Notes on Plated Dinosaurs (Ornithischia: Stegosauria), Mostly

Total Page:16

File Type:pdf, Size:1020Kb

Notes on Plated Dinosaurs (Ornithischia: Stegosauria), Mostly N. Jb. Geol. Paläont. Abh. 282/1 (2016), 1–25 Article Stuttgart, October 2016 Notes on plated dinosaurs (Ornithischia: Stegosauria), mostly on der- mal armor from Middle and Upper Jurassic of England (also France, Iberia), with a revised diagnosis for Loricatosaurus priscus (Callovian, England) Peter M. Galton With 7 figures Abstract: In basal thyreophorans there is no equivalent to the small based slender dermal tail spines of stegosaurs, which differ in several respects from the lateral dorsal spines of nodosaurid ankylosaurs, and large based stocky spikes are restricted to a few genera of stegosaurs. Several isolated spines and spikes from England (Middle and Upper Jurassic), Portugal (Upper Jurassic) and Spain (Lower Cretaceous), previously re-identified as Thyreophora indet., are Stegosauria indet. Where available, cross-sections shows a thick layer of compact bone with a well-defined central canal as in old adult individuals of Stegosaurus (Upper Jurassic, USA) in which, in addition to display, they functioned as weapons. This stronger construction also favored their preservation as isolated bones. It contrasts with a thin layer of compact bone filled with cancellous bone for the spines of adult and younger individuals of Stegosaurus and of ankylosaurs. The preservation of an isolated pair of spines and of spikes indicates that their bases were bound together. Two columnar femora with a finger-like anterior trochanter from England (Middle and Upper Jurassic) are also re-identified as Stegosauria indet., as are the remains of a juvenile individual from Portugal (Upper Jurassic). The autapomorphies of Lori- catosaurus priscus (NOPCSA, 1911) (England, Middle Jurassic: Middle Callovian) include characters observed in the anterior and mid-caudal vertebrae, posterior pubic process and dermal armor (spine plate, small based body spine). Key words: Stegosauria, Ankylosauria, Loricatosaurus, Jurassic, Cretaceous, England, France, Iberia, USA, anatomy. 1. Introduction Sauropelta (western USA), and Hylaeosaurus (Eng- land) “taper at both ends, the proximal taper producing Stegosauria is a clade of quadrupedal, graviportal, her- a blunt, slightly rounded end” and “are almost indistin- bivorous ornithischian dinosaurs with a bizarre array guishable from stegosaur caudal spines.” MAIDMENT et of dermal plates and spines arranged in two parasagit- al. (2008) noted that, because isolated elongate dermal tal rows extending along the top of the body (GALTON tail spines previously regarded as stegosaurian cannot & UPCHURCH 2004; MAIDMENT et al. 2008; MAIDMENT be distinguished from the lateral shoulder spines of 2010; PAUL 2010; GALTON 2012). BURNS & CURRIE (2014: some ankylosaurs, especially a proximally incomplete 835) cite COOMBS (1971: 314) that some lateral shoulder spine of Sauropelta, they are re-identified as Thyreo- spines of Early Cretaceous ankylosaurs, as found in phora indet. ©2016 E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, Germany www.schweizerbart.de DOI: 10.1127/njgpa/2016/0603 0077-7749/2016/0603 $ 6.25.
Recommended publications
  • Two New Stegosaur Specimens from the Upper Jurassic Morrison Formation of Montana, USA
    Editors' choice Two new stegosaur specimens from the Upper Jurassic Morrison Formation of Montana, USA D. CARY WOODRUFF, DAVID TREXLER, and SUSANNAH C.R. MAIDMENT Woodruff, D.C., Trexler, D., and Maidment, S.C.R. 2019. Two new stegosaur specimens from the Upper Jurassic Morrison Formation of Montana, USA. Acta Palaeontologica Polonica 64 (3): 461–480. Two partial skeletons from Montana represent the northernmost occurrences of Stegosauria within North America. One of these specimens represents the northernmost dinosaur fossil ever recovered from the Morrison Formation. Consisting of fragmentary cranial and postcranial remains, these specimens are contributing to our knowledge of the record and distribution of dinosaurs within the Morrison Formation from Montana. While the stegosaurs of the Morrison Formation consist of Alcovasaurus, Hesperosaurus, and Stegosaurus, the only positively identified stegosaur from Montana thus far is Hesperosaurus. Unfortunately, neither of these new specimens exhibit diagnostic autapomorphies. Nonetheless, these specimens are important data points due to their geographic significance, and some aspects of their morphologies are striking. In one specimen, the teeth express a high degree of wear usually unobserved within this clade—potentially illuminating the progression of the chewing motion in derived stegosaurs. Other morphologies, though not histologically examined in this analysis, have the potential to be important indicators for maturational inferences. In suite with other specimens from the northern extent of the formation, these specimens contribute to the ongoing discussion that body size may be latitudinally significant for stegosaurs—an intriguing geographical hypothesis which further emphasizes that size is not an undeviating proxy for maturity in dinosaurs. Key words: Dinosauria, Thyreophora, Stegosauria, Jurassic, Morrison Formation, USA, Montana.
    [Show full text]
  • By Howard Zimmerman
    by Howard Zimmerman DINO_COVERS.indd 4 4/24/08 11:58:35 AM [Intentionally Left Blank] by Howard Zimmerman Consultant: Luis M. Chiappe, Ph.D. Director of the Dinosaur Institute Natural History Museum of Los Angeles County 1629_ArmoredandDangerous_FNL.ind1 1 4/11/08 11:11:17 AM Credits Title Page, © Luis Rey; TOC, © De Agostini Picture Library/Getty Images; 4-5, © John Bindon; 6, © De Agostini Picture Library/The Natural History Museum, London; 7, © Luis Rey; 8, © Luis Rey; 9, © Adam Stuart Smith; 10T, © Luis Rey; 10B, © Colin Keates/Dorling Kindersly; 11, © Phil Wilson; 12L, Courtesy of the Royal Tyrrell Museum, Drumheller, Alberta; 12R, © De Agostini Picture Library/Getty Images; 13, © Phil Wilson; 14-15, © Phil Wilson; 16-17, © De Agostini Picture Library/The Natural History Museum, London; 18T, © 2007 by Karen Carr and Karen Carr Studio; 18B, © photomandan/istockphoto; 19, © Luis Rey; 20, © De Agostini Picture Library/The Natural History Museum, London; 21, © John Bindon; 23TL, © Phil Wilson; 23TR, © Luis Rey; 23BL, © Vladimir Sazonov/Shutterstock; 23BR, © Luis Rey. Publisher: Kenn Goin Editorial Director: Adam Siegel Creative Director: Spencer Brinker Design: Dawn Beard Creative Cover Illustration: Luis Rey Photo Researcher: Omni-Photo Communications, Inc. Library of Congress Cataloging-in-Publication Data Zimmerman, Howard. Armored and dangerous / by Howard Zimmerman. p. cm. — (Dino times trivia) Includes bibliographical references and index. ISBN-13: 978-1-59716-712-3 (library binding) ISBN-10: 1-59716-712-6 (library binding) 1. Ornithischia—Juvenile literature. 2. Dinosaurs—Juvenile literature. I. Title. QE862.O65Z56 2009 567.915—dc22 2008006171 Copyright © 2009 Bearport Publishing Company, Inc. All rights reserved.
    [Show full text]
  • The Systematic Position of the Enigmatic Thyreophoran Dinosaur Paranthodon Africanus, and the Use of Basal Exemplifiers in Phyl
    1 The systematic position of the enigmatic thyreophoran dinosaur Paranthodon africanus, 2 and the use of basal exemplifiers in phylogenetic analysis 3 4 Thomas J. Raven1,2 ,3 and Susannah C. R. Maidment2 ,3 5 61Department of Earth Science & Engineering, Imperial College London, UK 72School of Environment & Technology, University of Brighton, UK 8 3Department of Earth Sciences, Natural History Museum, London, UK 9 10Corresponding author: Thomas J. Raven 11 12Email address: [email protected] 13 14 15 16 17 18 19 20 21ABSTRACT 22 23The first African dinosaur to be discovered, Paranthodon africanus was found in 1845 in the 24Lower Cretaceous of South Africa. Taxonomically assigned to numerous groups since discovery, 25in 1981 it was described as a stegosaur, a group of armoured ornithischian dinosaurs 26characterised by bizarre plates and spines extending from the neck to the tail. This assignment 27that has been subsequently accepted. The type material consists of a premaxilla, maxilla, a nasal, 28and a vertebra, and contains no synapomorphies of Stegosauria. Several features of the maxilla 29and dentition are reminiscent of Ankylosauria, the sister-taxon to Stegosauria, and the premaxilla 30appears superficially similar to that of some ornithopods. The vertebral material has never been 31described, and since the last description of the specimen, there have been numerous discoveries 32of thyreophoran material potentially pertinent to establishing the taxonomic assignment of the 33specimen. An investigation of the taxonomic and systematic position of Paranthodon is therefore 34warranted. This study provides a detailed re-description, including the first description of the 35vertebra. Numerous phylogenetic analyses demonstrate that the systematic position of 36Paranthodon is highly labile and subject to change depending on which exemplifier for the clade 37Stegosauria is used.
    [Show full text]
  • Ankylosaurid Dinosaur Tail Clubs Evolved Through Stepwise Acquisition of Key Features
    1 Title: Ankylosaurid dinosaur tail clubs evolved through stepwise acquisition of key features. 2 3 Victoria M. Arbour1,2,3 and Philip J. Currie3 4 1Paleontology and Geology Research Laboratory, North Carolina Museum of Natural Sciences, Raleigh, 5 North Carolina 27601, USA; 2Department of Biological Sciences, North Carolina State University, Raleigh, 6 North Carolina, 27607, USA; 3Department of Biological Sciences, University of Alberta, Edmonton, 7 Alberta, T6G 2E9, Canada; [email protected] 8 Corresponding author: V. Arbour 9 10 Running title: ANKYLOSAURID TAIL CLUB STEPWISE EVOLUTION 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 25 ABSTRACT 26 Ankylosaurid ankylosaurs were quadrupedal, herbivorous dinosaurs with abundant dermal 27 ossifications. They are best known for their distinctive tail club composed of stiff, interlocking vertebrae 28 (the handle) and large, bulbous osteoderms (the knob), which may have been used as a weapon. 29 However, tail clubs appear relatively late in the evolution of ankylosaurids, and seemed to have been 30 present only in a derived clade of ankylosaurids during the last 20 million years of the Mesozoic Era. 31 New evidence from mid Cretaceous fossils from China suggests that the evolution of the tail club 32 occurred at least 40 million years earlier, and in a stepwise manner, with early ankylosaurids evolving 33 handle-like vertebrae before the distal osteoderms enlarged and coossified to form a knob. 34 35 Keywords: Dinosauria, Ankylosauria, Ankylosauridae, Cretaceous 36 37 38 39 40 41 42 43 44 45 46 47 48 2 49 INTRODUCTION 50 Tail weaponry, in the form of spikes or clubs, is an uncommon adaptation among tetrapods.
    [Show full text]
  • A Reassessment of the Purported Ankylosaurian Dinosaur Bienosaurus Lufengensis from the Lower Lufeng Formation of Yunnan, China
    A reassessment of the purported ankylosaurian dinosaur Bienosaurus lufengensis from the Lower Lufeng Formation of Yunnan, China THOMAS J. RAVEN, PAUL M. BARRETT, XING XU, and SUSANNAH C.R. MAIDMENT Raven, T.J., Barrett, P.M., Xu, X., and Maidment, S.C.R. 2019. A reassessment of the purported ankylosaurian dinosaur Bienosaurus lufengensis from the Lower Lufeng Formation of Yunnan, China. Acta Palaeontologica Polonica 64 (2): 335–342. The earliest definitive ornithischian dinosaurs are from the Early Jurassic and are rare components of early dinosaur faunas. The Lower Lufeng Formation (Hettangian–Sinemurian) of Yunnan Province, China, has yielded a diverse Early Jurassic terrestrial vertebrate fauna. This includes several incomplete specimens have been referred to Ornithischia, including the type specimen of the thyreophoran “Tatisaurus” and other generically indeterminate material. The highly fragmentary Lufeng ornithischian Bienosaurus lufengensis was described briefly in 2001 and identified as an ankylo- saurian dinosaur. Recent studies have cast doubt on this hypothesis, however, and given that the referral of Bienosaurus to Ankylosauria would result in an extensive ghost-lineage extending between it and the first definitive eurypodans (ankylosaurs + stegosaurs) in the Middle Jurassic, the holotype specimen is re-examined and re-described. We identify Bienosaurus as a probable thyreophoran dinosaur, although the fragmentary nature of the material and the absence of autapomorphies means that the specimen should be regarded as a nomen dubium. Key words: Dinosauria, Ornithischia, Thyreophora, anatomy, Jurassic, Lufeng Formation, Yunnan, China. Thomas J. Raven [[email protected]], Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK; School of Environment and Technology, University of Brighton, Lewes Road, Brighton BN1 4JG, UK.
    [Show full text]
  • Dinosauria: Ornithischia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the Academy's Library Diversity and convergences in the evolution of feeding adaptations in ankylosaurs Törölt: Diversity of feeding characters explains evolutionary success of ankylosaurs (Dinosauria: Ornithischia)¶ (Dinosauria: Ornithischia) Formázott: Betűtípus: Félkövér Formázott: Betűtípus: Félkövér Formázott: Betűtípus: Félkövér Attila Ősi1, 2*, Edina Prondvai2, 3, Jordan Mallon4, Emese Réka Bodor5 Formázott: Betűtípus: Félkövér 1Department of Paleontology, Eötvös University, Budapest, Pázmány Péter sétány 1/c, 1117, Hungary; +36 30 374 87 63; [email protected] 2MTA-ELTE Lendület Dinosaur Research Group, Budapest, Pázmány Péter sétány 1/c, 1117, Hungary; +36 70 945 51 91; [email protected] 3University of Gent, Evolutionary Morphology of Vertebrates Research Group, K.L. Ledegankstraat 35, Gent, Belgium; +32 471 990733; [email protected] 4Palaeobiology, Canadian Museum of Nature, PO Box 3443, Station D, Ottawa, Ontario, K1P 6P4, Canada; +1 613 364 4094; [email protected] 5Geological and Geophysical Institute of Hungary, Budapest, Stefánia út 14, 1143, Hungary; +36 70 948 0248; [email protected] Research was conducted at the Eötvös Loránd University, Budapest, Hungary. *Corresponding author: Attila Ősi, [email protected] Acknowledgements This work was supported by the MTA–ELTE Lendület Programme (Grant No. LP 95102), OTKA (Grant No. T 38045, PD 73021, NF 84193, K 116665), National Geographic Society (Grant No. 7228–02, 7508–03), Bakonyi Bauxitbánya Ltd, Geovolán Ltd, Hungarian Natural History Museum, Hungarian Academy of Sciences, Canadian Museum of Nature, The Jurassic Foundation, Hantken Miksa Foundation, Eötvös Loránd University. Disclosure statment: All authors declare that there is no financial interest or benefit arising from the direct application of this research.
    [Show full text]
  • Fat Ankylosaurs- Reali Y, Really Fai' Ankylosaurs
    Ii... THE DINOSAUR REPORT SPRING 1995 GREGORY S. PAUL'S DINOART NOTES FAT ANKYLOSAURS- REALI Y, REALLY FAI' ANKYLOSAURS nkylosaurs have been among the most until it was carried horizontally-there are no tail drag difficult subjects for the paleoartist, They are marks. Nodosaurid tails were fairly supple along their A rare, and complete skeletons with armor in place entire length. The last half of ankylosaurid tails were are especially so. Their species identity and relationships rigidly braced and inflexible. This helped carry the tail are confusing, hindering attempts to combine partial club, which was porous and not as heavy as the skeletons co make a whole animal. Finally, the structure mineralized fossil looks. of ankylosaur skeletons is most peculiar, making it hard co figure out how they go cogether. Many past The result is a.flat-topped body that one could almost restorations have been rather formless, sprawling legged have lunch on. In front view the appearance can only be caricatures with inaccurate armor. More modern efforts called ludicrous. There is nothing similar alive today. have placed the armor more correctly, and have brought One ankylosaur that does not share this construction is the legs under the body so that they could walk our the Asian Talarurus, which has a rounder, more hippo-like narrow gauge trackways assigned to ankylosaurs. body. The enormous belly contained a great fermenting digestive vat that broke down food little processed by a The many problems caused me to avoid attempting to weak dentition. The limbs of ankylosaurs are longer rescore ankylosaur skeletons until recently.
    [Show full text]
  • Remains from Jurassic-Cretaceous Transition Beds of Valencia Province (Southwestern Iberian Range, Spain)
    ISSN (print): 1698-6180. ISSN (online): 1886-7995 www.ucm.es/info/estratig/journal.htm Journal of Iberian Geology 36 (2) 2010: 243-252 doi:10.5209/rev_JIGE.2010.v36.n2.10 New stegosaurian (Ornithischia, Thyreophora) remains from Jurassic-Cretaceous transition beds of Valencia province (Southwestern Iberian Range, Spain). Nuevos restos de estegosaurios (Ornithischia, Thyreophora) del tránsito Jurásico-Cretácico de la provincia de Valencia (Cordillera Ibérica Suroccidental, España) J. Company1, X. Pereda Suberbiola2, J.I. Ruiz-Omeñaca3,4 1Departamento de Ingeniería del Terreno, Universidad Politécnica de Valencia, 46022 Valencia, Spain. [email protected] 2Universidad del País Vasco/Euskal Herriko Unibertsitatea, Facultad de Ciencia y Tecnología, Departamento de Estratigrafía y Paleontología, Apartado 644, 48080 Bilbao, Spain. [email protected] 3Museo del Jurásico de Asturias (MUJA), 33328 Colunga, Spain 4Grupo Aragosaurus-IUCA (www.aragosaurus.com), Area de Paleontología, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain. [email protected] Received: 20/11/09 / Accepted: 30/06/10 Abstract New stegosaurian remains have been recently recovered from the Jurassic-Cretaceous transition sandstones of the Villar del Arzobispo Formation (Tithonian-Berriasian) in the Valencia province, eastern Spain. Specimens consist of two partially articulated (or closely associated) postcranial skeletons. The Baldovar specimen is composed of appendicular bones (scapula, femur) and two pairs of dermal tail spines, two of them articulated with two distal caudal vertebrae. The second specimen, unearthed in the vicinity of La Yesa village, consists of dorsal vertebrae and ribs, fragments of caudal centra and an incomplete femur. The new specimens are tentatively referred to the clade Dacentrurinae and may belong to Dacentrurus on the basis of features observed on the dorsal vertebrae and caudal dermal spines.
    [Show full text]
  • Stegosaurus Chirality R
    Stegosaurus chirality R. P. Cameron1,*, J. A. Cameron1, and S. M. Barnett1 1School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom. *[email protected] Introduction Most living things appear rather symmetrical: the external human form, for example, has a plane of mirror symmetry to good approximation. Snails, flounders, narwhals, crossbills, fiddler crabs and twining vines are members of the short but fascinating list of living things known instead to defy mirror symmetry by exhibiting exterior chirality1. The study of this symmetry breaking lies at the cutting edge of developmental and evolutionary biology2,3. We have recently extended the aforementioned list4 by adding one of the most recognisable genera of dinosaurs: Stegosaurus5. Here we summarise our research to date into Stegosaurus chirality. Figure 1. The arrangement of Stegosaurus's plates differs from its mirror image and is therefore chiral1, as highlighted here for the largest plate in particular of the Stegosaurus stenops holotype USNM 4939: this specimen was of the (R) rather than the (L) form. Adapted from 8. The currently favoured arrangement of Stegosaurus's plates was put forward by Lucas6-8 and sees them mounted in two staggered rows along the animal’s back. There are, in fact, two conceivable forms consistent with this basic description: if the largest plate in particular tilts to the right we have an (R) Stegosaurus, if it tilts to the left we have an (L) Stegosaurus instead4. That Stegosaurus exhibited exterior chirality is beyond reasonable doubt: many of the plates are manifestly chiral by themselves and no two plates of the same size and shape have been found for an individual8-10.
    [Show full text]
  • Reconsidering the Status and Affinities of the Ornithischian Dinosaur Tatisaurus Oehleri Simmons, 1965
    Blackwell Publishing LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082© 2007 The Linnean Society of London? 2007 View metadata, citation and similar papers at core.ac.uk 150? brought to you by CORE 865874 Original Article provided by ESC Publications - Cambridge Univesity TATISAURUS RECONSIDEREDD. B. NORMAN Et al. Zoological Journal of the Linnean Society, 2007, 150, 865–874. With 2 figures Reconsidering the status and affinities of the ornithischian dinosaur Tatisaurus oehleri Simmons, 1965 DAVID B. NORMAN1*, RICHARD J. BUTLER1,2 and SUSANNAH C. R. MAIDMENT1 1Sedgwick Museum, Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK 2Department of Palaeontology, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK Received April 2006; accepted for publication December 2006 The early Mesozoic fossil fauna collected from the Lower Lufeng Formation of Yunnan Province, China, has attracted considerable interest and attention since its discovery in the late 1930s. Its importance reflected a combination of its comparatively remote geographical position and, more particularly, the similarities of its fauna compared with approximately contemporary discoveries from Europe, North and South America, and southern Africa. The frag- mentary and poorly preserved Lufeng ornithischian dinosaur Tatisaurus oehleri was described in 1965 and proved taxonomically and systematically enigmatic from the start. Originally assigned, with some noted ambivalence, to the basal (‘primitive’) group of ornithischians known as hypsilophodontids, since 1965 Tatisaurus has been variously ignored, assigned to a more rigorously defined Hypsilophodontidae, referred to both of the armoured (thyreophoran) ornithischian dinosaur clades (Stegosauria and Ankylosauria), or referred to a more basal position within the thyreophoran lineage.
    [Show full text]
  • A New Phylogeny of Stegosauria (Dinosauria, Ornithischia)
    Raven, T. J. and Maidment, S. C. R. In press. Palaeontology A new phylogeny of Stegosauria (Dinosauria, Ornithischia) THOMAS J. RAVEN1 AND SUSANNAH C. R. MAIDMENT2* 1Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom, [email protected]; 2School of Environment and Technology, University of Brighton, Lewes Road, Brighton BN2 4GJ, United Kingdom, [email protected] * Corresponding author 1 Raven, T. J. and Maidment, S. C. R. In press. Palaeontology ABSTRACT The stegosaurs are some of the most easily recognisable dinosaurs, but they are surprisingly rare as fossils. Consequently much remains unknown about their palaeobiology, and every new stegosaurian find contributes to understanding the evolution of the clade. Since the last attempt to examine the evolutionary relationships of Stegosauria, new specimens have come to light, including the most complete individual of Stegosaurus ever found, new taxa have been described and, perhaps most importantly, new methods for analysis of cladistic datasets have been produced. In the light of these new data and technological advances, the phylogenetic relationships of the stegosaurs and basal armoured dinosaurs are investigated. The inclusion of continuous data results in much better resolution than was previously obtained, and the resulting single most parsimonious tree supports re-erection of the genera Miragaia and Hesperosaurus, which had previously been synonymized with Dacentrurus and Stegosaurus respectively. The recently described genus Alcovasaurus is resolved as a basal thyreophoran, but this is likely to be due to a combination of a very high degree of missing data and the questionable ontogenetic stage of the specimen.
    [Show full text]
  • Partial Skull and Endocranial Cast of the Ankylosaurian Dinosaur Hungarosaurus from the Late Cretaceous of Hungary: Implications for Locomotion
    Palaeontologia Electronica palaeo-electronica.org Partial skull and endocranial cast of the ankylosaurian dinosaur Hungarosaurus from the Late Cretaceous of Hungary: implications for locomotion Attila Ősi, Xabier Pereda Suberbiola, and Tamás Földes ABSTRACT A partial skull of ankylosaur from the Upper Cretaceous (Santonian) Csehbánya Formation in Iharkút and the endocranial cast taken from it are described. The mor- phology of the exoccipital, the elongated ‘neck’ region of the basioccipital, the shape of the occipital condyle, and the different flexure of the medulla relative to the forebrain unambiguously differentiate this specimen from the basicranium of Struthiosaurus, so it is assigned to Hungarosaurus sp. Whereas the endocranial cast reflects a brain gener- ally similar to those of other ankylosaurs, the dorsally hypertrophied cerebellum (also present is Struthiosaurus transylvanicus) is quite unusual within the group suggesting a more sophisticated cerebral coordination of posture and movement, and perhaps a more cursorial locomotary habit than predicted for other ankylosaurs. Attila Ősi. Hungarian Academy of Sciences – Eötvös Loránd University, Lendület Dinosaur Research Group, Pázmány Péter sétány 1/c, Budapest, 1117, Hungary [email protected] Xabier Pereda Suberbiola. Universidad del País Vasco/Euskal Herriko Unibertsitatea, Facultad de Ciencia y Tecnología, Dpto. Estratigrafía y Paleontología, Apartado 644, 48080 Bilbao, Spain [email protected] Tamás Földes. Institute of Diagnostic Imaging and Radiation Oncology of the University of Kaposvár, Kaposvár, 7400 Guba S. 40, Hungary [email protected] Keywords: Santonian, Iharkút, Ankylosauria, Hungarosaurus, skull, endocranial cast INTRODUCTION gary, which includes disarticulated cranial bones (Ősi, 2005; Ősi and Makádi, 2009), mainly the type Cranial remains of ankylosaurs are among the material of Struthiosaurus, Struthiosaurus austria- rarest fossils from the Late Cretaceous of Europe.
    [Show full text]