Bridging the Gap Between Radial Velocity and Direct Imaging

Total Page:16

File Type:pdf, Size:1020Kb

Bridging the Gap Between Radial Velocity and Direct Imaging UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS F´ISICAS Y MATEMATICAS´ DEPARTAMENTO DE ASTRONOM´IA SAFARI: BRIDGING THE GAP BETWEEN RADIAL VELOCITY AND DIRECT IMAGING TESIS PARA OPTAR AL GRADO DE DOCTOR EN CIENCIAS, MENCION´ ASTRONOM´IA BLAKE M PANTOJA PROFESOR GU´IA: JAMES JENKINS MIEMBROS DE LA COMISION:´ JULIEN GIRARD PAULINA LIRA TEILLERY PATRICIO ROJO RUBKE Este trabajo ha sido parcialmente financiado por la beca de doctorado nacional de CONICYT No. 21161783 del a~no2016 SANTIAGO DE CHILE 2019 RESUMEN DE LA MEMORIA PARA OPTAR AL T´ITULO DE DOCTOR EN CIENCIAS, MENCION´ ASTRONOM´IA POR: BLAKE M PANTOJA FECHA: 2019 PROF. GU´IA: JAMES JENKINS SAFARI: BRIDGING THE GAP BETWEEN RADIAL VELOCITY AND DIRECT IMAGING SAFARI: DISMINUYENDO LA BRECHA ENTRE VELOCIDADES RADIALES E IMAGENES´ DIRECTAS El m´etodo de velocidades radiales ha sido muy productivo en la b´usquedade exoplanetas, comen- zando con el descubrimiento de 51 Peg b en 1995 hasta los aproximadamente 800 planetas detec- tados por este m´etodo al d´ıade hoy. Aunque este m´etodo ha sido ´util en muchos descubrimientos, tambi´entiene limitaciones, como la gran cantidad de tiempo necesario para realizar detecciones de compa~neroslejanos a su estrella y la imposibilidad de medir la inclinaci´onde las ´orbitas.As´ı,esta t´ecnicas´olopermite medir la masa m´ınimade un compa~nero.El m´etodo de im´agenesdirectas, por otro lado, es m´assensible a la detecci´onde compa~nerosa distancias mas lejanas de sus estrellas primarias, debido al gran contraste de luminosidad entre compa~nerosde baja masa y sus estrellas. A´uncuando este m´etodo ha producido relativamente pocos descubrimientos, nos da la capacidad de mapear la orbita astrom´etricay medir la inclinaci´on.De esta forma, podemos combinar ambos m´etodos complementarios e investigar el r´egimenmasa-separaci´onentre sus detecciones. Surveys que utilizan la t´ecnicade velocidades radiales, a menudo presentan evidencia de perio- dos largos, en donde es posible que exista un compa~nerolejano que no se ha movido lo suficiente para poder determinar su ´orbitade manera precisa. En estos casos, podemos estudiarlos utilizando im´agenesdirectas. Para investigar el concepto de combinar estos dos m´etodos, utilizamos dichos periodos largos provenientes de surveys que utilizan velocidades radiales para luego observarlos utilizando instrumentos con ´opticaadaptativa (c´amarasy espectr´ografos)como VLT-SPHERE, Magellan AO y VLT-SINFONI. Se comprob´oel funcionamiento de este m´etodo en el descubrim- iento de un compa~neroestelar de tipo M3 a la estrella tipo Sol, rica en metales HD86006 y en el descubrimiento de dos enanas ultra fr´ıasde transici´onM/L orbitando la estrella de tipo M tem- prano que posee un planeta GJ 3634. De esta forma, podemos utilizar espectroscop´ıapara precisar sus caracter´ısticas, y con suficiente movimiento orbital, podemos utilizar astrometr´ıa para esti- mar masas din´amicas. Estos objetos pueden ser usados como referencia para estudiar la relaci´on masa-luminosidad-metalicidad, adem´asde servir como limite para los modelos evolutivos. Para investigar como mejorar el contraste de nuestras im´agenesdirectas, analizamos los efec- tos de dos t´ecnicasde post-procesamiento: im´agenesdiferenciales angulares ("angular differential imaging"; ADI), donde podemos aprovechar la rotaci´ondel campo durante una observaci´onpara hacer una colecci´onde datos referenciales con los que podemos sustraer la observaci´onde ciencia; e im´agenesdiferenciales de referencia ("reference differential imaging"; RDI), donde una similar (pero distinta) PSF puede ser usada como referencia en el objeto de inter´es.Encontramos que RDI produce el mejor resultado a separaciones peque~nasde la estrella. Podemos usar estas t´ecnicasjunto con nuestro survey de im´agenessin detecci´onde compa~neroscomo candidatos para instrumentos de futuros telescopios espaciales y terrestres para buscar peque~nosplanetas en ´orbitas cercanas en estrellas viejas similares al Sol. i ii RESUMEN DE LA MEMORIA PARA OPTAR AL T´ITULO DE DOCTOR EN CIENCIAS, MENCION´ ASTRONOM´IA POR: BLAKE M PANTOJA FECHA: 2019 PROF. GU´IA: JAMES JENKINS SAFARI: BRIDGING THE GAP BETWEEN RADIAL VELOCITY AND DIRECT IMAGING Radial velocities is a very productive method in the search of exoplanets starting with the landmark discovery of 51 Peg b in 1995 to the about 800 planets detected by the method today. Even though it has been advantageous in making many detections, the method has a few limitations as well, namely that extended amounts of time is needed to make detections of companions far from the star and that it is inherently impossible to constrain a compan- ion's inclination, thus limiting the technique to measuring a companion's minimum mass. Direct imaging, on the other hand, is more sensitive to the detection of companions distant from their primary stars, owing to the huge contrast in luminosity between close low-mass companions and their stars. While the method has been responsible for relatively few exo- planet discoveries, it provides the ability to map an astrometric orbit and find an inclination. We can thus combine these complementary methods and study the mass-separation regime between their detections. Radial velocity surveys turn up a number of long-period or linear trends where there is distant companion that has not moved enough for precise constraint of its orbit. As we know there to be a distant companion, we can follow up with imaging to search for it. To further investigate this concept of combining these methods, we used long-period trends as targets from planet-search radial velocity surveys to image with the adaptive optics imagers and spectrographs VLT-SPHERE, Magellan AO, and VLT-SINFONI. This concept is proved to work with the discoveries of an M3 companion to the metal-rich Sun-like star HD 86006 and of two M/L transition ultracool dwarfs orbiting the planet-hosting early M dwarf GJ 3634. Following these detections, we can use spectroscopy to constrain their characteristics, and with enough orbital motion, we can use astrometric measurements to constrain dynamical masses. These objects can be used as benchmarks to study the mass-luminosity-metallicity relation, as well as observational constraints on evolutionary models. To investigate into improving the contrast performance of our direct images, we studied the effects of the two post-processing techniques angular differential imaging (ADI), where the field rotation during an observation can be used to make a reference data set with which to subtract the science observation, and reference differential imaging (RDI), where a similar but separate point spread function can be used as a reference to the science target. We found RDI to provide the best result at short separations from the star. We can use the techniques along with our sample of imaging non-detections as targets for future space-based and ground-based imagers to search for close low-mass planets around old Sun-like stars. iii iv Agradecimientos First of all, I would like to thank my two advisors from Cal´anand ESO, James and Julien, who provided me with their expertise, knowledge, advice, and support. James helped me orient in a totally new country when I started this program while also being patient with my learning a new field of study, and Julien trained me firsthand in a more technical area of astronomy involving instrumentation in an observatory setting. Without them, this thesis and my PhD as a whole would not have been possible. I would also like to thank my committee including Paulina and Pato and I appreciate their taking the time to be a part of this work. I also want to thank my collaborators Arthur, Graeme, Mat´ıas,Ga¨el,Bartek, Mikko, Anne-Marie, Julien, and others. Thank all of you for all the support in my work. Thank you to Dr. Williger and Dr. Morrison for your support in my undergraduate studies. Y grac´ıasa Natalie, Marta, y Gissela por su paciencia en hacer las cosas administrativas. Y grac´ıasSra. Mari por el almuerzo diario. I would like to thank my Mom and Dad. They have each provided me the patience, perseverance, and love of learning that led me to go this far in my studies. Thank you for your support in my whole education, without which I could not have studied astronomy at the doctoral level. I also thank my brothers Corey and Landon and sister Marissa for being there with me while growing up and now. I also thank my aunts, uncles, cousins, grandpa y familia en Per´u.Y muchas gracias a mi abuelita. Es por ella que quer´ıaestudiar en un pa´ıs hispanofono. Being so far away from home, I have had the chance to meet new friends here in Chile as well as keep up with old friends. Thank you to my friends from other countries who also came to Chile including Sudeep, Valentin, Robert, Nina, Armin, Nathen, Carla, Jonathan, Alessandro, and Murat who really made a family away from home for me with unforgetable trips and times spent together. Muchas grac´ıasa mis amigos y compa~nerosde mi generaci´on Mat´ıas (tambi´engracias por la ayuda con este resumen en espa~nol!),Jorge, Juan, Seba, Grecco y Juanpi por su apoyo en mi primer a~no y el resto de mi doctorado y paciencia con mi espa~nolmalo. <Sin ustedes no ser´ıaposible! Tambi´ena mis otros amigos ac´aen Chile incluyendo Ricardo, Maritza, Paula, Pablo, Tere, Jos´e,Pato, Daniela, Bica, Gabriela, Gus, Seba, Piera, Mia, Alexander y Cambrilo por su consejo y apoyo en un pa´ısextranjero para m´ı. I want to thank my great friends back home who have stuck with me and gave me so much support through this long program away including Tommy, Doug, Dylan, Sadaf, Thomas, and Meena.
Recommended publications
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • Demonstration of Vortex Coronagraph Concepts for On-Axis Telescopes on the Palomar Stellar Double Coronagraph
    Demonstration of vortex coronagraph concepts for on-axis telescopes on the Palomar Stellar Double Coronagraph Dimitri Maweta, Chris Sheltonb, James Wallaceb, Michael Bottomc, Jonas Kuhnb, Bertrand Mennessonb, Rick Burrussb, Randy Bartosb, Laurent Pueyod, Alexis Carlottie, and Eugene Serabynb aEuropean Southern Observatory, Alonso de C´ordova 3107, Vitacura, Casilla 19001, Chile; bJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; cCalifornia Institute of Technology, Pasadena, CA 91106, USA; dSpace Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA; eInstitut de Plan´etologieet d'Astrophysique de Grenoble (IPAG), University Joseph Fourier, CNRS, BP 53, 38041, Grenoble, France; ABSTRACT Here we present preliminary results of the integration of two recently proposed vortex coronagraph (VC) concepts for on-axis telescopes on the Stellar Double Coronagraph (SDC) bench behind PALM-3000, the extreme adaptive optics system of the 200-inch Hale telescope of Palomar observatory. The multi-stage vortex coronagraph (MSVC) uses the ability of the vortex to move light in and out of apertures through multiple VC in series to restore the nominal attenuation capability of the charge 2 vortex regardless of the aperture obscurations. The ring-apodized vortex coronagraph (RAVC) is a one-stage apodizer exploiting the VC Lyot-plane amplitude distribution in order to perfectly null the diffraction from any central obscuration size, and for any vortex topological charge. The RAVC is thus a simple concept that makes the VC immune to diffraction effects of the secondary mirror. It combines a vortex phase mask in the image plane with a single pupil-based amplitude ring apodizer, tailor-made to exploit the unique convolution properties of the VC at the Lyot-stop plane.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
    exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD
    [Show full text]
  • Imaging Young Jupiters Down to the Snowline A
    SPHERE+: Imaging young Jupiters down to the snowline A. Boccaletti, G. Chauvin, D. Mouillet, O. Absil, F. Allard, S. Antoniucci, J.-C. Augereau, P. Barge, A. Baruffolo, J.-L. Baudino, et al. To cite this version: A. Boccaletti, G. Chauvin, D. Mouillet, O. Absil, F. Allard, et al.. SPHERE+: Imaging young Jupiters down to the snowline. 2020. hal-03020449 HAL Id: hal-03020449 https://hal.archives-ouvertes.fr/hal-03020449 Preprint submitted on 13 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. SPHERE+ Imaging young Jupiters down to the snowline White book submitted to ESO, Feb. 2020 A. Boccaletti1, G. Chauvin2, D. Mouillet2, O. Absil3, F. Allard4, S. Antoniucci5, J.-C. Augereau2, P. Barge6, A. Baruffolo7, J.-L. Baudino8, P. Baudoz1, M. Beaulieu9, M. Benisty2, J.-L. Beuzit6, A. Bianco10, B. Biller11, B. Bonavita11, M. Bonnefoy2, S. Bos15, J.-C. Bouret6, W. Brandner12, N. Buchschache13, B. Carry9, F. Cantalloube12, E. Cascone14, A. Carlotti2, B. Charnay1, A. Chiavassa9, E. Choquet6, Y. Clenet´ 1, A. Crida9, J. De Boer15, V. De Caprio14, S. Desidera7, J.-M. Desert16, J.-B. Delisle13, P. Delorme2, K. Dohlen6, D.
    [Show full text]
  • Phase Mask Coronagraphy at JPL and Palomar E
    EPJ Web of Conferences 16, 03004 (2011) DOI: 10.1051/epjconf/20111603004 C Owned by the authors, published by EDP Sciences, 2011 Phase mask coronagraphy at JPL and Palomar E. Serabyna and D. Mawet Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA Abstract. For the imaging of faint companions, phase mask coronagraphy has the dual advantages of a small inner working angle and high throughput. This paper summarizes our recent work in developing phase masks and in demonstrating their capabilities at JPL. Four-quadrant phase masks have been manufactured at JPL by means of both evaporation and etching, and we have been developing liquid crystal vortex phase masks in partnership with a commercial vendor. Both types of mask have been used with our extreme adaptive optics well-corrected subaperture at Palomar to detect known brown dwarf companions as close as ∼ 2.5 /D to stars. Moreover, our recent vortex masks perform very well in laboratory tests, with a demonstrated infrared contrast of about 10−6 at 3 /D, and contrasts of a few 10−7 with an initial optical wavelength device. The demonstrated performance already meets the needs of ground-based extreme adaptive optics coronagraphy, and further planned improvements are aimed at reaching the 10−10 contrast needed for terrestrial exoplanet detection with a space-based coronagraph. 1. INTRODUCTION The detection of very faint planets near much brighter stars calls for the suppression of starlight. Starlight suppression with phase mask coronagraphy has the advantage of employing transparent focal plane masks, which results in small inner working angles, high throughput and a clear off-axis field of view.
    [Show full text]
  • Arxiv:0912.2287V1
    Accepted in ApJ. COPYRIGHT 2010. All rights reserved. A Preprint typeset using LTEX style emulateapj v. 08/22/09 THE VECTOR VORTEX CORONAGRAPH: LABORATORY RESULTS AND FIRST LIGHT AT PALOMAR OBSERVATORY D. Mawet1, E. Serabyn, K. Liewer, R. Burruss Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA J. Hickey Palomar Observatory, California Institute of Technology, P.O. Box 200, Palomar Mountain, CA 92060, USA D. Shemo JDS Uniphase Corporation, 2789 Northpoint Parkway, Santa Rosa, CA 95407, USA, USA Accepted in ApJ. COPYRIGHT 2010. All rights reserved. ABSTRACT High-contrast coronagraphy will be needed to image and characterize faint extra-solar planetary systems. Coronagraphy is a rapidly evolving field, and many enhanced alternatives to the classical Lyot coronagraph have been proposed in the past ten years. Here, we discuss the operation of the vector vortex coronagraph, which is one of the most efficient possible coronagraphs. We first present recent laboratory results, and then first light observations at the Palomar observatory. Our near- infrared H-band (centered at ∼ 1.65µm) and K-band (centered at ∼ 2.2µm) vector vortex devices demonstrated excellent contrast results in the lab, down to ∼ 10−6 at an angular separation of ∼ 3λ/d. On sky, we detected a brown dwarf companion 3000 times fainter than its host star (HR 7672) in the Ks band (centered at ∼ 2.15µm), at an angular separation of ∼ 2.5λ/d. Current and next-generation high-contrast instruments can directly benefit from the demonstrated capabilities of such a vector vortex: simplicity, small inner working angle, high optical throughput (> 90%), and maximal off-axis discovery space.
    [Show full text]
  • Review of Small-Angle Coronagraphic Techniques in the Wake of Ground-Based Second-Generation Adaptive Optics Systems
    Invited Paper Review of small-angle coronagraphic techniques in the wake of ground-based second-generation adaptive optics systems Dimitri Maweta,b, Laurent Pueyoc, Peter Lawsonb, Laurent Mugnierd, Wesley Traubb, Anthony Boccalettie, John Traugerb, Szymon Gladyszf, Eugene Serabynb, Julien Millia,g, Ruslan Belikovh, Markus Kasperi, Pierre Baudoze, Bruce Macintoshj, Christian Maroisk, Ben Oppenheimerl, Harrisson Barrettm, Jean-Luc Beuzitg, Nicolas Devaneyn, Julien Girarda, Olivier Guyono, John Kristb, Bertrand Mennessonb, David Mouilletg, Naoshi Murakamip, Lisa Poyneerj, Dmitri Savranskyj, Christophe V´erinaudg, and James K. Wallaceb aEuropean Southern Observatory, Alonso de C´ordova 3107, Vitacura, Casilla 19001, Chile; bJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; cJHU Department of Physics and Astronomy, 3400 N. Charles St, Baltimore, MD 21218, USA; dONERA, Division Optique Theorique et Appliqu´ee, BP 72, 92322 Chatillon Cedex, France; eLESIA, Observatoire de Paris, CNRS, 5 place Jules Janssen, 92195 Meudon, France; fFraunhofer Institute, Gutleuthausstrasse 1, 76275 Ettlingen, Germany; gIPAG, 414 rue de la Piscine, Domaine Univ., BP 53, 38041 Grenoble Cedex 09, France; hNASA Ames Research Center, Moffett Field, CA 94035, USA; iEuropean Southern Observatory, Karl-Schwarzschild-Straße 2, 85748 Garching, Germany; jLawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550, USA; kNRC, Herzberg Institute of Astrophysics, Victoria, BC V9E 2E7, Canada; lAmerican Museum of Natural History,
    [Show full text]
  • Coronagraphic Imaging of Debris Disks from a High Altitude Balloon Platform
    Coronagraphic Imaging of Debris Disks From a High Altitude Balloon Platform Stephen Unwin >", Wesley 'Traub", Geoffrey Bryden", Paul Brugarolasa , Pin Chen", Olivier Guyonb, Lynne Hillenbrandc, John Krist", Bruce ~facintoshd , Dimitri 1Ifawete, Bertrand Mennesson", Dwight Moody", Lewis C. Roberts Jr.", Karl Stapelfeldt!, David Stuchlik9, John 'Traugera , and Gautam Vasisht" "Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 bNational Observatory of Japan, 650 N. A'ohoku Place, Hilo, HI 96720 cCalifornia Institute of Technology, Pasadena, CA 91125 dLawrence Livermore National Laboratory, Livermore, CA 94550 eEuropean Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago de Chile 19, Chile fNASA Goddard Space Flight Center, Greenbelt, MD 20771 9NASA Wallops Flight Facility, Wallops Island, VA 23337 ABSTRACT Debris disks around nearby stars are tracers of the planet formation process, and they are a key element of our understanding of the, formation and evolution of extrasolar planeta.ry systems. With multi-color images of a. significant number of disks, we can probe important questions: ca.'1. we learn about planetary system evolution; whflt materials are the disks made of; and can they reveal the presence of planets? :Most disks are known to exist only through their infrared flux excesses as measured by the Spitzer Space Telescope, and through images mesaured by Herschel. The brightest, most exte::tded disks have been imaged with HST, and a few, such as Fomalhaut, can be observed using ground-based telescopes. But the number of good images is still very small, and there are none of disks with densitips as low as the disk associated with the asteroid belt and Edgeworth­ Kuiper belt in our own Solar System.
    [Show full text]
  • Research Paper
    Astronomy & Astrophysics manuscript no. hip65426_shine_revised_shortcorr c ESO 2017 July 6, 2017 Discovery of a warm, dusty giant planet around HIP 65426 ? G. Chauvin1; 2, S. Desidera3, A.-M. Lagrange1, A. Vigan4, R. Gratton3, M. Langlois4; 5, M. Bonnefoy1, J.-L. Beuzit1, M. Feldt6, D. Mouillet1, M. Meyer7; 8, A. Cheetham9, B. Biller6; 10, A. Boccaletti11, V. D’Orazi3, R. Galicher11, J. Hagelberg1, A.-L. Maire6, D. Mesa3, J. Olofsson6; 12, M. Samland6, T.O.B. Schmidt11, E. Sissa3, M. Bonavita3; 10, B. Charnay11, M. Cudel1, S. Daemgen7, P. Delorme1, P. Janin-Potiron13, M. Janson6; 14, M. Keppler6, H. Le Coroller4, R. Ligi4, G.D. Marleau6; 15, S. Messina3; 16, P. Mollière6, C. Mordasini6; 15, A. Müller6, S. Peretti9, C. Perrot11, L. Rodet1, D. Rouan11, A. Zurlo3; 17, C. Dominik18, T. Henning6, F. Menard1, H.-M. Schmid7, M. Turatto3, S. Udry9, F. Vakili13, L. Abe13, J. Antichi19, A. Baruffolo3, P. Baudoz11, J. Baudrand11, P. Blanchard4, A. Bazzon7, T. Buey11, M. Carbillet13, M. Carle4, J. Charton1, E. Cascone20, R. Claudi3, A. Costille4, A. Deboulbe1, V. De Caprio20, K. Dohlen4, D. Fantinel3, P. Feautrier1, T. Fusco21, P. Gigan11, E. Giro3, D. Gisler7, L. Gluck1, N. Hubin22, E. Hugot4, M. Jaquet4, M. Kasper22, F. Madec4, Y. Magnard,1, P. Martinez13, D. Maurel1, D. Le Mignant4, O. Möller-Nilsson6, M. Llored4, T. Moulin1, A. Origné4, A. Pavlov6, D. Perret11, C. Petit21, J. Pragt23, P. Puget1, P. Rabou1, J. Ramos6, R. Rigal18, S. Rochat1, R. Roelfsema23, G. Rousset11, A. Roux1, B. Salasnich3, J.-F. Sauvage21, A. Sevin11, C. Soenke22, E. Stadler1, M. Suarez19, L. Weber9, F.
    [Show full text]
  • Arxiv:2009.04483V2 [Astro-Ph.EP] 19 Nov 2020 2015), but the Direct Detection of These Potential Protoplanets Re- Data
    Astronomy & Astrophysics manuscript no. main ©ESO 2020 November 20, 2020 MIRACLES: atmospheric characterization of directly imaged planets and substellar companions at 4–5 µm? II. Constraints on the mass and radius of the enshrouded planet PDS 70 b T. Stolker1, G.-D. Marleau2; 3; 4, G. Cugno1, P. Mollière4, S. P. Quanz1, K. O. Todorov5, and J. Kühn3 1 Institute for Particle Physics and Astrophysics, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland e-mail: [email protected] 2 Institut für Astronomie und Astrophysik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany 3 Physikalisches Institut, Universität Bern, Gesellschaftsstrasse 6, 3012 Bern, Switzerland 4 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany 5 Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1090 GE Amsterdam, The Netherlands Received ?; accepted ? ABSTRACT The circumstellar disk of PDS 70 hosts two forming planets, which are actively accreting gas from their environment. The physical and chemical characteristics of these planets remain ambiguous due to their unusual spectral appearance compared to more evolved objects. In this work, we report the first detection of PDS 70 b in the Brα and M0 filters with VLT/NACO, a tentative detection of PDS 70 c in Brα, and a reanalysis of archival NACO L0 and SPHERE H23 and K12 imaging data. The near side of the disk is also resolved with the Brα and M0 filters, indicating that scattered light is non-negligible at these wavelengths. The spectral energy distribution (SED) of PDS 70 b is well described by blackbody emission, for which we constrain the photospheric temperature and photospheric radius to Teff = 1193 ± 20 K and R = 3:0 ± 0:2 RJ.
    [Show full text]
  • Survival of Exomoons Around Exoplanets 2
    Survival of exomoons around exoplanets V. Dobos1,2,3, S. Charnoz4,A.Pal´ 2, A. Roque-Bernard4 and Gy. M. Szabo´ 3,5 1 Kapteyn Astronomical Institute, University of Groningen, 9747 AD, Landleven 12, Groningen, The Netherlands 2 Konkoly Thege Mikl´os Astronomical Institute, Research Centre for Astronomy and Earth Sciences, E¨otv¨os Lor´and Research Network (ELKH), 1121, Konkoly Thege Mikl´os ´ut 15-17, Budapest, Hungary 3 MTA-ELTE Exoplanet Research Group, 9700, Szent Imre h. u. 112, Szombathely, Hungary 4 Universit´ede Paris, Institut de Physique du Globe de Paris, CNRS, F-75005 Paris, France 5 ELTE E¨otv¨os Lor´and University, Gothard Astrophysical Observatory, Szombathely, Szent Imre h. u. 112, Hungary E-mail: [email protected] January 2020 Abstract. Despite numerous attempts, no exomoon has firmly been confirmed to date. New missions like CHEOPS aim to characterize previously detected exoplanets, and potentially to discover exomoons. In order to optimize search strategies, we need to determine those planets which are the most likely to host moons. We investigate the tidal evolution of hypothetical moon orbits in systems consisting of a star, one planet and one test moon. We study a few specific cases with ten billion years integration time where the evolution of moon orbits follows one of these three scenarios: (1) “locking”, in which the moon has a stable orbit on a long time scale (& 109 years); (2) “escape scenario” where the moon leaves the planet’s gravitational domain; and (3) “disruption scenario”, in which the moon migrates inwards until it reaches the Roche lobe and becomes disrupted by strong tidal forces.
    [Show full text]
  • Instruments on Large Optical Telescopes--A Case Study
    Submitted to PASP Preprint typeset using LATEX style emulateapj v. 5/2/11 INSTRUMENTS ON LARGE OPTICAL TELESCOPES { A CASE STUDY S. R. Kulkarni Caltech Optical Observatories 249-17 California Institute of Technology, Pasadena, CA 91108 (Dated: June 29, 2016) Submitted to PASP ABSTRACT In the distant past, telescopes were known, first and foremost, for the sizes of their apertures. However, the astronomical output of a telescope is determined by both the size of the aperture as well as the capabilities of the attached instruments. Advances in technology (not merely those related to astronomical detectors) are now enabling astronomers to build extremely powerful instruments to the extent that instruments have now achieved importance comparable or even exceeding the usual importance accorded to the apertures of the telescopes. However, the cost of successive generations of instruments has risen at a rate noticeably above that of the rate of inflation. Indeed, the cost of instruments, when spread over their prime lifetime, can be a significant expense for observatories. Here, given the vast sums of money now being expended on optical telescopes and their instrumentation, I argue that astronomers must undertake \cost-benefit" analysis for future planning. I use the scientific output of the first two decades of the W. M. Keck Observatory as a laboratory for this purpose. I find, in the absence of upgrades, that the time to reach peak paper production for an instrument is about six years. The prime lifetime of instruments (sans upgrades), as measured by citations returns, is about a decade. Well thought out and timely upgrades increase and sometimes even double the useful lifetime.
    [Show full text]