2017 https://www.geograph.org.uk/photo/5323751 (Simm et al., 1996) Groins (‘hard’ engineering) • Shore perpendicular structures that disrupt alongshore sand transport; • May be low or high sided (depending on wave energy); • Suitable for micro-tidal environments (tidal range is narrow); • Requires periodic recharge to minimize downdrift effects; • None implemented on the Oregon coast other than a few groin like barbs constructed on Highway 101 at Gold Beach, immediately north of Hunter Creek. Redcar, United Kingdom Hunter Creek, Gold Beach, OR Buck, 2011: https://commons.wikimedia.org/wiki/File:Redcar_MMB_09.jpg Bayocean Natatorium, with damage Tillamook County Pioneer Museum Even Hard Engineering Fails June 1978, Cape Lookout Nov 1984, Cape Lookout Sep 2004, Gleneden Beach Jan 2006, Neskowin What are the implications of coastal engineering structures to the beach? CONCERNS INCLUDE: • Active erosion – Enhanced scour at the toe of the structure (toe erosion) – Focusing of wave energy to other parts of the beach (end effect) • Impoundment (structures ‘lock’ up sand supply) • Passive erosion Active erosion – Toe scour a) Beach with no coastal structure b) Beach impoundment due to construction of seawall or home (note toe scour) c) Beach impoundment due to construction of revetment (After Griggs et al., 1994) End effect or background erosion? Neskowin, Tillamook County. J. Allan DOGAMI Neskowin, Tillamook County. J. Allan DOGAMI Twin Rocks, Tillamook County. Don Best Passive Erosion Effects a) Initial beach profile showing beach width b) Beach response to sea level rise. Dune erodes landward, while beach width remains the same c) Beach response to sea level rise where seawall (or revetment) has fixed the (After Griggs et al., 1994) shoreline position An Oregon challenge… structures may be ‘perched’ on the beach or bedrock Gleneden Beach, Lincoln County. J. Allan DOGAMI Dynamic revetments aka ‘cobble berm’: A form of beach renourishment using ‘gravels’ • Uses gravel size material (~0.5 to 30 cm), ideally rounded, competent rock; • Placement does not require special care (minimal engineering required… may be dumped in place); • Generally less expensive to construct compared with conventional Ventura, CA, P.D. Komar engineering structures. Cost is in transport (can be substantial); • Does not fail when the material moves; • Indistinguishable from natural cobble beaches (providing you use similar type of rock and shape); South Columbia River jetty, Clatsop County. J. Allan DOGAMI Dynamic revetment examples Columbia River Tillamook Cape Lookout South Columbia River jetty, Clatsop County Newport Cape Lookout State Park, Tillamook County HMSC, Lincoln County Surfrider Resort, 2010 BPS Definition Discussion WHAT DO OTHER STATES DO? Washington Shoreline Protection > Governed by “Shoreline Master Programs” > Stipulate where and what type of shoreline stabilization measures are permitted. > Identify a continuum of soft to hard stabilization techniques, with preference for soft solutions. > "Hard" structural stabilization measures refer to those with solid, hard surfaces, such as concrete bulkheads, while "soft" structural measures rely on less rigid materials, such as biotechnical vegetation measures or beach enhancement. There is a range of measures varying from soft to hard … Generally, the harder the construction measure, the greater the impact on shoreline processes, including sediment transport, geomorphology, and biological functions. WAC 173-26-231/241 California Coastal Act Section 30235: Revetments, breakwaters, groins, harbor channels, seawalls, cliff retaining walls, and other such construction that alters natural shoreline processes shall be permitted when required to serve coastal- dependent uses or to protect existing structures or public beaches in danger from erosion and when designed to eliminate or mitigate adverse impacts on local shoreline sand supply. Section 30253: New development shall not require the construction of protective devices that would substantially alter natural landforms along bluffs and cliffs. Referred to as shoreline protective devices (not a legal term) 3 primary physical impacts: encroachment, fixing the back beach, and sand retention California Coastal Act, Chapter 3 Massachusetts > Coastal or Shoreline Engineering Structure means, but is not limited to, any breakwater, bulkhead, groin, jetty, revetment, seawall, weir, riprap or any other structure which by its design alters wave, tidal, current, ice, or sediment transport processes in order to protect inland or upland structures from the effects of such processes. > Structure means any man-made object which is intended to remain in place in, on, over, or under tidelands, Great Ponds, or other waterways. Structure shall include, but is not limited to, any pier, wharf, dam, seawall, weir, boom, breakwater, bulkhead, riprap, revetment, jetty, piles (including mooring piles), line, groin, road, causeway, culvert, bridge, building, parking lot, cable, pipe, pipeline, conduit, tunnel, wire, or pile-held or other permanently fixed float, barge, vessel or aquaculture gear. Code of Massachusetts Regulations, 310 CMR 9.02 Natural & Structural Measures for Shoreline Stabilization https://coast.noaa.gov/digitalcoast/training/living-shorelines.html DLCD BPS Definition Concept #1 BEACHFRONT PROTECTIVE STRUCTURES. Ocean shore erosion control structures designed to remain in a fixed position in order to mitigate the effects of ocean erosion. This includes, but is not limited to, seawalls, rip-rap revetments, wood or steel bulkheads, geotextile sand bags, breakwaters, groins, concrete or mortar reinforcement such as shotcrete, and similar structures. Beachfront protective structures do not include dynamic treatments such as sand nourishment, dynamic gravel or cobble revetments or similar non-structural erosion mitigation measures. DLCD BPS Definition Concept #2 BEACHFRONT PROTECTIVE STRUCTURES. A fixed structure that is intended to remain in a static position with the purpose of reducing wave energy and erosion to development. BPS are purposefully constructed in an ordered and systematic form, intended to maintain that form over time. This includes, but is not limited to, riprap revetments, seawalls, groins, breakwaters, jetties, bulkheads, concrete or mortar reinforcement such as shotcrete, geotextile sand bags, and gabions. Beachfront protective structures do not include dynamic treatments such as sand nourishment,
Recommended publications
  • Coastal Processes and Causes of Shoreline Erosion and Accretion Causes of Shoreline Erosion and Accretion
    Coastal Processes and Causes of Shoreline Erosion and Accretion and Accretion Erosion Causes of Shoreline Heather Weitzner, Great Lakes Coastal Processes and Hazards Specialist Photo by Brittney Rogers, New York Sea Grant York Photo by Brittney Rogers, New New York Sea Grant Waves breaking on the eastern Lake Ontario shore. Wayne County Cooperative Extension A shoreline is a dynamic environment that evolves under the effects of both natural 1581 Route 88 North and human influences. Many areas along New York’s shorelines are naturally subject Newark, NY 14513-9739 315.331.8415 to erosion. Although human actions can impact the erosion process, natural coastal processes, such as wind, waves or ice movement are constantly eroding and/or building www.nyseagrant.org up the shoreline. This constant change may seem alarming, but erosion and accretion (build up of sediment) are natural phenomena experienced by the shoreline in a sort of give and take relationship. This relationship is of particular interest due to its impact on human uses and development of the shore. This fact sheet aims to introduce these processes and causes of erosion and accretion that affect New York’s shorelines. Waves New York’s Sea Grant Extension Program Wind-driven waves are a primary source of coastal erosion along the Great provides Equal Program and Lakes shorelines. Factors affecting wave height, period and length include: Equal Employment Opportunities in 1. Fetch: the distance the wind blows over open water association with Cornell Cooperative 2. Length of time the wind blows Extension, U.S. Department 3. Speed of the wind of Agriculture and 4.
    [Show full text]
  • Coastal and Delta Flood Management
    INTEGRATED FLOOD MANAGEMENT TOOLS SERIES COASTAL AND DELTA FLOOD MANAGEMENT ISSUE 17 MAY 2013 The Associated Programme on Flood Management (APFM) is a joint initiative of the World Meteorological Organization (WMO) and the Global Water Partnership (GWP). It promotes the concept of Integrated Flood Management (IFM) as a new approach to flood management. The programme is financially supported by the governments of Japan, Switzerland and Germany. www.apfm.info The World Meteorological Organization is a Specialized Agency of the United Nations and represents the UN-System’s authoritative voice on weather, climate and water. It co-ordinates the meteorological and hydrological services of 189 countries and territories. www.wmo.int The Global Water Partnership is an international network open to all organizations involved in water resources management. It was created in 1996 to foster Integrated Water Resources Management (IWRM). www.gwp.org Integrated Flood Management Tools Series No.17 © World Meteorological Organization, 2013 Cover photo: Westkapelle, Netherlands To the reader This publication is part of the “Flood Management Tools Series” being compiled by the Associated Programme on Flood Management. The “Coastal and Delta Flood Management” Tool is based on available literature, and draws findings from relevant works wherever possible. This Tool addresses the needs of practitioners and allows them to easily access relevant guidance materials. The Tool is considered as a resource guide/material for practitioners and not an academic paper. References used are mostly available on the Internet and hyperlinks are provided in the References section. This Tool is a “living document” and will be updated based on sharing of experiences with its readers.
    [Show full text]
  • GEOTEXTILE TUBE and GABION ARMOURED SEAWALL for COASTAL PROTECTION an ALTERNATIVE by S Sherlin Prem Nishold1, Ranganathan Sundaravadivelu 2*, Nilanjan Saha3
    PIANC-World Congress Panama City, Panama 2018 GEOTEXTILE TUBE AND GABION ARMOURED SEAWALL FOR COASTAL PROTECTION AN ALTERNATIVE by S Sherlin Prem Nishold1, Ranganathan Sundaravadivelu 2*, Nilanjan Saha3 ABSTRACT The present study deals with a site-specific innovative solution executed in the northeast coastline of Odisha in India. The retarded embankment which had been maintained yearly by traditional means of ‘bullah piling’ and sandbags, proved ineffective and got washed away for a stretch of 350 meters in 2011. About the site condition, it is required to design an efficient coastal protection system prevailing to a low soil bearing capacity and continuously exposed to tides and waves. The erosion of existing embankment at Pentha ( Odisha ) has necessitated the construction of a retarded embankment. Conventional hard engineered materials for coastal protection are more expensive since they are not readily available near to the site. Moreover, they have not been found suitable for prevailing in in-situ marine environment and soil condition. Geosynthetics are innovative solutions for coastal erosion and protection are cheap, quickly installable when compared to other materials and methods. Therefore, a geotextile tube seawall was designed and built for a length of 505 m as soft coastal protection structure. A scaled model (1:10) study of geotextile tube configurations with and without gabion box structure is examined for the better understanding of hydrodynamic characteristics for such configurations. The scaled model in the mentioned configuration was constructed using woven geotextile fabric as geo tubes. The gabion box was made up of eco-friendly polypropylene tar-coated rope and consists of small rubble stones which increase the porosity when compared to the conventional monolithic rubble mound.
    [Show full text]
  • Hooper Beach Dune Erosion Assessment Report
    Hoopers Beach Robe Dune Erosion Assessment Report Quality Information Document Draft Report Ref 2018-06 Date 17-10-18 Prepared by D Bowers Reviewed by D Bowers Revision History Revision Authorised Revision Details Date Name/Position Signature A 20-7-18 Draft report D Bowers/ Managing Director B 24-8-18 Draft Report D Bowers/ Managing Director C 17-10-18 Final Report D Bowers/ Managing Director 2 2018-06 Disclaimer The outcomes and findings of this report have in part been informed by information supplied by the client or third parties. Civil & Environmental Solutions Pty Ltd has not attempted to verify the accuracy of such client or third party information and shall be not be liable for any loss resulting from the client or any third parties’ reliance on that information. 3 2018-06 Table of Contents Quality Information 2 Revision History 2 Disclaimer 3 1. Background 5 2. Assessment Methodology 6 Site Inspection & Site Observations 7 Discussions with Key Stakeholders 14 Client 14 DEW 15 Coastal Processes 15 Reference Document Review 15 Wind Patterns 16 Waves 18 5.3.1 Swell Waves 18 5.3.2 Wind waves 18 Sea levels including storm surge and sea level rise 20 5.4.1 Existing Climatic Conditions 20 5.4.2 Future Climatic Conditions 21 2050 Projections 21 2100 Projections 22 Erosion 22 5.5.1 Coastal Erosion and Recession 22 Short-term Storm Erosion 24 5.5.2 Long Term Recession 24 5.5.3 Recession due to Sea Level Rise (future climate) 27 5.5.4 Total estimated coastal recession 28 5.5.5 Causes of Current Accelerated Dune Erosion 29 Coastal Hazards Risk Assessment 29 Coastal Hazards 29 6.1.1 Current Hazards & Risks (0-10 years) 29 6.1.2 Future Hazards & Risk (Beyond 10 years) 29 6.1.3 Likelihood Consequence & Risk Rating 30 Potential Management Options 30 Short Term Management Options 31 Long Term Management Options 31 7.2.1 Soft Engineering Options 31 7.2.2 Hard Engineering Options 32 Development Plan Provisions 35 Conclusions 36 Recommendations 38 Appendix A 39 4 2018-06 1.
    [Show full text]
  • Hydrogeology of Near-Shore Submarine Groundwater Discharge
    Hydrogeology and Geochemistry of Near-shore Submarine Groundwater Discharge at Flamengo Bay, Ubatuba, Brazil June A. Oberdorfer (San Jose State University) Matthew Charette, Matthew Allen (Woods Hole Oceanographic Institution) Jonathan B. Martin (University of Florida) and Jaye E. Cable (Louisiana State University) Abstract: Near-shore discharge of fresh groundwater from the fractured granitic rock is strongly controlled by the local geology. Freshwater flows primarily through a zone of weathered granite to a distance of 24 m offshore. In the nearshore environment this weathered granite is covered by about 0.5 m of well-sorted, coarse sands with sea water salinity, with an abrupt transition to much lower salinity once the weathered granite is penetrated. Further offshore, low-permeability marine sediments contained saline porewater, marking the limit of offshore migration of freshwater. Freshwater flux rates based on tidal signal and hydraulic gradient analysis indicate a fresh submarine groundwater discharge of 0.17 to 1.6 m3/d per m of shoreline. Dissolved inorganic nitrogen and silicate were elevated in the porewater relative to seawater, and appeared to be a net source of nutrients to the overlying water column. The major ion concentrations suggest that the freshwater within the aquifer has a short residence time. Major element concentrations do not reflect alteration of the granitic rocks, possibly because the alteration occurred prior to development of the current discharge zones, or from elevated water/rock ratios. Introduction While there has been a growing interest over the last two decades in quantifying the discharge of groundwater to the coastal zone, the majority of studies have been carried out in aquifers consisting of unlithified sediments or in karst environments.
    [Show full text]
  • Living Shorelines Along the Georgia Coast
    Living Shorelines along the Georgia Coast A summary report of the first Living Shoreline projects in Georgia September 2013 Living Shoreline Summary Report Georgia Department of Natural Resources One Conservation Way Brunswick, GA 31520 Project Manager: Jan Mackinnon Biologist GA-DNR Coastal Resources Division Prepared By: Greenworks Enterprises, LLC 7617 Laroche Ave Savannah GA 31406 September 2013 This report should be cited as: Georgia Department of Natural Resources. 2013. Living Shorelines along the Georgia Coast: A Summary Report of the First Living Shoreline projects in Georgia. Coastal Resources Division, Brunswick, GA. 43 pp. plus appendix. -2- ACKNOWLEDGEMENTS This report was prepared by Greenworks Enterprises under Cooperative Agreement # CD-96456206-0 to the Georgia Department of Natural Resources from the U.S. Environmental Protection Agency. The statements, findings, conclusions, and recommendations are those of the author(s) and do not necessarily reflect the views of the U.S. Environmental Protection Agency. The Project Team responsible for the guidance, direction, and implementation of the living shorelines projects described in this document consisted of: Jan Mackinnon, Georgia Department of Natural Resources, Coastal Resources Division, Biologist; Christi Lambert, The Nature Conservancy, Georgia Marine and Freshwater Conservation Director; Dorset Hurley, Sapelo Island National Estuarine Research Reserve. Research Coordinator, Senior Marine Biologist; Fred Hay, GADNR: Wildlife Resources Division, Sapelo Island Manager; Sco Coleman, Ecological Manager, Lile St. Simons Island; Tom Bliss, University of Georgia Marine Extension Service;Conservancy; Alan Power, PhD, University of Georgia; These projects and this report have been made possible by their significant contributions and energies. The Project Team would like to thank all volunteers that made these Living Shoreline projects possible.
    [Show full text]
  • CONTROL of .ALLUVIAL RIVERS by STEEL JETTIES By
    CONTROL OF .ALLUVIAL RIVERS BY STEEL JETTIES by E. 1. Carlson and R. A. Dodge, Jr. A paper to be presented at The First Water Resources Engineering Conference of The American Society of Civil Engineers, Omaha, Nebraska, May 14-18, 1962 CONTROL OF ALLUVIAL RIVERS BY STEEL JETTIES by E. J. Carlsonl / and R. A. Dodge, Jr. 2 / SYNOPSIS Both field and laboratory studies were conducted to refine the methods used in the design of steel jetty fields for river aline- ment. A set of dimensionless friction head-loss curves, verified by model studies are developed and described. Using the developed curves and reconnaissance field data, a method is given for predict- ing the changes in a riverbed after the designed jetty field is installed. /Head, Sediment Investigations Unit, Hydraulics Branch, Division of Engineering Laboratories, Bureau of Reclamation, Denver, Colorado. 2 /Hydraulic Engineer, Hydraulics Branch, Division of Engineering Laboratories, Bureau of Reclamation, Denver, Colorado. INTRODUCTION Steel jacks and jetties have been used successfully by the Corps of Engineers, highway departments, railway companies, and others to prevent damage to riverbanks, levees, bridge abutments, and other structures. The Bureau of Reclamation and the Corps of Engineers are using them to stabilize the channel of the Rio Grande within the floodway in the Middle Rio Grande Valley. (1)1 / The individual jack unit consists of three angle irons, 12 or 16 feet in length placed at 90° angles in three planes and joined at their cen- ters, Figure 1. Wire is laced through the angle irons in a standard pattern to tie them together.
    [Show full text]
  • Dealing with Erosion: the Spectrum of Coastal Erosion Control Methods
    2ND ANNUAL CAPE COASTAL CONFERENCE Linking Science with Local Solutions and Decision-Making Dealing With Erosion: The Spectrum of Coastal Erosion Control Methods Greg Berman (Woods Hole Sea Grant & Cape Cod Cooperative Extension) Photo Credit: Ted Keon Climate Change Impacts In Coastal Environments 34 5 12 Coastal Adaptation On Cape Cod we manage at parcel scale http://www.ipcc.ch/ipccreports/sres/regional/index.php?idp=223 The Spectrum of Coastal Erosion Control Methods Why protect properties……..? Town of Brewster example The Facts The Implications Value = $333,000,000 (don’t want takings) Only ~1% of properties To keep the same revenue, ~3% of town area the tax rate would go from 8.18 to 9.06 but they make ~10% of the real estate taxes or ~$300 per household The Spectrum of Coastal Erosion Control Methods • Do nothing 1. Will system recover by itself? 2. How far is the structure from the water? 3. Grandfathering protects structures (not lawn) before August 10, 1978 Photo Credit: Ann McNichol The Spectrum of Coastal Erosion Control Methods • Do nothing • Vegetation Plant Natives: Root systems stabilize. Take up water. Break the impact of raindrops or wave-splash. Slow down runoff Remove Invasive The Spectrum of Coastal Erosion Control Methods • Do nothing • Vegetation • Re-grade The Spectrum of Coastal Erosion Control Methods • Do nothing Horizontal • Vegetation • Re-grade • Managed retreat V E R T I C A L The Spectrum of Coastal Erosion Control Methods • Do nothing Photo Credit: Ted Keon • Vegetation • Re-grade • Managed retreat • Beach
    [Show full text]
  • 1 the Influence of Groyne Fields and Other Hard Defences on the Shoreline Configuration
    1 The Influence of Groyne Fields and Other Hard Defences on the Shoreline Configuration 2 of Soft Cliff Coastlines 3 4 Sally Brown1*, Max Barton1, Robert J Nicholls1 5 6 1. Faculty of Engineering and the Environment, University of Southampton, 7 University Road, Highfield, Southampton, UK. S017 1BJ. 8 9 * Sally Brown ([email protected], Telephone: +44(0)2380 594796). 10 11 Abstract: Building defences, such as groynes, on eroding soft cliff coastlines alters the 12 sediment budget, changing the shoreline configuration adjacent to defences. On the 13 down-drift side, the coastline is set-back. This is often believed to be caused by increased 14 erosion via the ‘terminal groyne effect’, resulting in rapid land loss. This paper examines 15 whether the terminal groyne effect always occurs down-drift post defence construction 16 (i.e. whether or not the retreat rate increases down-drift) through case study analysis. 17 18 Nine cases were analysed at Holderness and Christchurch Bay, England. Seven out of 19 nine sites experienced an increase in down-drift retreat rates. For the two remaining sites, 20 retreat rates remained constant after construction, probably as a sediment deficit already 21 existed prior to construction or as sediment movement was restricted further down-drift. 22 For these two sites, a set-back still evolved, leading to the erroneous perception that a 23 terminal groyne effect had developed. Additionally, seven of the nine sites developed a 24 set back up-drift of the initial groyne, leading to the defended sections of coast acting as 1 25 a hard headland, inhabiting long-shore drift.
    [Show full text]
  • Baja California Sur, Mexico)
    Journal of Marine Science and Engineering Article Geomorphology of a Holocene Hurricane Deposit Eroded from Rhyolite Sea Cliffs on Ensenada Almeja (Baja California Sur, Mexico) Markes E. Johnson 1,* , Rigoberto Guardado-France 2, Erlend M. Johnson 3 and Jorge Ledesma-Vázquez 2 1 Geosciences Department, Williams College, Williamstown, MA 01267, USA 2 Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada 22800, Baja California, Mexico; [email protected] (R.G.-F.); [email protected] (J.L.-V.) 3 Anthropology Department, Tulane University, New Orleans, LA 70018, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-413-597-2329 Received: 22 May 2019; Accepted: 20 June 2019; Published: 22 June 2019 Abstract: This work advances research on the role of hurricanes in degrading the rocky coastline within Mexico’s Gulf of California, most commonly formed by widespread igneous rocks. Under evaluation is a distinct coastal boulder bed (CBB) derived from banded rhyolite with boulders arrayed in a partial-ring configuration against one side of the headland on Ensenada Almeja (Clam Bay) north of Loreto. Preconditions related to the thickness of rhyolite flows and vertical fissures that intersect the flows at right angles along with the specific gravity of banded rhyolite delimit the size, shape and weight of boulders in the Almeja CBB. Mathematical formulae are applied to calculate the wave height generated by storm surge impacting the headland. The average weight of the 25 largest boulders from a transect nearest the bedrock source amounts to 1200 kg but only 30% of the sample is estimated to exceed a full metric ton in weight.
    [Show full text]
  • Beach Nourishment Effects Østerstrand Fredericia - Denmark 2017
    Beach Nourishment Effects Østerstrand Fredericia - Denmark 2017 Juni 2020 Project Building with Nature (EU-InterReg) Start date 01.11.2016 End date 01.07.2020 Project manager (PM) Ane Høiberg Nielsen Project leader (PL) Per Sørensen Project staff (PS) Henrik Vinge Karlsson Time registering 402412 Approved date 26.06.2020 Signature Report Beach nourishment effects – Østerstrand, Frederica, Denmark Author Henrik Vinge Karlsson and Per Sørensen Keyword Beach nourishment, Nourishment design, Coastal protection, Building with nature, BWN, Fredericia, Østerstrand. Distribution www.kyst.dk, www.northsearegion.eu/building-with-nature Referred to as Kystdirektoratet (2020), Beach nourishment effects – Østerstrand, Frederica; Lemvig. 2 Beach Nourishment Effects Contents 1. Introduction ................................................................................................. 5 1.1 Description of Study site .............................................................................................................................5 1.2 Division of study stretch..............................................................................................................................7 1.3 Description of Nourishment ......................................................................................................................7 1.4 Research design ..............................................................................................................................................8 1.4.1 Research questions..............................................................................................................................................................................................................................................9
    [Show full text]
  • The Effects of Urban and Economic Development on Coastal Zone Management
    sustainability Article The Effects of Urban and Economic Development on Coastal Zone Management Davide Pasquali 1,* and Alessandro Marucci 2 1 Environmental and Maritime Hydraulic Laboratory (LIAM), Department of Civil, Construction-Architectural and Environmental Engineering (DICEAA), University of L’Aquila, 67100 L’Aquila, Italy 2 Department of Civil, Construction-Architectural and Environmental Engineering (DICEAA), University of L’Aquila, 67100 L’Aquila, Italy; [email protected] * Correspondence: [email protected] Abstract: The land transformation process in the last decades produced the urbanization growth in flat and coastal areas all over the world. The combination of natural phenomena and human pressure is likely one of the main factors that enhance coastal dynamics. These factors lead to an increase in coastal risk (considered as the product of hazard, exposure, and vulnerability) also in view of future climate change scenarios. Although each of these factors has been intensively studied separately, a comprehensive analysis of the mutual relationship of these elements is an open task. Therefore, this work aims to assess the possible mutual interaction of land transformation and coastal management zones, studying the possible impact on local coastal communities. The idea is to merge the techniques coming from urban planning with data and methodology coming from the coastal engineering within the frame of a holistic approach. The main idea is to relate urban and land changes to coastal management. Then, the study aims to identify if stakeholders’ pressure motivated the Citation: Pasquali, D.; Marucci, A. deployment of rigid structures instead of shoreline variations related to energetic and sedimentary The Effects of Urban and Economic Development on Coastal Zone balances.
    [Show full text]