Production of Three New Grapefruit Cybrids with Potential for Improved Citrus Canker Resistance

Total Page:16

File Type:pdf, Size:1020Kb

Production of Three New Grapefruit Cybrids with Potential for Improved Citrus Canker Resistance In Vitro Cell.Dev.Biol.—Plant (2017) 53:256–269 DOI 10.1007/s11627-017-9816-7 PLANT TISSUE CULTURE Production of three new grapefruit cybrids with potential for improved citrus canker resistance Ahmad A. Omar1,2 & Mayara Murata1 & Qibin Yu1 & Fred G. Gmitter Jr.1 & Christine D. Chase3 & James H. Graham1 & Jude W. Grosser1 Received: 6 January 2017 /Accepted: 8 March 2017 /Published online: 27 April 2017 / Editor: Wenhao Dai # The Society for In Vitro Biology 2017 Abstract Cybrid production, combining the nucleus of one polymorphism between kumquat and grapefruit and were used species with alien cytoplasmic organelles of another, is a poten- to validate the cybrids. All the cybrids had the mt genome of tially valuable method used for improvement of various crops kumquat, and most had the cp genome of kumquat with a few including Citrus species. Furthermore, this technology is con- exceptions. EST-SSR marker analysis confirmed that the nucle- sidered a non-GMO biotechnology strategy. In citrus, cybrid ar genome in all the generated cybrids came from the grapefruit plants can be produced as a by-product of somatic fusion. parent. All the cybrid clones have been propagated and are Host resistance is the most desirable strategy for control of undergoing extensive canker assays to identify any clones that citrus canker. By using a cybridization approach, several puta- have improved canker tolerance/resistance. These cybrid pop- tive cybrids were created by protoplast fusion of embryogenic ulations provide a valuable tool for investigating the contribu- suspension culture-derived protoplasts of canker resistant tion of cytoplasmic organelles to plant disease resistance. ‘Meiwa’ kumquat (Citrus japonica Thunb), with mesophyll- derived protoplasts of three grapefruit (Citrus paradisi Keywords Disease resistance . Microsatellite marker . Macfad.) cultivars ‘Marsh,’‘Flame,’ and ‘N11-11’ somaclone Organelle inheritance . Mitochondrial introns . Chloroplast of ‘Ruby Red.’ In an effort to generate new grapefruit cultivars genome with enhanced canker resistance, putative cybrid grapefruit plants morphologically equivalent to standard grapefruit from all three combinations were produced. Four mitochondrial (mt) Introduction introns, a mt ribosomal RNA spacer region, and four chloro- plast (cp) DNA regions previously shown to have polymor- Citrus canker is one of the most devastating diseases for citrus phism among different Citrus species were tested. Four molec- industries in many regions around the world, which causes a ular markers, two mt DNA regions (intron nad7i2 and a rRNA huge economic loss. Citrus canker is caused by a gram- spacer), and two cp DNA regions (NADH dehydrogenase sub- negative bacteria, Xanthomonas citri subsp. citri, (Xcc) (syn- unit K (ndhk)geneandatrnG-trnR intergenic spacer) revealed onym, Xanthomonas axonopodis pv. citri strain A). Citrus spp. and relatives vary in terms of their susceptibility to citrus canker disease, with most of the commercially important Ahmad A. Omar and Mayara Murata contributed equally to this work. grown citrus types rated as susceptible hosts to Xcc * Jude W. Grosser (Schubert et al. 2001). For instance, grapefruit is highly sus- [email protected] ceptible to Xcc (Schubert et al. 2001,Grahamet al. 2004), while kumquats are considered to be highly resistant to citrus 1 University of Florida, IFAS, CREC, 700 Experiment Station Road, canker. Disease symptoms include canker lesions on leaves, Lake Alfred, FL 33850, USA stems, as well as fruit. Severe infections can cause both defo- 2 Biochemistry Department, College of Agriculture, Zagazig liation and fruit drop, which result in decreasing the produc- University, Zagazig 44511, Egypt tivity and profitability of affected trees. Blemished fruit is not 3 Horticultural Sciences Department, University of Florida, IFAS, accepted in the marketplace and can significantly impact ex- Gainesville, FL 32611, USA port potential. PRODUCTION OF THREE NEW GRAPEFRUIT CYBRIDS 257 Kumquats (Citrus japonica Thunb) (synonym, Fortunella Wallin et al. (1978) to produce cybrids, but found it to be spp.), closely related to citrus and sexually compatible, exhibit challenging and not applicable for citrus breeding. However, high levels of field resistance to citrus canker (Schubert et al. verified cybrid plants have been recovered spontaneously as a 2001). Khalaf et al. (2007) reported sharply contrasting phe- by-product from intraspecific, interspecific, and intergeneric notypes between ‘Duncan’ grapefruit (Citrus paradisi symmetric somatic hybridization experiments in plants, espe- Macfad.) and ‘Nagami’ kumquat (C. japonica) when both cially citrus (Grosser et al. 1996,Cabassonet al. 2001,Guo plants were challenged with ahighconcentrationofXcc et al. 2004b). Guo et al. (2013) reviewed cybrids arising from (108 cfu mL−1). Kumquat leaves showed rapid necrotic le- more than 40 combinations by symmetric fusion. These cybrids sions that appeared to be a hypersensitive response (HR), usually have the nuclear genome of the mesophyll parent and while grapefruit leaves showed water-soaking and blister- mitochondria (mt) genome of the embryogenic callus parent, like lesions, which are typical citrus canker symptoms. while the chloroplast (cp) genome is generally randomly Furthermore, gene expression analysis revealed a differential inherited (Grosser et al. 1996,Moreiraet al. 2000,Guoet al. transcriptional response, which suggested delayed HR in 2004b, Grosser and Gmitter 2005). Citrus somatic hybridiza- C. paradisi. In addition to the phenotype contrast, Fu et al. tion by symmetric fusion of callus protoplasts and mesophyll (2012) described different transcriptional responses to Xcc in protoplasts has been a powerful tool in citrus breeding, and ‘Meiwa’ kumquat (C. japonica)and‘Newhall’ navel orange numerous somatic hybrid plants from desirable parental com- (Citrus sinensis (L.) Osbeck) using microarrays, with ‘Meiwa’ binations have been produced (Grosser et al. 2000, Grosser and exhibiting upregulated expression of genes involved in the Gmitter 2005, 2011,Grosser et al. 2010b). Usually, regenerated response to biotic stimulus and in the defense response. diploid plants with morphological features similar to their leaf- Wang et al. (2011) found structural differences and physiolog- derived protoplast parent attracted attention, because leaf pro- ical responses to citrus canker inoculation between ‘Meiwa’ toplasts have been shown not to have the capacity for plant kumquat and ‘Newhall’ navel orange. ‘Meiwa’ kumquat regeneration in currently available culture schemes (Moreira showed lower stomatal density and smaller stomatal size than et al. 2000). By examining those diploid plants produced by ‘Newhall’ navel orange. In contrast, ‘Meiwa’ had a higher symmetric fusion, it was shown that they inherited mt DNA epicuticular wax content than ‘Newhall.’ The enzymatic ac- from the corresponding embryogenic callus or suspension cul- tivity also differed after Xcc inoculation in that ‘Meiwa’ ture parent, and the nuclear DNAwas from the leaf parent (Tusa showed significantly higher activities of catalase, peroxidase, et al. 1990, Grosser et al. 2000,Moreiraet al. 2000, Cabasson and phenylalanine ammonia-lyase in comparison with et al. 2001, Guo et al. 2004b, Grosser and Gmitter 2005). ‘Newhall.’ Also, in kumquat, genes responsive to Xcc infec- Therefore, citrus symmetric somatic cybridization makes it pos- tion included genes related to oxidative stress response and sible to transfer mt DNA-controlled traits from an embryogenic encoding proteins located in the mitochondria, the cell mem- callus/suspension parent to the leaf parent without altering cul- brane, and the chloroplast (Khalaf et al. 2011). Researchers tivar integrity (Satpute et al. 2015). Recently, Aleza et al. are trying to produce citrus plants resistant to Xcc by using (2016) were able to identify one tetraploid cybrid and several transgenic approaches (Boscariol et al. 2006, Omar et al. diploid cybrids exhibiting a range of mitochondrial and chloro- 2007,Mendeset al. 2010,Liet al. 2014,Penget al. 2015) plastic genome combinations from protoplast fusion between or by in vitro mutagenesis with ethyl methane sulphonate ‘Chios’ mandarin (Citrus reticulata) callus and ‘Clementine’ (EMS) (Ge et al. 2015). mandarin (C. reticulata) leaves or ‘Chios’ mandarin callus Moving cytoplasmic organelles between protoplasts in pro- and ‘Sanguinelli’ sweet orange (Citrus sinensis (L.) Osbeck) toplast fusion experiments was first reported by Maliga et al. callus. Previous work with putative grapefruit cybrids contain- (1982). Methods utilized to successfully achieve organelle ing cytoplasm from ‘Valencia’ sweet orange (C. sinensis (L.) transfer include removal of nuclear DNA by cytochalasin B Osbeck) showed that the cybrids exhibited improved canker (Wallin et al. 1978) and gradient ultracentrifugation (Lorz tolerance more similar to that of ‘Valencia’ than to the suscep- et al. 1981). Some researchers used these methods in attempt tible grapefruit control (J.H. Graham and J.W. Grosser, unpub- to produce cybrid plants with specific agronomical traits (Sakai lished data). Thus, it was hypothesized that cytoplasm from the and Imamura 1990, Spangenberg et al. 1990). Citrus cybrids highly canker resistant kumquat should provide an even higher were first produced by Vardi et al. (1987, 1989), by fusion of level of tolerance in the presently reported grapefruit cybrids. irradiated protoplasts (to destroy nuclei) with protoplasts whose To
Recommended publications
  • Evolution and Structure of Clinically Relevant Gene Fusions in Multiple Myeloma
    ARTICLE https://doi.org/10.1038/s41467-020-16434-y OPEN Evolution and structure of clinically relevant gene fusions in multiple myeloma Steven M. Foltz 1,2, Qingsong Gao 1,2, Christopher J. Yoon1,2, Hua Sun1,2, Lijun Yao1,2, Yize Li1,2, ✉ ✉ Reyka G. Jayasinghe1,2, Song Cao1,2, Justin King1, Daniel R. Kohnen1, Mark A. Fiala1, Li Ding1,2,3,4 & Ravi Vij1,4 Multiple myeloma is a plasma cell blood cancer with frequent chromosomal translocations leading to gene fusions. To determine the clinical relevance of fusion events, we detect gene 1234567890():,; fusions from a cohort of 742 patients from the Multiple Myeloma Research Foundation CoMMpass Study. Patients with multiple clinic visits enable us to track tumor and fusion evolution, and cases with matching peripheral blood and bone marrow samples allow us to evaluate the concordance of fusion calls in patients with high tumor burden. We examine the joint upregulation of WHSC1 and FGFR3 in samples with t(4;14)-related fusions, and we illustrate a method for detecting fusions from single cell RNA-seq. We report fusions at MYC and a neighboring gene, PVT1, which are related to MYC translocations and associated with divergent progression-free survival patterns. Finally, we find that 4% of patients may be eligible for targeted fusion therapies, including three with an NTRK1 fusion. 1 Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA. 2 McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA. 3 Department of Genetics, Washington University in St. Louis, St.
    [Show full text]
  • Procedure of Protoplast Electrofusion (In Solanum Genus)
    Procedure of protoplast electrofusion (in Solanum genus) A part of the output V002 within the project NAZV QF4108 “Use of protoplast fusion technique in breeding of economic important crops of Brassica, Cucumis and Solanum genus” applied and verified in the solution of MSM 6010980701 “Molecular and technological basis of quality potato production” Authors: Ing. Marie Greplová Mgr. Hana Polzerová Ing. Jaroslava Domkářová, Ph.D., MBA 1 Introduction The effective development of new varieties with desirable traits requires a combination of conventional breeding approaches and modern technologies such as in vitro cultures, involving production of dihaploid lines, protoplast fusions and use of genetic transformation. Modern plant biotechnologies are a necessary part of plant breeding for resistance to biotic and abiotic stresses. They contribute to an enlargement of variety spectrum and to decrease inputs for profitable yields. Breeding (sexual hybridization) of economic important crops for resistance to biotic and abiotic agents is often interfered with many complications as sexual incompatibility of parental genotypes, unsuitable EBN ratio (Endosperm Balance Number, Carputo et al. 1997) or small success in conventional sexual hybridization. Problems with resistance transfer in classical approaches resulted in development of unconventional approaches. Interspecific or intergeneric protoplast fusions offer an alternative way of gene transfer (Millam et al. 1995). Since there are no barriers to protoplast fusion, hitherto incompatible and therefore reproductively isolated species, can be brought together at the protoplast level. Following fusion, heterocaryons, containing nuclei of two species in common cytoplasm regenerate a new cell wall, enter division and nuclear fusion results in the formation of a somatic hybrid cell.
    [Show full text]
  • Protoplast Cultures and Protoplast Fusion Focused on Brassicaceae – a Review
    Protoplast cultures and protoplast fusion focused on Brassicaceae – a review B. NAVRÁTILOVÁ Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic ABSTRACT: The subjects of this article are protoplast isolations and protoplast fusions, in particular their history, a review of factors influencing the protoplasts isolation and fusion, selection of hybrid plants and utilization of somatic hybrids in plant breed- ing. Somatic hybridization through protoplast fusion can overcome sexual incompatibility among plant species or genera; transfer genes of resistance to diseases (viral, bacterial, fungal), pests, herbicides and others stress factors; obtain cybrid plants; transfer cytoplasmic male sterility or incease content of secondary metabolites in hybrid plants. The article is focussed mainly on the family Brassicaceae because among representatives are significant crops for the human population. Various successful combination of intraspecific, interspecific and intergeneric protoplast fusion were reported between representatives of the family Brassicaceae with the genus Brassica which belonged to the first agricultural crops used for the isolation of protoplast. Keywords: Brassicaceae; Brassica; protoplast isolation; protoplast fusion; somatic hybridization; resistance to diseases and abiotic factors Isolated protoplasts are a unique system for studying interspecific hybrid obtained by the protoplast fusion of the structure and function of cell organelles, cytoplasmic Nicotiana glauca + Nicotiana langsdorffii appeared in membrane transport in plants and cell wall formation. 1972 (CARLSON et al. 1972), but this hybrid could also Another possibility of their use is protoplast fusions, ge- be produced by sexual crossing. The finding was that the netic manipulations or experimental mutagenesis. hybrids were characterized by spontaneous emergence Somatic hybridization through plant protoplast fu- of tumours without any need to add growth regulators sion enables not only to combine parent genes in higher into the culture medium.
    [Show full text]
  • Review Paper on the Role of Somatic Hybridization in Crop Improvement
    International Journal of Research Studies in Agricultural Sciences (IJRSAS) Volume 4, Issue 9, 2018, PP 1-8 ISSN No. (Online) 2454–6224 DOI: http://dx.doi.org/10.20431/2454-6224.0409001 www.arcjournals.org Review Paper on the Role of Somatic Hybridization in Crop Improvement Aliyi Robsa Shuro School of Plant Science, College of Agriculture, Haramaya University, Dire Dawa, Ethiopia *Corresponding Author: Aliyi Robsa Shuro, School of Plant Science, College of Agriculture, Haramaya University, Dire Dawa, Ethiopia Abstract: Genetic variability within the species has been efficiently utilized by breeders in their efforts to improve crops. However, the existing variability in a breeding population may not be sufficient for modern plant breeding purposes, and thus great efforts have been made to broaden the existing gene pool of crops. Introduction of new traits has been based mainly on sexual crosses between different genotypes within or between closely related species. However, due to the presence of various reproductive barriers, gene transfer has been restricted to sexually-compatible species, thus limiting the possibilities of modifying and improving crop plants. Many desirable and agronomically-interesting traits may only be found in distantly related species or even in unrelated organisms. Since they constitute a genetic resource potential, considerable effort has been allocated to identify and isolate these genes and transfer them into crops. Through the rapid development of somatic cell genetics, methods now exist for transferring genes across sexual borders and over wide taxonomic distances. Besides being of value for the transfer of unidentified genes, somatic hybridization is a tool for the modification and improvement of polygenic traits.
    [Show full text]
  • Design and Production of Bispecific Antibodies
    antibodies Review Design and Production of Bispecific Antibodies Qiong Wang, Yiqun Chen , Jaeyoung Park , Xiao Liu, Yifeng Hu, Tiexin Wang, Kevin McFarland and Michael J. Betenbaugh * Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA * Correspondence: [email protected] Received: 12 June 2019; Accepted: 31 July 2019; Published: 2 August 2019 Abstract: With the current biotherapeutic market dominated by antibody molecules, bispecific antibodies represent a key component of the next-generation of antibody therapy. Bispecific antibodies can target two different antigens at the same time, such as simultaneously binding tumor cell receptors and recruiting cytotoxic immune cells. Structural diversity has been fast-growing in the bispecific antibody field, creating a plethora of novel bispecific antibody scaffolds, which provide great functional variety. Two common formats of bispecific antibodies on the market are the single-chain variable fragment (scFv)-based (no Fc fragment) antibody and the full-length IgG-like asymmetric antibody. Unlike the conventional monoclonal antibodies, great production challenges with respect to the quantity, quality, and stability of bispecific antibodies have hampered their wider clinical application and acceptance. In this review, we focus on these two major bispecific types and describe recent advances in the design, production, and quality of these molecules, which will enable this important class of biologics to reach their therapeutic potential. Keywords: single-chain variable fragment (scFv); bispecific antibody; quadroma technology; knobs-into-holes; CrossMAb; bispecific T-cell engager (BiTE) 1. Introduction Over recent decades, immunotherapies, including checkpoint inhibitors, adoptive cell transfer, monoclonal antibodies, and vaccine treatments, have become efficient and highly specific treatments to fight cancer by boosting a patient’s immune system.
    [Show full text]
  • Asymmetric Somatic Plant Hybridization: Status and Applications
    American Journal of Plant Sciences, 2013, 4, 1-10 1 doi:10.4236/ajps.2013.48A001 Published Online August 2013 (http://www.scirp.org/journal/ajps) Asymmetric Somatic Plant Hybridization: Status and Applications Lakshmanan Prabhu Shankar1,2, Eeckhaut Tom1, Deryckere Dieter1, Van Bockstaele Erik1,2, Van Huylenbroeck Johan1 1Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Melle, Belgium; 2Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium. Email: [email protected] Received May 12th, 2013; revised June 13th, 2013; accepted July 15th, 2013 Copyright © 2013 Lakshmanan Prabhu Shankar et al. This is an open access article distributed under the Creative Commons Attribu- tion License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT To create asymmetric somatic hybrids, the genome of the so-called donor protoplast is fragmented prior to protoplast fusion. As a result, only a limited amount of the donor genome is transferred to the fusion product. This technique can circumvent some commonly observed problems related to symmetric fusion and offers a practical breeding tool for asexual hybridization. Genomes are typically fragmented by irradiation, microprotoplast production or application of metabolic inhibitors such as iodoacetamide. Irradiation and microprotoplast production fragment the nuclear genome, whereas iodoacetamide inactivates the cytoplasmic genome. It can therefore be used to introduce cytoplasmic male ste- rility, an important practical application. For hybrid verification and genome characterization, molecular markers and cytogenetic techniques are applied. This review highlights and discusses progress made during the last decade in sper- matophytes asymmetric protoplast fusion.
    [Show full text]
  • The in Vitro Genetics of Barley
    Heredity 59 (1987) 293-299 The Genetical Society of Great Britain Received 5December1986 Thein vitro genetics of barley (Hordeum vulgare L.): detection and analysis of reciprocal differences for culture response to 2,4-dichlorophenoxyacetic acid W. Powell and Scottish Crop Research Institute, Pentlandfield, P. D. S. Caligari* Roslin, Midlothian EH25 9RF, Scotland. The procedures of biometrical genetics have been used to detect and analyse reciprocal differences for the response of immature barley embryos to 2,4-dichlorophenoxyacetic acid in culture. Two genotypes were examined (4082 and R23) which had exhibited large reciprocal differences in culture in previous experiments. The F1, F2 and backcross generations, including full reciprocal families, were produced from these, true-breeding genotypes and evaluated in culture. The experiments confirmed the presence of reciprocal differences. Such differences were subsequently shown to stem from cytoplasmic effects alongside effects traceable to the mother tissue. The implications of these findings for the manipulation of barley genotypes in vitro are discussed. INTRODUCTION A number of factors may complicate the analyses of genotypic differences and in this paper Genotypicdifferences exist in the response of attention is focused on a relatively neglected area cereals to in vitro culture and it has become of tissue culture response i.e., the possibility of apparent that a thorough understanding of the reciprocal differences. A diallel analysis of in vitro genetical control of growth and differentiation in response in barley indicated the presence of large such systems is necessary for the efficient use of reciprocal differences when immature embryos cell culture technologies in crop improvement. In were cultured on media containing 2, or more, vitro selection (Bright, 1985), exploitation of soma- mg I_I of 2,4-dichlorophenoxyacetic acid clonal variation (Larkin, 1985) and the possibility (Caligari, Powell and Goodall, 1987).
    [Show full text]
  • Gene Duplication and Gene Fusion Are Important Drivers of Tumourigenesis During Cancer Evolution
    G C A T T A C G G C A T genes Review Gene Duplication and Gene Fusion Are Important Drivers of Tumourigenesis during Cancer Evolution Cian Glenfield and Hideki Innan * Department of Evolutionary Studies of Biosystems, SOKENDAI, The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawar 240-0193, Japan; glenfi[email protected] * Correspondence: [email protected] Abstract: Chromosomal rearrangement and genome instability are common features of cancer cells in human. Consequently, gene duplication and gene fusion events are frequently observed in human malignancies and many of the products of these events are pathogenic, representing significant drivers of tumourigenesis and cancer evolution. In certain subsets of cancers duplicated and fused genes appear to be essential for initiation of tumour formation, and some even have the capability of transforming normal cells, highlighting the importance of understanding the events that result in their formation. The mechanisms that drive gene duplication and fusion are unregulated in cancer and they facilitate rapid evolution by selective forces akin to Darwinian survival of the fittest on a cellular level. In this review, we examine current knowledge of the landscape and prevalence of gene duplication and gene fusion in human cancers. Keywords: tumour evolution; gene duplication; gene amplification; gene fusion; cancer genome; genome rearrangement Citation: Glenfield, C.; Innan, H. Gene Duplication and Gene Fusion Are Important Drivers of 1. Introduction Tumourigenesis during Cancer Gene duplication is thought to be one of the predominant processes by which new Evolution. Genes 2021, 12, 1376. genes and genetic novelty arise throughout evolution [1–5], and much of the same hallmark https://doi.org/10.3390/ structural variation that facilitates genomic evolution over long periods of time, including genes12091376 gene duplication and gene fusion, can also be observed occurring rapidly in cancer during tumour formation.
    [Show full text]
  • Global Analysis of Somatic Structural Genomic Alterations and Their Impact on Gene Expression in Diverse Human Cancers
    Global analysis of somatic structural genomic alterations and their impact on gene expression in diverse human cancers Babak Alaei-Mahabadia, Joydeep Bhaduryb, Joakim W. Karlssona, Jonas A. Nilssonb, and Erik Larssona,1 aDepartment of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; and bDepartment of Surgery, Sahlgrenska Cancer Center, Institute of Clinical Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden Edited by Mary-Claire King, University of Washington, Seattle, WA, and approved October 21, 2016 (received for review April 19, 2016) Tumor genomes are mosaics of somatic structural variants (SVs) segments (14). Several factors complicate the analysis, in particular that may contribute to the activation of oncogenes or inactivation mappability issues due to repetitive sequence regions (15). Indeed, of tumor suppressors, for example, by altering gene copy number it has become clear that the results produced by different methods amplitude. However, there are multiple other ways in which SVs are not consistent, and some studies have intersected multiple ap- can modulate transcription, but the general impact of such events proaches to provide a presumed high-confidence set of predictions on tumor transcriptional output has not been systematically de- (16, 17). Adding to the challenges is the difficulty of assessing termined. Here we use whole-genome sequencing data to map SVs performance: True positive sets have thus far been obtained across 600 tumors and 18 cancers, and investigate the relationship through simulated genomic sequences (18), but this will not re- between SVs, copy number alterations (CNAs), and mRNA expression.
    [Show full text]
  • Developments and Challenges for Mab-Based Therapeutics
    Antibodies 2013, 2, 452-500; doi:10.3390/antib2030452 OPEN ACCESS antibodies ISSN 2073-4468 www.mdpi.com/journal/antibodies Review Developments and Challenges for mAb-Based Therapeutics Sumit Goswami 1, Wei Wang 1, Tsutomu Arakawa 2,* and Satoshi Ohtake 1 1 Pfizer, Pharmaceutical R&D – BioTherapeutics Pharmaceutical Sciences, 700 Chesterfield Parkway West, Chesterfield, MO 63017, USA 2 Alliance Protein Laboratories, 6042 Cornerstone Ct West, Suite A1, San Diego, CA 92121, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-858-550-9401, Fax: +1-858-550-9403. Received: 23 May 2013; in revised form: 18 July 2013 / Accepted: 2 August 2013 / Published: 16 August 2013 Abstract: The continuous increase in the number of approved monoclonal antibody (mAb)-based therapy suggests that mAbs, and their derivatives, will continue to be the focus of the biotherapeutics industry for years to come. Although vast improvements in our capability to manufacture, characterize, and stabilize mAbs have been achieved, there are still challenges to be overcome. These include analytical and stabilization approaches associated with the development of high concentration mAb formulations. In addition, several mAb-based modalities are under development, including antibody drug conjugates (ADCs), fusion proteins, and bispecific antibodies (bsAbs), all designed to overcome the limitations encountered with mAb therapy. The current status of their development, with emphasis on manufacturing challenges as well as preliminary clinical results, will be reviewed. Keywords: monoclonal antibody; fusion-proteins; antibody drug conjugates; fragments; bi-specific 1. Introduction Antibodies are the first line of our body’s defense for fighting infectious diseases.
    [Show full text]
  • A Systematic Analysis of Oncogenic Gene Fusions in Primary Colon Cancer Wigard P
    Published OnlineFirst May 16, 2017; DOI: 10.1158/0008-5472.CAN-16-3563 Cancer Tumor and Stem Cell Biology Research A Systematic Analysis of Oncogenic Gene Fusions in Primary Colon Cancer Wigard P. Kloosterman1, Robert R.J. Coebergh van den Braak2, Mark Pieterse1, Markus J. van Roosmalen1, Anieta M. Sieuwerts3,4, Christina Stangl1, Ronne Brunekreef1, Zarina S. Lalmahomed2, Salo Ooft5, Anne van Galen3, Marcel Smid3, Armel Lefebvre1, Fried Zwartkruis6, John W.M. Martens3,4, John A. Foekens3, Katharina Biermann7, Marco J. Koudijs1, Jan N.M. Ijzermans2, and Emile E. Voest5 Abstract Genomic rearrangements that give rise to oncogenic gene fusions resulting from chromosomal translocations were iden- fusions can offer actionable targets for cancer therapy. Here we tified. An R-spondin fusion was found in only one tumor present a systematic analysis of oncogenic gene fusions among (0.35%), much less than an earlier reported frequency of a clinically well-characterized, prospectively collected set of 278 10% in colorectal cancers. We also found a novel fusion primary colon cancers spanning diverse tumor stages and involving USP9X-ERAS formed by chromothripsis and leading clinical outcomes. Gene fusions and somatic genetic variations to high expression of ERAS, a constitutively active RAS protein were identified in fresh frozen clinical specimens by Illumina normally expressed only in embryonic stem cells. This USP9X– RNA-sequencing, the STAR fusion gene detection pipeline, and ERAS fusion appeared highly oncogenic on the basis of its GATK RNA-seq variant calling. We considered gene fusions to ability to activate AKT signaling. Oncogenic fusions were iden- be pathogenically relevant when recurrent, producing divergent tified only in lymph node–negative tumors that lacked BRAF or gene expression (outlier analysis), or as functionally important KRAS mutations.
    [Show full text]
  • Asymmetric Somatic Plant Hybridization: Status and Applications
    American Journal of Plant Sciences, 2013, 4, 1-10 1 http://dx.doi.org/10.4236/ajps.2013.48A001 Published Online August 2013 (http://www.scirp.org/journal/ajps) Asymmetric Somatic Plant Hybridization: Status and Applications Lakshmanan Prabhu Shankar1,2, Eeckhaut Tom1, Deryckere Dieter1, Van Bockstaele Erik1,2, Van Huylenbroeck Johan1 1Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Melle, Belgium; 2Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium. Email: [email protected] Received May 12th, 2013; revised June 13th, 2013; accepted July 15th, 2013 Copyright © 2013 Lakshmanan Prabhu Shankar et al. This is an open access article distributed under the Creative Commons Attribu- tion License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT To create asymmetric somatic hybrids, the genome of the so-called donor protoplast is fragmented prior to protoplast fusion. As a result, only a limited amount of the donor genome is transferred to the fusion product. This technique can circumvent some commonly observed problems related to symmetric fusion and offers a practical breeding tool for asexual hybridization. Genomes are typically fragmented by irradiation, microprotoplast production or application of metabolic inhibitors such as iodoacetamide. Irradiation and microprotoplast production fragment the nuclear genome, whereas iodoacetamide inactivates the cytoplasmic genome. It can therefore be used to introduce cytoplasmic male ste- rility, an important practical application. For hybrid verification and genome characterization, molecular markers and cytogenetic techniques are applied. This review highlights and discusses progress made during the last decade in sper- matophytes asymmetric protoplast fusion.
    [Show full text]