Microfluidic Technologies for Synthetic Biology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  Recent Advances in Droplet-Based Microfluidic Technologiesmicromachines Review Recent Advances in Droplet-based Microfluidic Technologies for Biochemistry and Molecular Biology 1, 1, 2, Joel Sánchez Barea y , Juhwa Lee y and Dong-Ku Kang * 1 Department of Chemistry, Incheon National University, Incheon 22012, Korea; [email protected] (J.S.B.); [email protected] (J.L.) 2 Department of Chemistry, Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea * Correspondence: [email protected]; Tel.: +82-32-835-8094 These authors contribute equally to this article. y Received: 2 May 2019; Accepted: 18 June 2019; Published: 20 June 2019 Abstract: Recently, droplet-based microfluidic systems have been widely used in various biochemical and molecular biological assays. Since this platform technique allows manipulation of large amounts of data and also provides absolute accuracy in comparison to conventional bioanalytical approaches, over the last decade a range of basic biochemical and molecular biological operations have been transferred to drop-based microfluidic formats. In this review, we introduce recent advances and examples of droplet-based microfluidic techniques that have been applied in biochemistry and molecular biology research including genomics, proteomics and cellomics. Their advantages and weaknesses in various applications are also comprehensively discussed here. The purpose of this review is to provide a new point of view and current status in droplet-based microfluidics to biochemists and molecular biologists. We hope that this review will accelerate communications between researchers who are working in droplet-based microfluidics, biochemistry and molecular biology. Keywords: droplet-based microfluidic; biochemistry; molecular biology; digital PCR; biochip; biosensor; digital quantification; microfluidic; single cell analysis 1.
- 
												  Chapter 14: Functional Genomics Learning ObjectivesChapter 14: Functional Genomics Learning objectives Upon reading this chapter, you should be able to: ■ define functional genomics; ■ describe the key features of eight model organisms; ■ explain techniques of forward and reverse genetics; ■ discuss the relation between the central dogma and functional genomics; and ■ describe proteomics-based approaches to functional genomics. Outline : Functional genomics Introduction Relation between genotype and phenotype Eight model organisms E. coli; yeast; Arabidopsis; C. elegans; Drosophila; zebrafish; mouse; human Functional genomics using reverse and forward genetics Reverse genetics: mouse knockouts; yeast; gene trapping; insertional mutatgenesis; gene silencing Forward genetics: chemical mutagenesis Functional genomics and the central dogma Approaches to function; Functional genomics and DNA; …and RNA; …and protein Proteomic approaches to functional genomics CASP; protein-protein interactions; protein networks Perspective Albert Blakeslee (1874–1954) studied the effect of altered chromosome numbers on the phenotype of the jimson-weed Datura stramonium, a flowering plant. Introduction: Functional genomics Functional genomics is the genome-wide study of the function of DNA (including both genes and non-genic regions), as well as RNA and proteins encoded by DNA. The term “functional genomics” may apply to • the genome, transcriptome, or proteome • the use of high-throughput screens • the perturbation of gene function • the complex relationship of genotype and phenotype Functional genomics approaches to high throughput analyses Relationship between genotype and phenotype The genotype of an individual consists of the DNA that comprises the organism. The phenotype is the outward manifestation in terms of properties such as size, shape, movement, and physiology. We can consider the phenotype of a cell (e.g., a precursor cell may develop into a brain cell or liver cell) or the phenotype of an organism (e.g., a person may have a disease phenotype such as sickle‐cell anemia).
- 
												  Interfacing to Biological Systems Using MicrofluidicsUniversity of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2018 Interfacing to Biological Systems Using Microfluidics Peter Golden Shankles University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Shankles, Peter Golden, "Interfacing to Biological Systems Using Microfluidics. " PhD diss., University of Tennessee, 2018. https://trace.tennessee.edu/utk_graddiss/5315 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Peter Golden Shankles entitled "Interfacing to Biological Systems Using Microfluidics." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Energy Science and Engineering. Scott T. Retterer, Major Professor We have read this dissertation and recommend its acceptance: Steven M. Abel, Mitchel J. Doctycz, Jennifer L. Morrell-Falvey Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Interfacing to Biological Systems Using Microfluidics A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Peter Golden Shankles December 2018 Copyright © 2018 by Peter Golden Shankles All rights reserved.
- 
												  Masterpath: Network Analysis of Functional Genomics Screening DataMasterPATH: network analysis of functional genomics screening data Natalia Rubanova, Guillaume Pinna, Jeremie Kropp, Anna Campalans, Juan Pablo Radicella, Anna Polesskaya, Annick Harel-Bellan, Nadya Morozova To cite this version: Natalia Rubanova, Guillaume Pinna, Jeremie Kropp, Anna Campalans, Juan Pablo Radicella, et al.. MasterPATH: network analysis of functional genomics screening data. BMC Genomics, BioMed Central, 2020, 21 (1), pp.632. 10.1186/s12864-020-07047-2. hal-02944249 HAL Id: hal-02944249 https://hal.archives-ouvertes.fr/hal-02944249 Submitted on 26 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Rubanova et al. BMC Genomics (2020) 21:632 https://doi.org/10.1186/s12864-020-07047-2 METHODOLOGY ARTICLE Open Access MasterPATH: network analysis of functional genomics screening data Natalia Rubanova1,2,3* , Guillaume Pinna4, Jeremie Kropp1, Anna Campalans5,6,7, Juan Pablo Radicella5,6,7, Anna Polesskaya8, Annick Harel-Bellan1 and Nadya Morozova1,4 Abstract Background: Functional genomics employs several experimental approaches to investigate gene functions. High- throughput techniques, such as loss-of-function screening and transcriptome profiling, allow to identify lists of genes potentially involved in biological processes of interest (so called hit list).
- 
												  A Flexible Microfluidic System for Single-Cell Transcriptome Profilingwww.nature.com/scientificreports OPEN A fexible microfuidic system for single‑cell transcriptome profling elucidates phased transcriptional regulators of cell cycle Karen Davey1,7, Daniel Wong2,7, Filip Konopacki2, Eugene Kwa1, Tony Ly3, Heike Fiegler2 & Christopher R. Sibley 1,4,5,6* Single cell transcriptome profling has emerged as a breakthrough technology for the high‑resolution understanding of complex cellular systems. Here we report a fexible, cost‑efective and user‑ friendly droplet‑based microfuidics system, called the Nadia Instrument, that can allow 3′ mRNA capture of ~ 50,000 single cells or individual nuclei in a single run. The precise pressure‑based system demonstrates highly reproducible droplet size, low doublet rates and high mRNA capture efciencies that compare favorably in the feld. Moreover, when combined with the Nadia Innovate, the system can be transformed into an adaptable setup that enables use of diferent bufers and barcoded bead confgurations to facilitate diverse applications. Finally, by 3′ mRNA profling asynchronous human and mouse cells at diferent phases of the cell cycle, we demonstrate the system’s ability to readily distinguish distinct cell populations and infer underlying transcriptional regulatory networks. Notably this provided supportive evidence for multiple transcription factors that had little or no known link to the cell cycle (e.g. DRAP1, ZKSCAN1 and CEBPZ). In summary, the Nadia platform represents a promising and fexible technology for future transcriptomic studies, and other related applications, at cell resolution. Single cell transcriptome profling has recently emerged as a breakthrough technology for understanding how cellular heterogeneity contributes to complex biological systems. Indeed, cultured cells, microorganisms, biopsies, blood and other tissues can be rapidly profled for quantifcation of gene expression at cell resolution.
- 
												  The Economic Impact and Functional Applications of Human Genetics and GenomicsThe Economic Impact and Functional Applications of Human Genetics and Genomics Commissioned by the American Society of Human Genetics Produced by TEConomy Partners, LLC. Report Authors: Simon Tripp and Martin Grueber May 2021 TEConomy Partners, LLC (TEConomy) endeavors at all times to produce work of the highest quality, consistent with our contract commitments. However, because of the research and/or experimental nature of this work, the client undertakes the sole responsibility for the consequence of any use or misuse of, or inability to use, any information or result obtained from TEConomy, and TEConomy, its partners, or employees have no legal liability for the accuracy, adequacy, or efficacy thereof. Acknowledgements ASHG and the project authors wish to thank the following organizations for their generous support of this study. Invitae Corporation, San Francisco, CA Regeneron Pharmaceuticals, Inc., Tarrytown, NY The project authors express their sincere appreciation to the following indi- viduals who provided their advice and input to this project. ASHG Government and Public Advocacy Committee Lynn B. Jorde, PhD ASHG Government and Public Advocacy Committee (GPAC) Chair, President (2011) Professor and Chair of Human Genetics George and Dolores Eccles Institute of Human Genetics University of Utah School of Medicine Katrina Goddard, PhD ASHG GPAC Incoming Chair, Board of Directors (2018-2020) Distinguished Investigator, Associate Director, Science Programs Kaiser Permanente Northwest Melinda Aldrich, PhD, MPH Associate Professor, Department of Medicine, Division of Genetic Medicine Vanderbilt University Medical Center Wendy Chung, MD, PhD Professor of Pediatrics in Medicine and Director, Clinical Cancer Genetics Columbia University Mira Irons, MD Chief Health and Science Officer American Medical Association Peng Jin, PhD Professor and Chair, Department of Human Genetics Emory University Allison McCague, PhD Science Policy Analyst, Policy and Program Analysis Branch National Human Genome Research Institute Rebecca Meyer-Schuman, MS Human Genetics Ph.D.
- 
												  RNA-Seq and Microfluidic Digital PCR Identification of Transcriptionally Active Spirochetes in Termite Gut Microbial Communities4-1 RNA-Seq and microfluidic digital PCR identification of transcriptionally active spirochetes in termite gut microbial communities Abstract CO2-reductive acetogenesis in termite hindguts is a bacterial process with significant impact on the nutrition of wood-feeding termites. Acetogenic spirochetes have been identified as key mediators of acetogenesis. Here, we use high-throughput, short transcript sequencing (RNA-Seq) and microfluidic, multiplex digital PCR to identify uncultured termite gut spirochetes transcribing genes for hydrogenase-linked formate dehydrogenase (FDHH) enzymes, which are required for acetogenic metabolism in the spirochete, Treponema primitia. To assess FDHH gene (fdhF) transcription within the gut community of a wood-feeding termite, we sequenced ca. 28,000,000 short transcript reads of gut microbial community RNA using Illumina Solexa technology. RNA-Seq results indicate that fdhF transcription in the gut is dominated by two fdhF genotypes: ZnD2sec and Zn2cys. This finding was independently corroborated with cDNA inventory and qRT-PCR transcription measurements. We, therefore, propose that RNA-Seq mapping of microbial community transcripts is specific and quantitative. Following transcriptional assessments, we performed microfluidic, multiplex digital PCR on single termite gut bacterial cells to discover the identity of uncultured bacteria encoding fdhF 4-2 genotypes ZnD2sec and Zn2cys. We identified the specific 16S rRNA gene ribotype of the bacterium encoding Zn2cys fdhF and report that the bacterium is a spirochete. Phylogenetic analysis reveals that this uncultured spirochete, like T. primitia, possesses genes for acetogenic metabolism – formyl-tetra-hydrofolate synthetase and both selenocysteine and cysteine variants of formate dehydrogenase. Microfluidic results also imply a spirochetal origin for ZnD2sec fdhF, but further gene pair associations are required for verification.
- 
												  Microbes and Metagenomics in Human Health an Overview of Recent Publications Featuring Illumina® Technology TABLE of CONTENTSMicrobes and Metagenomics in Human Health An overview of recent publications featuring Illumina® technology TABLE OF CONTENTS 4 Introduction 5 Human Microbiome Gut Microbiome Gut Microbiome and Disease Inflammatory Bowel Disease (IBD) Metabolic Diseases: Diabetes and Obesity Obesity Oral Microbiome Other Human Biomes 25 Viromes and Human Health Viral Populations Viral Zoonotic Reservoirs DNA Viruses RNA Viruses Human Viral Pathogens Phages Virus Vaccine Development 44 Microbial Pathogenesis Important Microorganisms in Human Health Antimicrobial Resistance Bacterial Vaccines 54 Microbial Populations Amplicon Sequencing 16S: Ribosomal RNA Metagenome Sequencing: Whole-Genome Shotgun Metagenomics Eukaryotes Single-Cell Sequencing (SCS) Plasmidome Transcriptome Sequencing 63 Glossary of Terms 64 Bibliography This document highlights recent publications that demonstrate the use of Illumina technologies in immunology research. To learn more about the platforms and assays cited, visit www.illumina.com. An overview of recent publications featuring Illumina technology 3 INTRODUCTION The study of microbes in human health traditionally focused on identifying and 1. Roca I., Akova M., Baquero F., Carlet J., treating pathogens in patients, usually with antibiotics. The rise of antibiotic Cavaleri M., et al. (2015) The global threat of resistance and an increasingly dense—and mobile—global population is forcing a antimicrobial resistance: science for interven- tion. New Microbes New Infect 6: 22-29 1, 2, 3 change in that paradigm. Improvements in high-throughput sequencing, also 2. Shallcross L. J., Howard S. J., Fowler T. and called next-generation sequencing (NGS), allow a holistic approach to managing Davies S. C. (2015) Tackling the threat of anti- microbial resistance: from policy to sustainable microbes in human health.
- 
												  Human Functional Genomics Project Begins Unraveling Links BetweenHuman Functional Genomics Project Begins Unraveling Links Between Genes, Immune Response Jul 28, 2016 | Elizabeth Newbern Premium NEW YORK (GenomeWeb) – Earlier this month, researchers involved in the Human Functional Genomics Project (HFGP) published data on the relationship between genetics and human cytokine response in Nature Medicine. The data was derived from a first cohort, the 200 Functional Genomics project, and the researchers plan to publish more data from this cohort in Nature Medicine in August. In addition, the HFGP just finished collecting patient data from a second cohort made up of 500 healthy individuals from Western Europe and aptly named the 500 Functional Genomics project, late last year. The HFGP researchers also recently finished collecting data from their LifeLines-deep cohort, made up of 1,600 healthy individuals from Western Europe. The researchers are assessing and analyzing the 500 FG and LifeLines-deep data now and hope to publish preliminary results at the end of this year, Mihai Netea, member of the HFGP's scientific advisory board and professor of the Radboud Center for Infectious Diseases (RCI) in the Netherlands, told GenomeWeb. They also finished recruitment and started data collection for their 300 Functional Genomics project, which is a cohort of 300 obese individuals, he added. The human immune system is composed of a complex network of organs, tissues, cells, and molecules and has evolved to both protect the host against infections and to play roles in immune surveillance. However, it has previously been unclear what role genetics plays in influencing cytokine responses in health and disease. The HFGP researchers aim to find out more about the role of genetics in immune response by characterizing and better understanding variation in human response through the use of various omics analyses — genomic, transcriptomic, metabolomic, and microbiomic — and in-depth functional phenotyping.
- 
												  High-Throughput Automated Microfluidic Sample Preparation for Accurate Microbial GenomicsHigh-throughput automated microfluidic sample preparation for accurate microbial genomics The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Kim, Soohong et al. “High-Throughput Automated Microfluidic Sample Preparation for Accurate Microbial Genomics.” Nature Communications 8 (2017): 13919. © 2017 Macmillan Publishers Limited As Published http://dx.doi.org/10.1038/ncomms13919 Publisher Nature Publishing Group Version Final published version Citable link http://hdl.handle.net/1721.1/108270 Terms of Use Creative Commons Attribution 4.0 International License Detailed Terms http://creativecommons.org/licenses/by/4.0/ ARTICLE Received 14 Oct 2016 | Accepted 11 Nov 2016 | Published 27 Jan 2017 DOI: 10.1038/ncomms13919 OPEN High-throughput automated microfluidic sample preparation for accurate microbial genomics Soohong Kim1,2, Joachim De Jonghe1,3, Anthony B. Kulesa1,2, David Feldman1,4, Tommi Vatanen1,5, Roby P. Bhattacharyya1,6, Brittany Berdy7, James Gomez1, Jill Nolan1, Slava Epstein7 & Paul C. Blainey1,2 Low-cost shotgun DNA sequencing is transforming the microbial sciences. Sequencing instruments are so effective that sample preparation is now the key limiting factor. Here, we introduce a microfluidic sample preparation platform that integrates the key steps in cells to sequence library sample preparation for up to 96 samples and reduces DNA input requirements 100-fold while maintaining or improving data quality. The general-purpose microarchitecture we demonstrate supports workflows with arbitrary numbers of reaction and clean-up or capture steps. By reducing the sample quantity requirements, we enabled low-input (B10,000 cells) whole-genome shotgun (WGS) sequencing of Mycobacterium tuberculosis and soil micro-colonies with superior results.
- 
												  Microfluidics Coupled Mass Spectrometry for Multi- Omics/Targeted Assays in Translational ResearchMICROFLUIDICS COUPLED MASS SPECTROMETRY FOR MULTI- OMICS/TARGETED ASSAYS IN TRANSLATIONAL RESEARCH PD Rainville1, G Astarita1, JP Murphy1, ID Wilson2, JI Langridge1 1Waters Corporation, Milford, MA; 2Imperial College, London, United Kingdom INTRODUCTION Lipidomics of human plasma RESULTS Translation medicine is an interdisciplinary science that Sample Preparation Human plasma samples were prepared by modified Bligh-Dyer extraction with aims at combining the information taken from bench to Figure 4. BPI of multiple- bedside. In this process molecules are isolated and chloroform : methanol (2:1) with a (4:1) with human plasma. The samples were then centrifuged at 13,000 RCF for 5 min, dried down, reconstituted and omics experiments from identified in discovery and then utilized in the clinical injected onto the LC-MS system. human urine and plasma setting as biomarkers of health and disease to better run consecutively. The develop therapies. It has become recently apparent that LC-MS profiling of biofluids was carried out in repetitive proteomics, metabolomics, lipidomics, and glycomics data A 1 µL injection was made onto the LC-MS system. The sample was eluted order of polar plasma under gradient conditions with aqueous formic acid/acetonitrile (40/60) and combined are necessary to address the challenge of profiling, plasma acetonitrile/isopropanol (10/90) at a flow rate of 3 µL/min. Separation was translational research which places strain on available lipidomics, and urine carried out on an iKey CSH C18 100 Å, 1.7µm, 150 µm x 100 mm controlled 1-4 profiling over a period of sample and instrument utilization . Due to the at 60 °C.
- 
												  IBM Functional Genomics Platform, a Cloud-Based Platform for Studying Microbial Life at ScaleIEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS , VOL. 16, NO. 7, DECEMBER 2019 1 IBM Functional Genomics Platform, A Cloud-Based Platform for Studying Microbial Life at Scale Edward E. Seabolt*, Gowri Nayar*, Harsha Krishnareddy, Akshay Agarwal, Kristen L. Beck, Ignacio Terrizzano, Eser Kandogan, Mark Kunitomi, Mary Roth, Vandana Mukherjee, and James H. Kaufman Abstract—The rapid growth in biological sequence data is revolutionizing our understanding of genotypic diversity and challenging conventional approaches to informatics. With the increasing availability of genomic data, traditional bioinformatic tools require substantial computational time and the creation of ever-larger indices each time a researcher seeks to gain insight from the data. To address these challenges, we pre-computed important relationships between biological entities spanning the Central Dogma of Molecular Biology and captured this information in a relational database. The database can be queried across hundreds of millions of entities and returns results in a fraction of the time required by traditional methods. In this paper, we describe IBM Functional Genomics Platform (formerly known as OMXWare), a comprehensive database relating genotype to phenotype for bacterial life. Continually updated, IBM Functional Genomics Platform today contains data derived from 200,000 curated, self-consistently assembled genomes. The database stores functional data for over 68 million genes, 52 million proteins, and 239 million domains with associated biological activity annotations from Gene Ontology, KEGG, MetaCyc, and Reactome. IBM Functional Genomics Platform maps all of the many-to-many connections between each biological entity including the originating genome, gene, protein, and protein domain. Various microbial studies, from infectious disease to environmental health, can benefit from the rich data and connections.