Hang Glider Design and Performance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Shelf List 05/31/2011 Matches 4631
Shelf List 05/31/2011 Matches 4631 Call# Title Author Subject 000.1 WARBIRD MUSEUMS OF THE WORLD EDITORS OF AIR COMBAT MAG WAR MUSEUMS OF THE WORLD IN MAGAZINE FORM 000.10 FLEET AIR ARM MUSEUM, THE THE FLEET AIR ARM MUSEUM YEOVIL, ENGLAND 000.11 GUIDE TO OVER 900 AIRCRAFT MUSEUMS USA & BLAUGHER, MICHAEL A. EDITOR GUIDE TO AIRCRAFT MUSEUMS CANADA 24TH EDITION 000.2 Museum and Display Aircraft of the World Muth, Stephen Museums 000.3 AIRCRAFT ENGINES IN MUSEUMS AROUND THE US SMITHSONIAN INSTITUTION LIST OF MUSEUMS THROUGH OUT THE WORLD WORLD AND PLANES IN THEIR COLLECTION OUT OF DATE 000.4 GREAT AIRCRAFT COLLECTIONS OF THE WORLD OGDEN, BOB MUSEUMS 000.5 VETERAN AND VINTAGE AIRCRAFT HUNT, LESLIE LIST OF COLLECTIONS LOCATION AND AIRPLANES IN THE COLLECTIONS SOMEWHAT DATED 000.6 VETERAN AND VINTAGE AIRCRAFT HUNT, LESLIE AVIATION MUSEUMS WORLD WIDE 000.7 NORTH AMERICAN AIRCRAFT MUSEUM GUIDE STONE, RONALD B. LIST AND INFORMATION FOR AVIATION MUSEUMS 000.8 AVIATION AND SPACE MUSEUMS OF AMERICA ALLEN, JON L. LISTS AVATION MUSEUMS IN THE US OUT OF DATE 000.9 MUSEUM AND DISPLAY AIRCRAFT OF THE UNITED ORRISS, BRUCE WM. GUIDE TO US AVIATION MUSEUM SOME STATES GOOD PHOTOS MUSEUMS 001.1L MILESTONES OF AVIATION GREENWOOD, JOHN T. EDITOR SMITHSONIAN AIRCRAFT 001.2.1 NATIONAL AIR AND SPACE MUSEUM, THE BRYAN, C.D.B. NATIONAL AIR AND SPACE MUSEUM COLLECTION 001.2.2 NATIONAL AIR AND SPACE MUSEUM, THE, SECOND BRYAN,C.D.B. MUSEUM AVIATION HISTORY REFERENCE EDITION Page 1 Call# Title Author Subject 001.3 ON MINIATURE WINGS MODEL AIRCRAFT OF THE DIETZ, THOMAS J. -
51 Hot-Air Balloons
We’re on the www. Thanks to Don Taylor the MAAA has now its own individual Internet web site. Look us up on www.aussiemossie.asn.au. Don has slaved over a hot PC for many nights teaching himself how to undertake the task, and the result as you will see is a credit to him. He welcomes all feedback, as well as genuine articles that are unique, as he does not want the site to be just another list of numbers but wants to have articles that portray the human side as well. You can email him with your anecdotes via the Contact Us section on the site. Our thanks also go to stalwart Brian Fillery for making his personal site available to the MAAA for the past few years. It was greatly ap- preciated. By the way if you are look- ing for the home page, there is not one, it is now known as the Hangar page (Don’s humour—you can tell by the smirk on his face). THE AUSSIE MOSSIE / APRIL 2008 / 1 The President’s Log—by Alan Middleton OAM in the RAAF post 1945, retiring ers moved into Coomalie Creek in with the rank of Air Vice Mar- November 1942 and it remained an shal. operational base until the end of the The Gillespie Room is named war. for Sqn Ldr Jim Gillespie, a Pilot with 87 who died as a A report was recently seen in an result of a crash on takeoff at Airforce Association publication on Coomalie Creek on 2 August the death of Fred Stevens DFC, the 1945. -
South Bay Historical Society Bulletin October 2018 Issue No
South Bay Historical Society Bulletin October 2018 Issue No. 21 RSVP today to visit Ream Field on Friday! Ream Field, A History part of the short-lived boom town of Oneonta in the 1880s. One advantage of the area was good weather. by Steve Schoenherr Aviation enthusiasts could experiment with their One hundred years ago, the Great War transformed machines all year, taking advantage of the gentle the South Bay. Farms and lemon groves covered ocean winds and the occasional gusts from the inland most of the sparsely populated area. Only a few deserts in the fall. John Joseph Montgomery was the hundred people lived in the area between the border first American to design and fly a controlled glider, and the bay. Imperial Beach was just a small strip of making his flight in 1883 from a hill on Otay Mesa land three blocks wide along the ocean. Hollis above his father's ranch at the southern end of San Peavey raised hay and barley on his 115-acre ranch Diego Bay. In 1910 Charles Walsh built a biplane in on the north bank of the Tijuana River that had been Imperial Beach and made his first public flight on 1 Charles Walsh at Aviation Field in 1910. Note the South San Diego School in the upper right that was built at Elm and 10th Street in 1889. April 10, cheered on by a crowd of about a hundred wanted to give his flying school to the Navy, but in spectators. In the following weeks, similar flights 1912 the Army took up his offer instead. -
Soft Kites—George Webster
Page 6 The Kiteflier, Issue 102 Soft Kites—George Webster Section 1 years for lifting loads such as timber in isolated The first article I wrote about kites dealt with sites. Jalbert developed it as a response to the Deltas, which were identified as —one of the kites bending of the spars of large kites which affected which have come to us from 1948/63, that their performance. The Kytoon is a snub-nosed amazingly fertile period for kites in America.“ The gas-inflated balloon with two horizontal and two others are sled kites (my second article) and now vertical planes at the rear. The horizontals pro- soft kites (or inflatable kites). I left soft kites un- vide additional lift which helps to reduce a teth- til last largely because I know least about them ered balloon‘s tendency to be blown down in and don‘t fly them all that often. I‘ve never anything above a medium wind. The vertical made one and know far less about the practical fins give directional stability (see Pelham, p87). problems of making and flying large soft kites– It is worth nothing that in 1909 the airship even though I spend several weekends a year —Baby“ which was designed and constructed at near to some of the leading designers, fliers and Farnborough has horizontal fins and a single ver- their kites. tical fin. Overall it was a broadly similar shape although the fins were proportionately smaller. —Soft Kites“ as a kite type are different to deal It used hydrogen to inflate bag and fins–unlike with, compared to say Deltas, as we are consid- the Kytoon‘s single skinned fin. -
The SKYLON Spaceplane
The SKYLON Spaceplane Borg K.⇤ and Matula E.⇤ University of Colorado, Boulder, CO, 80309, USA This report outlines the major technical aspects of the SKYLON spaceplane as a final project for the ASEN 5053 class. The SKYLON spaceplane is designed as a single stage to orbit vehicle capable of lifting 15 mT to LEO from a 5.5 km runway and returning to land at the same location. It is powered by a unique engine design that combines an air- breathing and rocket mode into a single engine. This is achieved through the use of a novel lightweight heat exchanger that has been demonstrated on a reduced scale. The program has received funding from the UK government and ESA to build a full scale prototype of the engine as it’s next step. The project is technically feasible but will need to overcome some manufacturing issues and high start-up costs. This report is not intended for publication or commercial use. Nomenclature SSTO Single Stage To Orbit REL Reaction Engines Ltd UK United Kingdom LEO Low Earth Orbit SABRE Synergetic Air-Breathing Rocket Engine SOMA SKYLON Orbital Maneuvering Assembly HOTOL Horizontal Take-O↵and Landing NASP National Aerospace Program GT OW Gross Take-O↵Weight MECO Main Engine Cut-O↵ LACE Liquid Air Cooled Engine RCS Reaction Control System MLI Multi-Layer Insulation mT Tonne I. Introduction The SKYLON spaceplane is a single stage to orbit concept vehicle being developed by Reaction Engines Ltd in the United Kingdom. It is designed to take o↵and land on a runway delivering 15 mT of payload into LEO, in the current D-1 configuration. -
Arci Copy C Available to NASA Offices and Research Centers Only
NASA RESF_CH ON FLEXIBLE wINGS By Francis M. Rogallo NASA Langley Research Center Langley station_ Hampton, Va. Presented at the international Congress of Subsonic Aeronautics Gp 0 p_|CE $ cFSTI p_lCE(,S_ $ _arci copy _c_ N_,cro_che _MF) ,ff 653 JuW 65 New york_ New york April .5-6_ 1967 Available to NASA Offices and Research Centers Only, U. NASA RESEARCH ON FLEXIBLE WINGS By Francis M. Rogallo NASA Langley Research Center SUMMARY Flexible wings are wings made of very loose or slack cloth whose configu- ration in flight is maintained by the combination of the aerodynamic forces and the reactions from the load suspension system. Such wings can be completely flexible_ or they may be stiffened in several ways to meet the requirements of particular applications. Wing planforms and the geometry of the load suspension system are also subject to wide variations. The overall spectrum of flexible wings investigated at the Langley Research Center is presented and the state of the art with regard to maximum lift-drag ratios obtained is defined for a wide range of wing configurations. Maximum lift-drag ratios above 3.0 were obtained on completely flexible wings; and for cylindrical-type flexible wings, values of lift-drag ratios up to 17.0 were obtained when the wing had small, tapered rigid leading edges. The flexible wings of most immediate interest are those with no structural stiffening because they have weight, volume, packing, and deployment character- istics potentially as good as those of conventional parachutes, but provide a stable and controllable glide with performance adequate for aerial delivery of cargo and personnel, for landing space capsules, boosters, or hypersonic air- craft, and as emergency wings for aircraft or aircraft escape systems. -
Download the BHPA Training Guide
VERSION 1.7 JOE SCHOFIELD, EDITOR body, and it has for many years been recognised and respected by the Fédération Aeronautique Internationale, the Royal Aero Club and the Civil Aviation Authority. The BHPA runs, with the help of a small number of paid staff, a pilot rating scheme, airworthiness schemes for the aircraft we fly, a school registration scheme, an instructor assessment and rating scheme and training courses for instructors and coaches. Within your membership fee is also provided third party insurance and, for full annual or three-month training members, a monthly subscription to this highly-regarded magazine. The Elementary Pilot Training Guide exists to answer all those basic questions you have such as: ‘Is it difficult to learn to fly?' and ‘Will it take me long to learn?' In answer to those two questions, I should say that it is no more difficult to learn to fly than to learn to drive a car; probably somewhat easier. We were all beginners once and are well aware that the main requirement, if you want much more than a ‘taster', is commitment. Keep at it and you will succeed. In answer to the second question I can only say that in spite of our best efforts we still cannot control the weather, and that, no matter how long you continue to fly for, you will never stop learning. Welcome to free flying and to the BHPA’s Elementary Pilot Training Guide, You are about to enter a world where you will regularly enjoy sights and designed to help new pilots under training to progress to their first milestone - experiences which only a few people ever witness. -
Gliding Flight
Gliding Flight Whenever an airplane is flying such that the power required is larger than the power available, it will descend rather than climb. In the ultimate situation, there is no power at all; in this case, the airplane will be in gliding. This will occur for a conventional airplane when the engine quits during flight (e.g., engine failure). Also, this is the case for gliders and sailplanes. The force diagram is the higher the L/D, the shallower the glide angle. The smallest equilibrium glide angle occurs at (L/D)max. The equilibrium glide angle does not depend on altitude or wing loading, it simply depends on the lift-to-drag ratio. However, to achieve a given L/D at a given altitude, the aircraft must fly at a specified velocity V, called the equilibrium glide velocity, and this value of V, does depend on the altitude and wing loading, as follows: it depends on altitude (through rho) and wing loading. The value of CL and L/D are aerodynamic characteristics of the aircraft that vary with angle of attack. A specific value of L/D, corresponds to a specific angle of attack which in turn dictates the lift coefficient (CL). If L/ D is held constant throughout the glide path, then CL is constant along the glide path. However, the equilibrium velocity along this glide path will change with altitude, decreasing with decreasing altitude (because rho increases). SERVICE AND ABSOLUTE CEILINGS The highest altitude achievable is the altitude where (R/C)max=0. It is defined as the absolute ceiling that altitude where the maximum rate of climb is zero is in steady, level flight. -
Front Cover: Airbus 2050 Future Concept Aircraft
AEROSPACE 2017 February 44 Number 2 Volume Society Royal Aeronautical www.aerosociety.com ACCELERATING INNOVATION WHY TODAY IS THE BEST TIME EVER TO BE AN AEROSPACE ENGINEER February 2017 PROPELLANTLESS SPACE DRIVES – FLIGHTS OF FANCY? BOOM PLOTS RETURN TO SUPERSONIC FLIGHT INDIA’S NAVAL AIR POWER Have you renewed your Membership Subscription for 2017? Your membership subscription was due on 1 January 2017. As per the Society’s Regulations all How to renew: membership benefits will be suspended where Online: a payment for an individual subscription has Log in to your account on the Society’s www.aerosociety.com not been received after three months of the due website to pay at . If you date. However, this excludes members paying do not have an account, you can register online their annual subscriptions by Direct Debits in and pay your subscription straight away. monthly installments. Additionally members Telephone: Call the Subscriptions Department who are entitled to vote in the Society’s AGM on +44 (0)20 7670 4315 / 4304 will lose their right to vote if their subscription has not been paid. Cheque: Cheques should be made payable to the Royal Aeronautical Society and sent to the Don’t lose out on your membership benefits, Subscriptions Department at No.4 Hamilton which include: Place, London W1J 7BQ, UK. • Your monthly subscription to AEROSPACE BACS Transfer: Pay by Bank Transfer (or by magazine BACS) into the Society’s bank account, quoting • Use of your RAeS post nominals as your name and membership number. Bank applicable details: • Over 400 global events yearly • Discounted rates for conferences Bank: HSBC plc • Online publications including Society News, Sort Code: 40-05-22 blogs and podcasts Account No: 01564641 • Involvement with your local branch BIC: MIDLGB2107K • Networking opportunities IBAN: GB52MIDL400522 01564641 • Support gaining Professional Registration • Opportunities & recognition with awards and medals • Professional development and support .. -
Robot Dynamics - Fixed Wing UAS Exercise 1: Aircraft Aerodynamics & Flight Mechanics
Robot Dynamics - Fixed Wing UAS Exercise 1: Aircraft Aerodynamics & Flight Mechanics Thomas Stastny ([email protected]) 2016.11.30 Abstract This exercise analyzes the performance of the Techpod UAV during steady-level and gliding flight con- ditions. A decoupled longitudinal model is further derived from its full six-degrees-of-freedom represen- tation, and the necessary assumptions leading to said model are elaborated. 1 Aircraft Flight Performance Use the parameters given in Table3 and the following environmental and platform specific information to answer the following questions. Do not interpolate, simply take the closest value. Assume the aircraft is in steady conditions (i.e. Bv_ = B! = 0) at all times, and level (i.e. γ = 0), if powered. Enivronment: density ρ = 1:225kg=m3 (assume sea-level values) Aircraft specs: wing area S = 0:39m2, mass m = 2:65kg a) Calculate the minimum level flight speed of the Techpod UAV. Is this a good choice of operating airspeed? As we are assuming steady-level flight conditions, we may equate the lifting force with the force 2 of gravity, i.e. L = 0:5ρV ScL = mg. Solving this equation for airspeed, we see that maximizing cL, i.e. cL = cLmax = 1:125 (from Table3), minimizes speed. s 2mg Vmin = = 9:83m=s ρScLmax As this operating speed would be directly at the stall point of the aircraft, this is a highly dangerous condition. For sure not recommended as an operating speed. b) Suppose the motor fails. What maximum glide ratio can be reached? And at what speed is this maximum achieved? Conveniently, an aircraft's lift-to-drag ratio is numerically equivalent to its glide ratio, whether assuming steady-level (powered) or steady (un-powered / gliding) flight. -
Powered Paraglider Longitudinal Dynamic Modeling and Experimentation
POWERED PARAGLIDER LONGITUDINAL DYNAMIC MODELING AND EXPERIMENTATION By COLIN P. GIBSON Bachelor of Science in Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 2014 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December, 2016 POWERED PARAGLIDER LONGITUDINAL DYNAMIC MODELING AND EXPERIMENTATION Thesis Approved: Dr. Andrew S. Arena Thesis Adviser Dr. Joseph P. Conner Dr. Jamey D. Jacob ii Name: COLIN P. GIBSON Date of Degree: DECEMBER, 2016 Title of Study: POWERED PARAGLIDER LONGITUDINAL DYNAMIC MODELING AND EXPERIMENTATION Major Field: MECHANICAL AND AEROSPACE ENGINEERING Abstract: Paragliders and similar controllable decelerators provide the benefits of a compact packable parachute with the improved glide performance and steering of a conventional wing, making them ideally suited for precise high offset payload recovery and airdrop missions. This advantage over uncontrollable conventional parachutes sparked interest from Oklahoma State University for implementation into its Atmospheric and Space Threshold Research Oklahoma (ASTRO) program, where payloads often descend into wooded areas. However, due to complications while building a powered paraglider to evaluate the concept, more research into its design parameters was deemed necessary. Focus shifted to an investigation of the effects of these parameters on the flight behavior of a powered system. A longitudinal dynamic model, based on Lagrange’s equation for adaptability when adding free-hanging masses, was developed to evaluate trim conditions and analyze system response. With the simulation, the effects of rigging angle, fuselage weight, center of gravity (cg), and apparent mass were calculated through step thrust input cases. -
Unclassified Ad295 143
UNCLASSIFIED AD295 143 ARMED SERVICES TECHNICAL INFORION AECY ARLINGTON HALL STATION ARLINGT0 12, VIRGINIA UNCLASSIFIED NOTICE: 'When government or other dravings, speci- fications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Govern- ment may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or other- wise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto. MARTIN COMPANY Librnry Literature Search Nio. 24+ DENVER, COLORADO AN~l 7NDA<.:iIC'RAi'HY 0,1 PAERAGLI.D-2R' V) 7 ~2Y1 Ae 3r&.-'s A >i*-! lceie rt~c nolo,-. Index >cnAa Public-itions Aanouncements . trorvait ion infoirrti on A'b,,rnct~s I 'n~i:n~I ~iCr~iAo~trncts .~rjirL,2Pin. 3 1 lt53 ADVANCED TECHNOLOGY LIBRARY C-107 2721 RESEARCH LIBRARY A-52 2601 Aerospac* Division of Martin Marietta Corporation Francis M. Rogallo, John 0. Lowry, Delwin R. Grou .. T. Taylor, Preliminary investigation of a paraglider. August 1960. NASA Technical Note D-443. Preliminary tests of flexible wing gliders indicate stable, controllable vehicles at both subsonic and supersonic speeds. Such vehicles may be made extremely light with available materials. The results of this study indicate that this concept may provide a lightweight controllable paraglider for manned space vehicles.