©2011 John Peter Munafo, Jr ALL RIGHTS RESERVED

Total Page:16

File Type:pdf, Size:1020Kb

©2011 John Peter Munafo, Jr ALL RIGHTS RESERVED ©2011 John Peter Munafo, Jr ALL RIGHTS RESERVED NATURAL PRODUCTS CHEMISTRY OF LILIUM LONGIFLORUM: STRUCTURAL ELUCIDATION, QUANTIFICATION, BIOLOGICAL ACTIVITY AND FUNGAL METABOLISM OF STERODAL GLYCOSIDES by JOHN PETER MUNAFO JR A Dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Plant Biology written under the direction of Professor Thomas J. Gianfagna and approved by ________________________ ________________________ ________________________ ________________________ New Brunswick, New Jersey May, 2011 ABSTRACT OF THE DISSERTATION Natural Products Chemistry of Lilium longiflorum: Structural Elucidation, Quantification, Biological Activity and Fungal Metabolism of Steroidal Glycosides By JOHN PETER MUNAFO JR Dissertation Director: Professor Thomas J. Gianfagna The Easter lily (Lilium longiflorum Thunb., Liliaceae) has beautiful white flowers and a delicate aroma and is appreciated worldwide as an attractive ornamental plant. In addition to its economic importance and popularity in horticulture, lily bulbs are regularly consumed in Asia, as both food and medicine. The Easter lily is a rich source of steroidal glycosides, a group of compounds that may be responsible for some of the traditional medicinal uses of lilies and may play a role in the pant-pathogen interaction. This research project was designed to: 1) Isolate and characterize new steroidal glycosides from the bulbs of L. longiflorum, 2) quantify their contents in all of the organs of L. longiflorum, and 3) perform studies on the antifungal activity and fungal metabolism of the compounds. A phytochemical investigation conducted on the bulbs resulted in the discovery of several novel steroidal glycosides. A novel acetylated steroidal glycoalkaloid and two novel steroidal furostanol saponins, along with three other steroidal glycosides were isolated from the bulbs of L. longiflorum for the first time. A LC-MS/MS method performed in multiple reaction monitoring (MRM) mode was developed for the ii simultaneous quantitative analysis of the five steroidal glycosides in the different organs of L. longiflorum. The highest concentrations of total steroidal glycosides were detected in flower buds, lower stems, and leaves. The steroidal glycoalkaloids were detected in higher concentrations as compared to the furostanol saponins in all of the plant organs except for the fibrous and fleshy roots. The proportions of steroidal glycoalkaloids to furostanol saponins were higher in the plant organs exposed to light and decreased in proportion from the aboveground organs to the underground organs. The highest concentrations of the steroidal glycoalkaloids were detected in flower buds, leaves, and bulbs. Purified steroidal glycosides were evaluated for fungal growth inhibition activity against the plant pathogenic fungus, Botrytis cinerea. All of the compounds showed weak fungal growth inhibition activity; however, the natural acetylation of C-6′′′ of the terminal glucose in the acetylated steroidal glycoalkaloid, increased the antifungal activity by inhibiting the rate of metabolism of the compound by the fungus. A model system was developed to generate fungal metabolites of the steroidal glycoalkaloids and this system led to the discovery of several new fungal metabolites. The fungal metabolites characterized from the model system were subsequently identified by LC-MS and found to naturally occur in Easter lily tissues infected with the fungus. iii ACKNOWLEDGEMENTS I would acknowledge my major advisor, Professor Thomas Gianfagna, for his guidance and helpful insight throughout this research. I would also like to thank my faculty committee members, Professor Richard Merritt and Professor Chee-Kok Chin and my outside member Dr. John Didzbalis. I would like to acknowledge my collaborators, colleagues and friends; Professor Leslie Jimenez, Professor Edward Durner, Dr. Ahalya Ramanthan, Dr. Marshall Bergen, Dr. Christopher Johnson, Dr. Mark Kelm, Dr. Catherine Kwik-Uribe, Thomas Collins, Jeanne Peters, Nimmi Rajmohan, Dr. Mahdu Aneja, Bob Carhart, Jadwiga Leonczak, Professor Ilya Raskin, Dr. Slavko Komarnytsky, and Debroa Esposito. I would like to give a special thanks to my family and especially my wife, Kristin, for their constant encouragement and support. Most of all, I would like to thank God, for creating such a wonderful Universe for us to explore and ponder. iv TABLE OF CONTENTS ABSTRACT OF THE DISSERTATION ...................................................................... II ACKNOWLEDGEMENTS ........................................................................................... IV TABLE OF CONTENTS ................................................................................................ V LIST OF TABLES ........................................................................................................... X LIST OF FIGURES ........................................................................................................ XI CHAPTER 1: GENERAL INTRODUCTION ............................................................... 1 1.1. INTRODUCTION .......................................................................................................... 1 1.2. BOTANICAL CLASSIFICATION .................................................................................... 2 1.3. BOTANICAL DESCRIPTION ......................................................................................... 2 1.4. NATURAL PRODUCTS FROM LILIACEAE ..................................................................... 5 1.5. SAPONINS IN GENERAL .............................................................................................. 6 1.5.1. Steroidal Saponins ............................................................................................. 9 1.5.1.1. Commercially Important Steroidal Saponins ............................................ 12 1.5.1.2. Dietary Sources of Steroidal Saponins ..................................................... 16 1.5.1.3. Steroidal saponins isolated from Lilium ................................................... 18 1.6 STEROIDAL ALKALOIDS ........................................................................................... 27 1.6.1 Steroidal Alkaloids in Liliaceae ....................................................................... 27 1.6.1.1. Classification of Isosteroidal Alkaloids of Liliaceae ................................ 28 1.6.1.2. Classification of Steroidal Alkaloids of Liliaceae .................................... 30 1.6.1.3. Steroidal Alkaloids in Lilium .................................................................... 31 1.6.2. Steroidal Glycoalkaloids ................................................................................. 32 1.6.2.1. Dietary Sources of Steroidal Glycoalkaloids ............................................ 35 v 1.6.2.2. Steroidal Glycoalkaloids in Lilium ........................................................... 37 1.7. PLANT ORGAN DISTRIBUTION OF STEROIDAL GLYCOSIDES ....................................... 40 1.8. STEROIDAL GLYCOSIDES IN PLANT DEFENSE ............................................................ 42 1.9 DETOXIFICATION OF STEROIDAL GLYCOSIDES .......................................................... 45 CHAPTER 2: ISOLATION AND STRUCTURAL DETERMINATION OF STEROIDAL GLYCOSIDES FROM THE BULBS OF EASTER LILY (LILIUM LONGIFLORUM THUNB.) ........................................................................................... 48 2.1. ABSTRACT ............................................................................................................... 48 2.2. INTRODUCTION ........................................................................................................ 49 2.3. MATERIALS AND METHODS ..................................................................................... 51 2.3.1. Plant Material.................................................................................................. 51 2.3.2. Chemicals. ....................................................................................................... 52 2.3.3. Isolation and Purification of Steroidal Glycosides 1 – 5 from L. longiflorum.53 2.3.3.1. Sequential Solvent Extraction of Lyophilized L. longiflorum Bulbs ........ 53 2.3.3.2. Gel Permeation Chromatography (GPC) .................................................. 54 2.3.3.3. Semipreparative Reverse-Phase High-Performance Liquid Chromatography (RP-HPLC) ................................................................................ 56 2.3.4. Structural Elucidation ..................................................................................... 59 2.3.4.1. Acid Hydrolysis of Compounds 1 – 5. ..................................................... 61 2.3.4.2. Aglycone Analysis .................................................................................... 61 2.3.4.3. Sugar Composition Analysis .................................................................... 62 2.3.4.4. Determination of Sugar Absolute Configurations .................................... 62 2.3.4.5. Thin Layer Chromatography (TLC) ......................................................... 63 vi 2.4. RESULTS AND DISCUSSION ...................................................................................... 64 2.4.1 Structure Elucidation of Compounds 1 – 5. ..................................................... 64 2.3.4.1.
Recommended publications
  • NPV Dissertação (2008).Pdf (4.051Mb)
    UNIVERSIDADE FEDERAL DO PARANÁ Setor de Ciências Exatas – Departamento de Química Programa de Pós-Graduação em Química Alcalóides Esteroidais dos Frutos Maduros de Solanum caavurana Vell. Mestranda: Nelissa Pacheco Vaz Orientadora: Profª. Drª. Beatriz Helena L. de N. Sales Maia Dissertação apresentada ao Programa de Pós-Graduação em Química, para obtenção do Título de Mestre em Ciências, área de concentração Química Orgânica. Curitiba-PR Janeiro 2008 “A química é talvez a ciência que mais necessita de amigos. Para fazê-los, tê-los e mantê-los basta a humildade de perceber que você nunca vai conseguir saber tudo de química e que eles sempre poderão lhe ensinar alguma coisa.” (Flávio Leite) ii AGRADECIMENTOS: U A Deus pela vida e oportunidade de adquirir conhecimento superior de qualidade numa sociedade tão desigual; U À minha família por acreditarem, apoiarem, incentivarem e terem investido tempo, amor e dedicação para a realização dos meus sonhos. Agradeço também pela compreensão e convivência; U A Universidade Federal do Paraná e ao Departamento de Química desta universidade pela oportunidade de realização deste trabalho; U À professora Drª. Beatriz Helena Lameiro de Noronha Sales Maia pela orientação, amizade, compreensão, presença, motivação e auxílio durante a realização deste trabalho; U À professora Drª. Raquel Marques Braga - Instituto de Química - Universidade de Campinas (IQ - UNICAMP) pelas análises de ressonância magnética nuclear e auxílios nas determinações estruturais; U Ao professor Dr. Norberto Peporine Lopes - Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo: Departamento de Física e Química – (FCFRP-USP) pela aquisição dos Espectros de Massas; U Aos biólogos Drª.
    [Show full text]
  • 1 the Global Flower Bulb Industry
    1 The Global Flower Bulb Industry: Production, Utilization, Research Maarten Benschop Hobaho Testcentrum Hillegom, The Netherlands Rina Kamenetsky Department of Ornamental Horticulture Agricultural Research Organization The Volcani Center Bet Dagan 50250, Israel Marcel Le Nard Institut National de la Recherche Agronomique 29260 Ploudaniel, France Hiroshi Okubo Laboratory of Horticultural Science Kyushu University 6-10-1 Hakozaki, Higashi-ku Fukuoka 812-8581, Japan August De Hertogh Department of Horticultural Science North Carolina State University Raleigh, NC 29565-7609, USA COPYRIGHTED MATERIAL I. INTRODUCTION II. HISTORICAL PERSPECTIVES III. GLOBALIZATION OF THE WORLD FLOWER BULB INDUSTRY A. Utilization and Development of Expanded Markets Horticultural Reviews, Volume 36 Edited by Jules Janick Copyright Ó 2010 Wiley-Blackwell. 1 2 M. BENSCHOP, R. KAMENETSKY, M. LE NARD, H. OKUBO, AND A. DE HERTOGH B. Introduction of New Crops C. International Conventions IV. MAJOR AREAS OF RESEARCH A. Plant Breeding and Genetics 1. Breeders’ Right and Variety Registration 2. Hortus Bulborum: A Germplasm Repository 3. Gladiolus 4. Hyacinthus 5. Iris (Bulbous) 6. Lilium 7. Narcissus 8. Tulipa 9. Other Genera B. Physiology 1. Bulb Production 2. Bulb Forcing and the Flowering Process 3. Morpho- and Physiological Aspects of Florogenesis 4. Molecular Aspects of Florogenesis C. Pests, Physiological Disorders, and Plant Growth Regulators 1. General Aspects for Best Management Practices 2. Diseases of Ornamental Geophytes 3. Insects of Ornamental Geophytes 4. Physiological Disorders of Ornamental Geophytes 5. Exogenous Plant Growth Regulators (PGR) D. Other Research Areas 1. Specialized Facilities and Equipment for Flower Bulbs52 2. Transportation of Flower Bulbs 3. Forcing and Greenhouse Technology V. MAJOR FLOWER BULB ORGANIZATIONS A.
    [Show full text]
  • Fort Ord Natural Reserve Plant List
    UCSC Fort Ord Natural Reserve Plants Below is the most recently updated plant list for UCSC Fort Ord Natural Reserve. * non-native taxon ? presence in question Listed Species Information: CNPS Listed - as designated by the California Rare Plant Ranks (formerly known as CNPS Lists). More information at http://www.cnps.org/cnps/rareplants/ranking.php Cal IPC Listed - an inventory that categorizes exotic and invasive plants as High, Moderate, or Limited, reflecting the level of each species' negative ecological impact in California. More information at http://www.cal-ipc.org More information about Federal and State threatened and endangered species listings can be found at https://www.fws.gov/endangered/ (US) and http://www.dfg.ca.gov/wildlife/nongame/ t_e_spp/ (CA). FAMILY NAME SCIENTIFIC NAME COMMON NAME LISTED Ferns AZOLLACEAE - Mosquito Fern American water fern, mosquito fern, Family Azolla filiculoides ? Mosquito fern, Pacific mosquitofern DENNSTAEDTIACEAE - Bracken Hairy brackenfern, Western bracken Family Pteridium aquilinum var. pubescens fern DRYOPTERIDACEAE - Shield or California wood fern, Coastal wood wood fern family Dryopteris arguta fern, Shield fern Common horsetail rush, Common horsetail, field horsetail, Field EQUISETACEAE - Horsetail Family Equisetum arvense horsetail Equisetum telmateia ssp. braunii Giant horse tail, Giant horsetail Pentagramma triangularis ssp. PTERIDACEAE - Brake Family triangularis Gold back fern Gymnosperms CUPRESSACEAE - Cypress Family Hesperocyparis macrocarpa Monterey cypress CNPS - 1B.2, Cal IPC
    [Show full text]
  • December 2020
    December 2020 Welcome to the December 2020 edition of Shade Monthly. Special Issue – Woodland Bulbs I am delighted to share this special issue of Shade Monthly with you. All the articles here were contributed by members of your S&W committee – Diana Garner, secretary; Wilma Keighley, treasurer and membership secretary; and Nigel Parkes-Rolfe, chair. We hope you enjoy this edition, and that it brings you some spring cheer in the middle of winter. May we wish you all a merry and peaceful festive season. As ever, please send any articles, comments or images to [email protected]. Thank you. 1 Daffodils in the wood - ‘Marjorie’s Mile’ Text and images by Diana Garner Our daffodil planting project started in 2003 when we wanted to develop a small area of our wood in memory of John’s mother, Marjorie, and decided on a 100 m avenue of daffodils which we could call “Marjorie’s Mile”. We were fortunate enough to buy the 3 acre mixed woodland at the end of our garden in 2000, and it had been used as a hand-made brickyard in the 1960s, and just left since then to grow scrub trees, brambles and holly. Having never tackled a project on this scale before, we consulted Avon Bulbs. We wanted the bulbs to start flowering near Marjorie’s anniversary in December and to carry on through the Spring. We had about two metres one side and one metre the other side of the path for planting. They recommended planting in about five metre blocks of any one variety before there was a break to another type, such as bluebells or just grass.
    [Show full text]
  • Candidatus Liberibacter Solanacearum'
    EPPO Datasheet: 'Candidatus Liberibacter solanacearum' Last updated: 2020-04-22 Only Solanaceae haplotypes of ‘Candidatus Liberibacter solanacearum’ are included in the EPPO A1 List. IDENTITY Preferred name: 'Candidatus Liberibacter solanacearum' Authority: Liefting, Perez-Egusquiza & Clover Taxonomic position: Bacteria: Proteobacteria: Alphaproteobacteria: Rhizobiales: Phyllobacteriaceae Other scientific names: Liberibacter psyllaurous Hansen,Trumble, Stouthamer & Paine, Liberibacter solanacearum Liefting, Perez- Egusquiza & Clover Common names: zebra chip disease view more common names online... EPPO Categorization: A1 list more photos... view more categorizations online... EU Categorization: RNQP (Annex IV) EPPO Code: LIBEPS Notes on taxonomy and nomenclature This bacterium was first described from solanaceous plants and psyllids, almost simultaneously in New Zealand and the USA. The name ‘Candidatus Liberibacter psyllaurous (Hansen et al., 2008) was initially proposed, but ‘ Candidatus Liberibacter solanacearum’ (Liefting et al., 2009c) was finally retained as the validly published name. Until now, ‘Ca. L. solanacearum’ has not been cultivated in axenic medium to allow the Koch’s postulates to be verified, hence its ‘Candidatus’ status. The bacterium is genetically diverse and ten haplotypes of ‘Ca. L. solanacearum’ have been described (Nelson et al., 2011, 2013; Teresani et al., 2014; Swisher Grimm and Garczynski, 2019; Haapalainen et al., 2018b; Mauck et al., 2019; Haapalainen et al., 2019; Contreras-Rendón et al., 2019). These haplotypes also differ in their host ranges, psyllid vectors and geographical distributions. In particular, four haplotypes (A, B, F and G) are associated with diseases of potatoes and other solanaceous plants, whereas four others (C, D, E and H-European) are associated with diseases of carrots and other apiaceous crops. Haplotype H European was also described in plants of the family Polygonaceae.
    [Show full text]
  • Sierra Azul Wildflower Guide
    WILDFLOWER SURVEY 100 most common species 1 2/25/2020 COMMON WILDFLOWER GUIDE 2019 This common wildflower guide is for use during the annual wildflower survey at Sierra Azul Preserve. Featured are the 100 most common species seen during the wildflower surveys and only includes flowering species. Commonness is based on previous surveys during April for species seen every year and at most areas around Sierra Azul OSP. The guide is a simple color photograph guide with two selected features showcasing the species—usually flower and whole plant or leaf. The plants in this guide are listed by Color. Information provided includes the Latin name, common name, family, and Habit, CNPS Inventory of Rare and Endangered Plants rank or CAL-IPC invasive species rating. Latin names are current with the Jepson Manual: Vascular Plants of California, 2012. This guide was compiled by Cleopatra Tuday for Midpen. Images are used under creative commons licenses or used with permission from the photographer. All image rights belong to respective owners. Taking Good Photos for ID: How to use this guide: Take pictures of: Flower top and side; Leaves top and bottom; Stem or branches; Whole plant. llama squash Cucurbitus llamadensis LLAMADACEAE Latin name 4.2 Shrub Common name CNPS rare plant rank or native status Family name Typical bisexual flower stigma pistil style stamen anther Leaf placement filament petal (corolla) sepal (calyx) alternate opposite whorled pedicel receptacle Monocots radial symmetry Parts in 3’s, parallel veins Typical composite flower of the Liliy, orchid, iris, grass Asteraceae (sunflower) family 3 ray flowers disk flowers Dicots Parts in 4’s or 5’s, lattice veins 4 Sunflowers, primrose, pea, mustard, mint, violets phyllaries bilateral symmetry peduncle © 2017 Cleopatra Tuday 2 2/25/2020 BLUE/PURPLE ©2013 Jeb Bjerke ©2013 Keir Morse ©2014 Philip Bouchard ©2010 Scott Loarie Jim brush Ceanothus oliganthus Blue blossom Ceanothus thyrsiflorus RHAMNACEAE Shrub RHAMNACEAE Shrub ©2003 Barry Breckling © 2009 Keir Morse Many-stemmed gilia Gilia achilleifolia ssp.
    [Show full text]
  • Illustrated Flora of East Texas Illustrated Flora of East Texas
    ILLUSTRATED FLORA OF EAST TEXAS ILLUSTRATED FLORA OF EAST TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: DAVID GIBSON AND WILL CRENSHAW DISCOVERY FUND U.S. FISH AND WILDLIFE FOUNDATION (NATIONAL PARK SERVICE, USDA FOREST SERVICE) TEXAS PARKS AND WILDLIFE DEPARTMENT SCOTT AND STUART GENTLING BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) TEMPLE-INLAND FOUNDATION SUMMERLEE FOUNDATION AMON G. CARTER FOUNDATION ROBERT J. O’KENNON PEG & BEN KEITH DORA & GORDON SYLVESTER DAVID & SUE NIVENS NATIVE PLANT SOCIETY OF TEXAS DAVID & MARGARET BAMBERGER GORDON MAY & KAREN WILLIAMSON JACOB & TERESE HERSHEY FOUNDATION INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE II OTHER CONTRIBUTORS: ALLDREDGE, LINDA & JACK HOLLEMAN, W.B. PETRUS, ELAINE J. BATTERBAE, SUSAN ROBERTS HOLT, JEAN & DUNCAN PRITCHETT, MARY H. BECK, NELL HUBER, MARY MAUD PRICE, DIANE BECKELMAN, SARA HUDSON, JIM & YONIE PRUESS, WARREN W. BENDER, LYNNE HULTMARK, GORDON & SARAH ROACH, ELIZABETH M. & ALLEN BIBB, NATHAN & BETTIE HUSTON, MELIA ROEBUCK, RICK & VICKI BOSWORTH, TONY JACOBS, BONNIE & LOUIS ROGNLIE, GLORIA & ERIC BOTTONE, LAURA BURKS JAMES, ROI & DEANNA ROUSH, LUCY BROWN, LARRY E. JEFFORDS, RUSSELL M. ROWE, BRIAN BRUSER, III, MR. & MRS. HENRY JOHN, SUE & PHIL ROZELL, JIMMY BURT, HELEN W. JONES, MARY LOU SANDLIN, MIKE CAMPBELL, KATHERINE & CHARLES KAHLE, GAIL SANDLIN, MR. & MRS. WILLIAM CARR, WILLIAM R. KARGES, JOANN SATTERWHITE, BEN CLARY, KAREN KEITH, ELIZABETH & ERIC SCHOENFELD, CARL COCHRAN, JOYCE LANEY, ELEANOR W. SCHULTZE, BETTY DAHLBERG, WALTER G. LAUGHLIN, DR. JAMES E. SCHULZE, PETER & HELEN DALLAS CHAPTER-NPSOT LECHE, BEVERLY SENNHAUSER, KELLY S. DAMEWOOD, LOGAN & ELEANOR LEWIS, PATRICIA SERLING, STEVEN DAMUTH, STEVEN LIGGIO, JOE SHANNON, LEILA HOUSEMAN DAVIS, ELLEN D.
    [Show full text]
  • Baja California, Mexico, and a Vegetation Map of Colonet Mesa Alan B
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 29 | Issue 1 Article 4 2011 Plants of the Colonet Region, Baja California, Mexico, and a Vegetation Map of Colonet Mesa Alan B. Harper Terra Peninsular, Coronado, California Sula Vanderplank Rancho Santa Ana Botanic Garden, Claremont, California Mark Dodero Recon Environmental Inc., San Diego, California Sergio Mata Terra Peninsular, Coronado, California Jorge Ochoa Long Beach City College, Long Beach, California Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Biodiversity Commons, Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Harper, Alan B.; Vanderplank, Sula; Dodero, Mark; Mata, Sergio; and Ochoa, Jorge (2011) "Plants of the Colonet Region, Baja California, Mexico, and a Vegetation Map of Colonet Mesa," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 29: Iss. 1, Article 4. Available at: http://scholarship.claremont.edu/aliso/vol29/iss1/4 Aliso, 29(1), pp. 25–42 ’ 2011, Rancho Santa Ana Botanic Garden PLANTS OF THE COLONET REGION, BAJA CALIFORNIA, MEXICO, AND A VEGETATION MAPOF COLONET MESA ALAN B. HARPER,1 SULA VANDERPLANK,2 MARK DODERO,3 SERGIO MATA,1 AND JORGE OCHOA4 1Terra Peninsular, A.C., PMB 189003, Suite 88, Coronado, California 92178, USA ([email protected]); 2Rancho Santa Ana Botanic Garden, 1500 North College Avenue, Claremont, California 91711, USA; 3Recon Environmental Inc., 1927 Fifth Avenue, San Diego, California 92101, USA; 4Long Beach City College, 1305 East Pacific Coast Highway, Long Beach, California 90806, USA ABSTRACT The Colonet region is located at the southern end of the California Floristic Province, in an area known to have the highest plant diversity in Baja California.
    [Show full text]
  • Volume: 4 Number: 1 Int
    2017 Volume: 4 Number: 1 Int. J. Sec. Metabolite, Vol. 4, Issue 1 (2017) ISSN:2148-6905 online Journal homepage: http://www.ijate.net/index.php/ijsm INTERNATIONAL JOURNAL OF SECONDARY METABOLITE (IJSM) Editors Prof. Dr. Ramazan MAMMADOV, Pamukkale University, Turkey Editorial Board Prof. Dr. Anne FRARY, Izmir Institute of Technology, Turkey Prof. Dr. Nazim A MAMEDOV, University of Massachusetts at Amherst, United States Prof. Dr. Elena KALASHNIKOVA, Russian State Agrarian University - MTAA, Russian Federation Prof. Dr. Natalya ZAGOSKINA, Timiryazev Institute of Plant Physiology RAS, Russian Federation Prof. Dr. Sami DOĞANLAR, Izmir Institute of Technology, Turkey Prof. Dr. Rukiye TIPIRDAMAZ, Hacettepe University, Turkey Prof. Dr. Bolatkhan ZAYADAN, Al-Farabi Kazakistan National University, Kazakhstan Prof. Dr. Süreyya NAMLI, Dicle University, Turkey Prof. Dr. Namik RASHYDOV, Institute Cell Biology & Genetic Engineering of NAS of Ukraine, Kiev, Ukraine Prof. Dr. Olcay DÜŞEN, Pamukkale University, Turkey Prof. Dr. Bartlomiej PALECZ, Lodz University, Lodz, Poland Assoc. Prof. Dr. Ali Ramazan ALAN, Pamukkale University, Turkey Assoc. Prof. Dr. Yeşim KARA, Pamukkale University, Turkey Assoc. Prof. Dr. Fevziye ÇELEBI TOPRAK, Pamukkale University, Turkey Assoc. Prof. Dr. Valentina MURSALIEVA, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan Assoc. Prof. Dr. Mariya SHAPCHITSM, Belarusian State University, Minsk, Belarus Assoc. Prof. Dr. Gürkan SEMİZ, Pamukkale University, Turkey Assist. Prof. Dr. Maneea MOUBARAK, Damanhour University,
    [Show full text]
  • LILIUM) PRODUCTION Faculty of Science, Department of Biology, University of Oulu
    BIOTECHNOLOGICAL APPROACHES VELI-PEKKA PELKONEN IN LILY (LILIUM) PRODUCTION Faculty of Science, Department of Biology, University of Oulu OULU 2005 VELI-PEKKA PELKONEN BIOTECHNOLOGICAL APPROACHES IN LILY (LILIUM) PRODUCTION Academic Dissertation to be presented with the assent of the Faculty of Science, University of Oulu, for public discussion in Kuusamonsali (Auditorium YB210), Linnanmaa, on April 15th, 2005, at 12 noon OULUN YLIOPISTO, OULU 2005 Copyright © 2005 University of Oulu, 2005 Supervised by Professor Anja Hohtola Professor Hely Häggman Reviewed by Professor Anna Bach Professor Risto Tahvonen ISBN 951-42-7658-2 (nid.) ISBN 951-42-7659-0 (PDF) http://herkules.oulu.fi/isbn9514276590/ ISSN 0355-3191 http://herkules.oulu.fi/issn03553191/ OULU UNIVERSITY PRESS OULU 2005 Pelkonen, Veli-Pekka, Biotechnological approaches in lily (Lilium) production Faculty of Science, Department of Biology, University of Oulu, P.O.Box 3000, FIN-90014 University of Oulu, Finland 2005 Oulu, Finland Abstract Biotechnology has become a necessity, not only in research, but also in the culture and breeding of lilies. Various methods in tissue culture and molecular breeding have been applied to the production of commercially important lily species and cultivars. However, scientific research data of such species and varieties that have potential in the northern climate is scarce. In this work, different biotechnological methods were developed and used in the production and culture of a diversity of lily species belonging to different taxonomic groups. The aim was to test and develop further the existing methods in plant biotechnology for the developmental work and the production of novel hardy lily cultivars for northern climates.
    [Show full text]
  • Plant List 2011
    ! Non-Arboretum members who spend $25 at Saturday’s Plant Sale receive a coupon for a future free visit to the Arboretum! (One per Person) University of Minnesota ASTILBE chinensis ‘Veronica Klose’ (False Spirea)--18-24” Intense red-purple plumes. Late summer. Shade Perennials ASTILBE chinensis ‘Vision in Pink’ (False Spirea)--18” Sturdy, upright pink plumes. Blue-green foliage. M. Interest in Shade Gardening continues to grow as more homeowners are finding ASTILBE chinensis ‘Vision in Red’ (False Spirea)--15” Deep red buds open their landscapes becoming increasingly shady because of the growth of trees and to pinky-red flowers. Bronze-green foliage. July. shrubs. Shade plants are those that require little or no direct sun, such as those in ASTILBE chinensis ‘Vision in White’ (False Spirea)--18-24” Large creamy- northern exposures or under trees or in areas where the sun is blocked for much of the white plumes. Smooth, glossy, green foliage. July. day. Available from us are many newly introduced plants and old favorites which can ASTILBE chinensis ‘Visions’ (False Spirea)--15” Fragrant raspberry-red add striking foliage and appealing flowers to brighten up your shade garden plumes. Deep green foliage. M. You will find Shade Perennials in the SHADE BUILDING. ASTILBE japonica ‘Montgomery’ (False Spirea)--22” Deep orange-red ACTAEA rubra (Red Baneberry)--18”Hx12’W Clumped bushy appearance. In spring plumes on dark red stems. M. bears fluffy clusters of small white flowers producing shiny red berries which are toxic. ASTILBE simplicifolia ‘Key Largo’ (False Spirea)--15-20” Reddish-pink flow- ers on red stems.
    [Show full text]
  • Evolutionary Events in Lilium (Including Nomocharis, Liliaceae
    Molecular Phylogenetics and Evolution 68 (2013) 443–460 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Evolutionary events in Lilium (including Nomocharis, Liliaceae) are temporally correlated with orogenies of the Q–T plateau and the Hengduan Mountains ⇑ Yun-Dong Gao a,b, AJ Harris c, Song-Dong Zhou a, Xing-Jin He a, a Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China b Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China c Department of Botany, Oklahoma State University, Oklahoma 74078-3013, USA article info abstract Article history: The Hengduan Mountains (H-D Mountains) in China flank the eastern edge of the Qinghai–Tibet Plateau Received 21 July 2012 (Q–T Plateau) and are a center of great temperate plant diversity. The geological history and complex Revised 24 April 2013 topography of these mountains may have prompted the in situ evolution of many diverse and narrowly Accepted 26 April 2013 endemic species. Despite the importance of the H-D Mountains to biodiversity, many uncertainties Available online 9 May 2013 remain regarding the timing and tempo of their uplift. One hypothesis is that the Q–T Plateau underwent a final, rapid phase of uplift 8–7 million years ago (Mya) and that the H-D Mountains orogeny was a sep- Keywords: arate event occurring 4–3 Mya. To evaluate this hypothesis, we performed phylogenetic, biogeographic, Hengduan Mountains divergence time dating, and diversification rate analyses of the horticulturally important genus Lilium, Lilium–Nomocharis complex Intercontinental dispersal including Nomocharis.
    [Show full text]