Copy of Airbus Specification Nadcap Commodity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												
												Optimization of Mechanical Crimping to Assemble Tubular Components
Journal of Materials Processing Technology 146 (2004) 35–43 Optimization of mechanical crimping to assemble tubular components Manas Shirgaokar a, Hyunjoong Cho a, Gracious Ngaile a, Taylan Altan a,∗, Jang-Horng Yu b, John Balconi b, Richard Rentfrow b, W.J. Worrell b a ERC for Net Shape Manufacturing, The Ohio State University, 339 Baker Systems, 1971 Neil Avenue, Columbus, OH 43210, USA b Science and Technology Group, Alliant Ammunition and Powder Company, Radford Army Ammunition Plant, Route 114, P.O. Box 1, Radford, VA 24141-0096, USA Abstract The crimping process is used often in the assembly of tubular components. In this study, with the aid of the finite-element method (FEM), the mechanical crimping operation was evaluated and optimized for a specific application. The effect of various process variables, such as the geometry, alignment and stroke of the crimper and the friction at the crimper–tube interface were investigated. Thus, it was possible to optimize the process so that the effect of springback could be reduced and the assembly quality, as indicated by the pullout force, could be improved. The crimping process of a single-grooved rod with a tube was evaluated as a case study. Based on the FE simulations, it was possible to determine the optimum alignment and the optimum design for two types of crimper geometries. © 2003 Elsevier B.V. All rights reserved. Keywords: Assembly; Crimping; Pullout test; FEM 1. Introduction the crimping process used in manufacturing bullets is pre- sented. Traditional joining methods use resistance spot-welding In the present study, the bullet is considered as a cylindri- or fastening elements such as screws, pegs, rivets, bolts and cal solid rod that must be assembled to the casing, which is nuts. - 
												
												Fundamentals of Joining Processes
Outline ME3072 – MANUFACTURING ENGINEERING II BSc Eng (Hons) in Mechanical Engineering • Introduction to Welding Semester - 4 • Fusion-Welding Processes • Solid-State Welding Processes Fundamentals of Joining • Metallurgy of Welding Processes • Weld Quality • Brazing & Soldering Prepared By : R.K.P.S Ranaweera BSc (Hons) MSc Lecturer - Department of Mechanical Engineering University of Moratuwa 2 (for educational purpose only) Joining Processes Classification of Joining Processes 3 4 1 Introduction to Welding • Attention must be given to the cleanliness of the metal surfaces prior to welding and to possible • Is a process by which two materials, usually metals oxidation or contamination during welding process. are permanently joined together by coalescence, which is induced by a combination of temperature, • Production of high quality weld requires: pressure and metallurgical conditions. Source of satisfactory heat and/or pressure Means of protecting or cleaning the metal • Is extensively used in fabrication as an alternative Caution to avoid harmful metallurgical effects method for casting or forging and as a replacement for bolted and riveted joints. Also used as a repair • Advantages of welding over other joints: medium to reunite metals. Lighter in weight and has a great strength • Types of Welding: High corrosion resistance Fusion welding Fluid tight for tanks and vessels Solid-state (forge) welding Can be altered easily (flexibility) and economically 5 6 • Weldability has been defined as the capacity of • Steps in executing welding: metal to be welded under the fabrication conditions Identification of welds, calculation of weld area by stress imposed into a specific, suitably designed structure analysis, preparation of drawings & to perform satisfactorily in the intended service. - 
												
												American Galvanised Iron Roofing and Cladding from the 1870'S to 1920'S
University of Pennsylvania ScholarlyCommons Theses (Historic Preservation) Graduate Program in Historic Preservation 1988 American Galvanised Iron Roofing and Cladding from the 1870's to 1920's Andrew Benjamin Hall University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/hp_theses Part of the Historic Preservation and Conservation Commons Hall, Andrew Benjamin, "American Galvanised Iron Roofing and Cladding from the 1870's to 1920's" (1988). Theses (Historic Preservation). 301. https://repository.upenn.edu/hp_theses/301 Copyright note: Penn School of Design permits distribution and display of this student work by University of Pennsylvania Libraries. Suggested Citation: Hall, Andrew Benjamin (1988). American Galvanised Iron Roofing and Cladding from the 1870's to 1920's. (Masters Thesis). University of Pennsylvania, Philadelphia, PA. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/hp_theses/301 For more information, please contact [email protected]. American Galvanised Iron Roofing and Cladding from the 1870's to 1920's Disciplines Historic Preservation and Conservation Comments Copyright note: Penn School of Design permits distribution and display of this student work by University of Pennsylvania Libraries. Suggested Citation: Hall, Andrew Benjamin (1988). American Galvanised Iron Roofing and Cladding from the 1870's to 1920's. (Masters Thesis). University of Pennsylvania, Philadelphia, PA. This thesis or dissertation is available at ScholarlyCommons: https://repository.upenn.edu/hp_theses/301 UNIVEKSlTYy* PENNSYLVANIA. UBKARIES s AMERICAN GALVANISED IRON ROOFING AND CLADDING FROM THE 1870 's TO 1920' Andrew Benjamin Hall A THESIS The Graduate Program in Historic Preservation Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE 1988 Robert Schuyler, Associate Professor, American Civilization, Advisor Henry Glassie, Professor, Folklore and Folklife, Reader Da\ri#-G. - 
												
												5-V Installation Instructions
2120 SW Poma Drive; Palm City, Florida 34990 ◊ 772-223-4055 Phone ◊ 772-781-7492 Fax www.sunlastmetal.com ◊ [email protected] IMPORTANT NOTICE READ THIS MANUAL COMPLETELY BEFORE BEGINNING INSTALLATION OF THE 5-V CRIMP (KEY WEST SERIES) PANEL SYSTEM. SUNLAST METAL DETAILS MUST BE FOLLOWED TO INSURE APPROPRIATE WARRANTIES REMAIN IN AFFECT. ALWAYS INSPECT EACH AND EVERY PANEL AND ALL ACCESSORIES BEFORE INSTALLATION. NEVER INSTALL ANY PRODUCT IF ITS QUALITY IS IN QUESTION. NOTIFY SUNLAST METAL IMMEDIATELY IF ANY PRODUCT IS BELIEVED TO BE OUT OF SPECIFICATION OR HAS BEEN DAMAGED DURING SHIPPING. IF THERE IS A CONFLICT BETWEEN OUR ENGINEER’S EVALUATION REPORT AND THE DETAILS IN THIS MANUAL, THE ENGINEER’S EVALUATION REPORT WILL TAKE PRECEDENCE. Installations contained herein were in effect at the time of this installation manual creation and approved for publishing. Sunlast Metal reserves the right to discontinue products or change specifications at anytime without notice. To ensure that you have the latest material available please contact Sunlast Metal directly. Installation Details are for illustration purposes only can may not be suitable for all building designs or conditions. All projects should be engineered to conform to applicable building codes and regulations. For complete performance specifications and any disclaimers, please consult your local Sunlast Metal representative. OFFICE: (772) 223-4055 TOLL FREE: (877) 8-METAL-6 FACSIMILE: (772) 781-7492 TABLE OF CONTENTS A. Technical Information Sheet . Page 4 B. General Panel Description . Page 5 C. Handling & Storage Specifications . Page 6 D. Installation Requirements .... Page 7 E. Fastener Patterns . Page 8 F. General Installation Instructions . - 
												
												5V Crimp Panel Spec 5-24-11.Pub
Specification Sheet D.C.S.M. 5-V Crimp General Panel Information Application: Residential, Commercial, Industrial, and Agricultural panels. Coverage: 23.5” panel coverage, with a 1/2” seam height Minimum Slope: Recommended slope 2/12 or greater. Substrate: Recommended substrate 1/2”-5/8” plywood with a 30 lb. felt moisture barrier. Length: Panels are continuous lengths from eave to ridge. Fastening Exposed fastening system. Recommended that panels are fastened to substrate System: at center rib and inside rib of side lap, with a maximum spacing of 16" o/c. Fasteners: 1 1/2" self-sealing neoprene washer screws. Materials: Panels are fabricated from 26 gauge or 24 gauge Galvalume*. Coatings 26 gauge pre-painted Galvalume* panels are available in over 10 standard & Finishes: colors. 24 gauge pre-painted Galvalume* panels are available in over 30 standard colors and coated with a full-strength Kynar 500† finish. Warranty: 20, 25, and 35 year manufacturer warranties available. Approvals Florida Building Code and Miami-Dade HVHZ product approvals. & Testing: TAS 125 (UL-580 uplift resistance test). TAS 100-95 (wind driven rain test). Class A Fire Rating (UL-790). Additional Information Panels are also available in Aluminum and Copper. All flashings and accessories are fabricated from the same coil stock as the panels. 5-V orders are all-inclusive: panels, clips, screws, and all flashings are incorporated into one per square price. * Galvalume sheet uses an aluminum (55%) - zinc (45%) alloy coating that offers greater corrosive resistance, higher temperature oxidation resistance, and higher heat reflectivity than standard galvanized steel. † Kynar 500 is a premium fluorocarbon coating with full strength Kynar 500 resin. - 
												
												Alcotec Aluminum Technical Guide
AlcoTec Aluminum Technical Guide Contents AlcoTec Aluminum Wire & Equipment Technical Guide Table of Contents Environmental Health and Safety ......................................................................................................................................... 3 Technical Services Heat Treatable & Non-Heat Treatable Base & Fillers ............................................................................................................. 6 Filler Alloys: Chemical Composition Limits & Physical Properties ......................................................................................... 7 Conversion Factors ............................................................................................................................................................ 7 Welded Joint Strength ......................................................................................................................................................... 8 Typical Tensile Properties - Groove Welds ............................................................................................................................ 9 Weld Profiles ...................................................................................................................................................................... 10 Weld Control Characteristics ............................................................................................................................................. 11 Parameter Changes & Current Density.............................................................................................................................. - 
												
												Recommendations for Design and Fabrication of Diffusion Bonded Joints in Reinforcing Bars Using Amorphous Metal Foil
CONCRETE LIBRARY OF JSCE NO. 27, JUNE l996 RECOMMENDATIONS FOR DESIGN AND FABRICATION OF DIFFUSION BONDED JOINTS IN REINFORCING BARS USING AMORPHOUS METAL FOIL - DRAFT - (Translation from the CONCRETE LIBRARY No.77 published by JSCE, February 1994) JSCE Research Subcomittee on Diffusion Bonded Joints in Reinforcing Bars Using Amorphous Metal Foil Shoji IKEDA, Chairman Takeshi HIGAI, Secretary Members Taisuke AKIMOTO Yoshinobu NOBUTA Takao ENDO Noboru SAEKI Takashi IDEMITSU Satoru SEIMIYA Kiyoshi IIZAKA Kenzo SEKIJIMA Manabu FUJII Noriaki TANAKA Yasuaki HIRABAYASHI Yukikazu TSUJI Tomoj i HIRUKAWA Kimitaka UJI Kosuke HORIKAWA Hidetaka UMEHARA Toru KASAMA Keij i YAMAGATA Fumio KIKUCHI Takashi YAMANAKA Hirotaka KOHNO Minoru YASUDA Hiroshi KOJIMA Takao YOKOGAWA Takashi MIURA Asuo YONEKURA Yukio MIYAMOTO Members from Sponsoring Organizations Kazuo FUJISAWA Kenji KITANO Yasuto FUKADA Yuichi KOMIZO Tetsuya HIGUCHI Atsushi RONDO Shinichi IGUCHI Takao SHIMIZU Nobunori KISHI Masatoshi TOMABECHI - 1 - Recomendations for the Design and Fabrication of Diffusion Bonded Joints in Reinforcing Bars Using Amorphous Metal Foil which have been drafted for the first time in Japan, are presented. This is a new joining process whic h utilizes the principle of diffusion of elements from an amorphous metal foil that is inserted and melted between the ends of the reinforcing bars together with application of pressure. The materials using for joining, design of joints, joining equipment, fabrication and inspection methods, etc.are described. Keywords: design and fabrication code, reinforcing bar, joining diffusion bonding, amorphous metal foil Shoji IKEDA is a professor of Civil Engineering at Yokohama National University. He is a member of the committee on concrete and the corrmittee on structural engineering in JSCE. - 
												
												HMS1-1011QPL BOEING MATERIAL SPECIFICATION Revision - QUALIFIED PRODUCT LIST 31 October 2008 the BOEING COMPANY Page 1 of 1
HMS1-1011QPL BOEING MATERIAL SPECIFICATION Revision - QUALIFIED PRODUCT LIST 31 October 2008 THE BOEING COMPANY Page 1 of 1 BARE AL ALY SH FOR HELICOPTER ROTOR BLADE SKINS THE FOLLOWING SOURCES ARE APPROVED FOR THE PROCUREMENT OF BARE ALUMINUM ALLOY SHEET FOR HELICOPTER ROTOR BLADE SKINS IN ACCORDANCE WITH THE REQUIREMENTS OF MCDONNELL DOUGLAS HELICOPTER COMPANY MATERIAL SPECIFICATION 1-1011. Supplier Info Supplier Comments BE10034516 APPROVED TO HMS1-1011 IN ACCORDANCE WITH ATTACHED EXCEPTIONS. PARAGRAPH ALUMINUM CO OF AMERICA 4.2.1 (SCRATCHES) PARAGRAPH 4.2.2 (MIL DEFECTS) PARAGRAPH 4.3 (CORROSION 4879 STATE ST SUSCEPTABILITY) BETTENDORF, IA 52722 USA UNCONTROLLED WHEN PRINTED CAGE CODE 02731 HMS11-1109QPL BOEING MATERIAL SPECIFICATION Revision - QUALIFIED PRODUCT LIST 31 October 2008 THE BOEING COMPANY Page 1 of 2 TITANIUM FORGINGS BETA PROCESSED 6AL-4V THE FOLLOWING SOURCES ARE APPROVED FOR THE PROCUREMENT OF TITANIUM FORGINGS IN ACCORDANCE WITH THE REQUIREMENTS OF MCDONNELL DOUGLAS HELICOPTER COMPANY MATERIAL SPECIFICATION 11-1109. Supplier Info Supplier Comments BE10038732 PACIFIC FORGE INC 10641 ETIWANDA AVE FONTANA, CA 92337-6909 USA Supplier Info Supplier Comments BE10029768 RMI TITANIUM COMPANY 1000 WARREN AVE NILES, OH 44446-1168 USA Supplier Info Supplier Comments BE10037611 CONSOLIDATED INDUSTRIES, INC. 677 MIXVILLE RD CHESHIRE, CT 06410-3836 USA Supplier Info Supplier Comments BE10029096 MCWILLIAMS FORGE COMPANY INC 387 FRANKLIN AVE ROCKAWAY, NJ UNCONTROLLED WHEN PRINTED CAGE CODE 02731 Supplier Info Supplier Comments 07866-4000 USA HMS11-1109QPL Revision - Page 2 of 2 UNCONTROLLED WHEN PRINTED CAGE CODE 02731 HMS11-1110QPL BOEING MATERIAL SPECIFICATION Revision - QUALIFIED PRODUCT LIST 31 October 2008 THE BOEING COMPANY Page 1 of 1 TITANIUM ALLOY 6A1-4V PLATE; HIGH FRACTURE TOUGHNESS THE FOLLOWING SOURCES ARE APPROVED FOR THE PROCUREMENT OF TITANIUM ALLOY PLATE IN ACCORDANCE WITH THE REQUIREMENTS OF MDHC MATERIAL SPECIFICATION 11-1110. - 
												
												Fluidizing Media for Bulk Powder Handling and Processing
FluidizingFluidizing mediamedia forfor bulkbulk powderpowder handlinghandling andand processingprocessing Copyright 1999 MKI All Rights Reserved The high-strength cleanable easily fabricated porous metal sheet for all fluidizing applications NO ONE BUT MKI CAN GIVE YOU: LFMTM and HFMTM media are abrasion and puncture Dynapore controlled permeability Dynapore resistant and will not chip, flake media are constructed of multiple layers of carefully or shed fibers. Depending upon load, Dynapore can selected stainless steel wire mesh, laminated by withstand continuous operating temperatures up to precision sintering (diffusion bonding ) and calendering. 1000˚F with intermittent spikes of 1200˚F. The The resultant monolithic structure is permanently bonded abrasion, corrosion, and temperature resisting properties and has highly uniform flow characteristics. Dynapore of Dynapore media are superior to that of polyester, laminates are ideal for even flow distribution of gases in metal felts, or sintered powder metals. fluidizing and aeration applications. LFM and HFM air flow ratings is constructed of 100% AISI Dynapore and pressure drop curves are Dynapore type 316 stainless steel. Other temperature and corrosion resisting alloys are available presented on the adjacent page. LFM 3-layer media range on special request. Custom laminates offering enhanced in air flow from 5 to 25 scfm/sf @ 2 in. water column mechanical strength are also available. pressure drop. HFM 2-layer media range from 50 to 400 scfm/sf @ 2 in. water column. Custom permeabilities are available on special request. media are easily sheared, Dynapore Dynapore formed, punched, welded and For more information, cleaned using standard equipment and methods. request the following Bulletins: Dynapore laminates are available from stock in 401 Mechanical Properties convenient 24”x 48” and 36” x 36” sheets. - 
												
												Diffusion Bonding of Stainless ASTM A240 Grade 304 in Double Side Flux Cored Arc Welding
Journal of Metals, Materials and Minerals. Vol.18 No.1 pp. 63-68, 2008 Diffusion Bonding of Stainless ASTM A240 Grade 304 in Double Side Flux Cored Arc Welding Sombat PITAKNORACHON1and Bovornchok POOPAT 2 King Mongkut’s University of Technology Thonburi, Toongkru, Bangkok 10140 Abstract Received Mar. 3, 2008 Accepted May. 2, 2008 Double side flux cored arc welding (DS-FCAW) has been developed from conventional flux cored arc welding (FCAW). DS-FCAW, dual torches are used by placing an opposite to each other and welding on both sides simultaneously. The objective of this research paper is to investigate diffusion bonding effect due to DS-FCAW. Stainless steel ASTM A240 Grade 304 was studied. Other welding parameters were set constant except welding current and voltage. Diffusion bonding was observed even though weld profiles from macro inspection showed lack of penetration by weld metal in all experiments. It can be concluded that, at certain conditions, the welds can pass both mechanical test and microstructure examination because diffusion bonding process was completely developed due to high contraction stress and high temperature. The advantage of DS-FCAW is that the required joint mechanical properties can be achieved in single welding which results in reduction of welding time and cost. Key Words : Double side flux cored arc welding (DS-FCAW), Diffusion Introduction deformation to the parts.(2) Figure1. shows the joining surfaces which are separated to three parts. Conventional flux cored arc welding (FCAW) The first one is called “Base metal”, the second is the most widely used welding process in the “Cold work layer”, the last “Surface oxide and (3) construction work, for example ship building, pressure Contaminant film”. - 
												
												JOINING PROCESSES a FOCUSSED APPROACH Joining Processes
AMIE(I) STUDY CIRCLE(REGD.) MANUFACTURING TECHNOLOGY JOINING PROCESSES A FOCUSSED APPROACH Joining Processes Welding is defined as the joining of metals by heat with or without pressure, and with or without the addition of other (filler) materials, to obtain a homogeneous and interlocking or fused joint. The strength of the joint is often equal to that of the base materials. Many processes are classified under the definition of welding. Soldering is not included because the strength of joints depends upon adhesion rather than fusion. Cold welding may be properly called ‘welding’ when the molecules actually interlock to form a homogeneous joints. WELDING JOINTS USE OF HEAT IN WELDING PROCESSES There are two general ways of applying heat. The first method applies “concentrated heat” to a limited and localized area near the joint, and thus restricts the expansion and contraction of the material. This is done in most electrical processes, such as metallic arc welding, electron beam welding and the resistance welding methods. The second method applies a general heat to the material near the joint, which raises the temperature to that required to join the parts. Thus when the material cools, there are no localized stresses that will tend to pull the joint apart. Furnace brazing, dip brazing, forge welding and preheating for arc and gas welding are used in the second method. WELDABILITY Weldability denotes the relative ease of producing a weld which is free from defects such as cracks, hard spots, porosity or non-metallic inclusions. Weldability depends on one or more of following major factors: 1. - 
												
												Layout Drafting & Pattern Making
Layout Drafting & Pattern Making for Insulators _________________________________ LAYOUT DRAFTING & PATTERN MAKING FOR HEAT & FROST INSULATORS Hans Siebert APPRENTICE WORK BOOK & JOURNEYMAN REVIEW MANUAL Hans Siebert-2000 _________________________________ Page 1 Layout Drafting & Pattern Making for Insulators Preface This book has been prepared as a text for use in Heat and Frost Insulator apprenticeship classes. It explains basic methods of drawing patterns for developing sheet metal and other types of protective covers commonly produced for wrap over insulation. The book does not attempt to teach field work-practices or any application methods used in the trade. Learning how to crimp, bead, seam, rivet and apply materials is best accomplished on the job, not from studying a book. However, for the limited purpose of pattern development, this book meets every requirement of an apprenticeship textbook and is, in addition, also well adapted for reference use by journeymen, foremen, and pre-fabrication workers engaged in the designing and/or laying out patterns. The instructions are easy to follow with numerous practical problems that can be completed straightforwardly and worked without elaborate collections of tools or equipment. The subject-matter deals with common trade problems and the specific methods of presenting the assignments are the result of many years of teaching in apprenticeship classes as well as practical experience gained in the asbestos worker trade. The format of the book assumes sequential completion of tasks, especially regarding the preparatory work of practicing drawing principles. For the novice, later work in the book assumes knowledge gained in prior effort. For students with prior knowledge many of the projects can be completed without a drawn-out effort on the study of groundwork.