Developing with Pojos: Faster and Easier 3 Chapter 2 ■ J2EE Design Decisions 31

Total Page:16

File Type:pdf, Size:1020Kb

Developing with Pojos: Faster and Easier 3 Chapter 2 ■ J2EE Design Decisions 31 FROM OUR PEER REVIEW ... “Chris Richardson targets critical design issues for lightweight Java enterprise applications using POJOs with fantastic in-depth exam- ples. This book extends Martin Fowler’s great book, Enterprise Architecture Patterns, as well as the more recent Domain-Driven Design by Eric Evans, by providing practical design guidance and useful examples. It also addresses the architecture and design issues asso- ciated with Spring and Hibernate development, whereas Man- ning’s companion ‘in Action’ books focus primarily on the Spring and Hibernate technologies. “This is a powerful book for architects, senior developers, and consultants. It uniquely combines best practices and design wisdom to integrate domain-driven design and test-driven development for object-oriented Java enterprise applications using lightweight Spring, Hibernate, and JDO technologies. “The table of contents reflects the important topics that most architects and enterprise developers face every day. There is signifi- cant need for a book like this, which shows how to address many common and complex design issues with real-world examples. The content in this book is unique and not really available elsewhere.” DOUG WARREN Software Architect Countrywide Financial “POJOs in Action fills a void: the need for a practical explanation of the techniques used at various levels for the successful building of J2EE projects. This book can be compared with the less enterprise- oriented and more abstract J2EE Development without EJB by Rod Johnson, but Richardson offers a step-by-step guide to a successful J2EE project. The explanations of the various alternatives available for each step provide the main thrust of this book. Also, the various ‘When to use it’ paragraphs are helpful in making choices. “The ‘lightweight J2EE’ point of view is very under-represented in books and this one is the most didactic J2EE-light book I have read.” OLIVIER JOLLY J2EE Architect Interface SI “POJOs in Action provides good coverage of the current EJB 3.0 and POJO discussions in the developer community. The book is easy to read and has lots of good examples. It provides a complete discus- sion of the subject matter, from the basic data definitions to the implications on the client-side: I haven’t seen another book that takes this approach, so it definitely fills a niche. “The author describes some technologies as being unsuitable for most situations, but sticks to his guns and maintains the philosophy of providing the user with a choice, describing each possible solu- tion in depth, despite previous assertions that a particular solution may be sub-optimal. This reflects the realities in a developer’s world, where we are often forced to use technologies that we might not have chosen ourselves: this support is A Good Thing. “Compared to Martin Fowler’s Enterprise Architecture Patterns, which provides a generalized description of the enterprise, this book attempts to present the solutions to the situations Fowler describes. While much of the information can be found elsewhere, including the websites for the technologies as well as Fowler’s book, the combination of focused information and the explicit samples makes POJOs in Action much more than the sum of its parts. It isn’t merely a duplication of what’s available elsewhere: it carefully explains the technologies with plenty of sample code, in a consistent style.” BRENDAN MURRAY Senior Software Architect IBM POJOs in Action DEVELOPING ENTERPRISE APPLICATIONS WITH LIGHTWEIGHT FRAMEWORKS CHRIS RICHARDSON MANNING Greenwich (74° w. long.) For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact: Special Sales Department Manning Publications Co. 209 Bruce Park Avenue Fax:(203) 661-9018 Greenwich, CT 06830 email: [email protected] ©2006 by Chris Richardson. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps. Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books they publish printed on acid-free paper, and we exert our best efforts to that end. Manning Publications Co.Copyeditor:Liz Welch 209 Bruce Park Avenue Typesetter: Gordan Salinovic Greenwich, CT 06830 Cover designer: Leslie Haimes ISBN 1932394583 Printed in the United States of America 1 2 3 4 5 6 7 8 9 10 – VHG – 10 09 08 07 06 05 To my mum, my dad, and my grandparents Thank you for everything mmmmmmmmmmmmmmmmmmmmmmmmmmm—C. R. brief contents PART 1 OVERVIEW OF POJOS AND LIGHTWEIGHT FFFFFFFFFFFFFFFFRAMEWORKS .............................................1 Chapter 1 ■ Developing with POJOs: faster and easier 3 Chapter 2 ■ J2EE design decisions 31 PART 2 A SIMPLER, FASTER APPROACH................... 59 Chapter 3 ■ Using the Domain Model pattern 61 Chapter 4 ■ Overview of persisting a domain model 95 Chapter 5 ■ Persisting a domain model with JDO 2.0 149 Chapter 6 ■ Persisting a domain model with Hibernate 3 195 Chapter 7 ■ Encapsulating the business logic with a POJO façade 243 PART 3 VARIATIONS ........................................... 287 Chapter 8 ■ Using an exposed domain model 289 Chapter 9 ■ Using the Transaction Script pattern 317 Chapter 10 ■ Implementing POJOs with EJB 3 360 vii viii BRIEF CONTENTS PART 4 DEALING WITH DATABASES AND CCCCCCCCCCCCCONCURRENCY .......................................405 Chapter 11 ■ Implementing dynamic paged queries 407 Chapter 12 ■ Database transactions and concurrency 451 Chapter 13 ■ Using offline locking patterns 488 contents preface xix acknowledgments xxi about this book xxiii about the title xxx about the cover illustration xxxi PART 1 OVERVIEW OF POJOS AND LLLLLLLLLLLIGHTWEIGHT FRAMEWORKS ............................1 Developing with POJOs: faster and easier 3 1 1.1 The disillusionment with EJBs 5 A brief history of EJBs 5 ■ A typical EJB 2 application architecture 6 The problems with EJBs 7 ■ EJB 3 is a step in the right direction 11 1.2 Developing with POJOs 12 Using an object-oriented design 14 ■ Using POJOs 15 ■ Persisting POJOs 16 ■ Eliminating DTOs 18 ■ Making POJOs transactional 19 ■ Configuring applications with Spring 25 Deploying a POJO application 27 ■ POJO design summary 28 1.3 Summary 30 ix x CONTENTS J2EE design decisions 31 2 2.1 Business logic and database access decisions 32 2.2 Decision 1: organizing the business logic 35 Using a procedural design 35 ■ Using an object-oriented design 36 Table Module pattern 37 2.3 Decision 2: encapsulating the business logic 37 EJB session façade 38 ■ POJO façade 39 Exposed Domain Model pattern 40 2.4 Decision 3: accessing the database 41 What’s wrong with using JDBC directly? 41 Using iBATIS 42 ■ Using a persistence framework 43 2.5 Decision 4: handling concurrency in database transactions 44 Isolated database transactions 44 ■ Optimistic locking 45 Pessimistic locking 45 2.6 Decision 5: handling concurrency in long transactions 46 Optimistic Offline Lock pattern 46 Pessimistic Offline Lock pattern 47 2.7 Making design decisions on a project 48 Overview of the example application 48 ■ Making high-level design decisions 51 ■ Making use case–level decisions 53 2.8 Summary 58 PART 2 A SIMPLER, FASTER APPROACH ........................ 59 Using the Domain Model pattern 61 3 3.1 Understanding the Domain Model pattern 62 Where the domain model fits into the overall architecture 63 An example domain model 64 ■ Roles in the domain model 66 3.2 Developing a domain model 68 Identifying classes, attributes, and relationships 69 Adding behavior to the domain model 69 CONTENTS xi 3.3 Implementing a domain model: an example 80 Implementing a domain service method 80 ■ Implementing a domain entity method 87 ■ Summary of the design 92 3.4 Summary 93 Overview of persisting a domain model 95 4 4.1 Mapping an object model to a database 96 Mapping classes 97 ■ Mapping object relationships 99 ■ Mapping inheritance 103 ■ Managing object lifecycles 107 Persistent object identity 107 4.2 Overview of ORM frameworks 108 Why you don’t want to persist objects yourself 109 ■ The key features of an ORM framework 109 ■ Benefits and drawbacks of using an ORM framework 114 4.3 Overview of JDO and Hibernate 117 Declarative mapping between the object model and the schema 117 API for creating, reading, updating, and deleting objects 118 Query language 119 ■ Support for transactions 120 ■ Lazy and eager loading 121 ■ Object caching 121 ■ Detached objects 124 Hibernate vs. JDO 124 4.4 Designing repositories with Spring 125 Implementing JDO and Hibernate repositories 125 ■ Using the Spring ORM classes 126 ■ Making repositories easier to test 129 4.5 Testing a persistent domain model 132 Object/relational testing strategies 133 ■ Testing against the database 135 ■ Testing without the database 138 Overview of ORMUnit 140 4.6 Performance tuning JDO and Hibernate 141 Without any tuning 141 ■ Configuring eager loading 142 Using a process-level cache 145 ■ Using the query cache 145 4.7 The example schema 146 4.8 Summary 148 Persisting a domain model with JDO
Recommended publications
  • Object Oriented Paradigm/Programming
    an object is an instantiation from a class, e.g., you have a pet cat, who's Object Oriented Paradigm name is Garfield, then Garfield is a object (of the class cat) to invoke an method, simply do obj.method( ) or obj->method( ), the Ming- Hwa Wang, Ph.D. former is object reference syntax, and the latter is pointer syntax Department of Computer Engineering Santa Clara University Relationships a-kind-of relationship: a subclass inherits and adds more attributes Object Oriented Paradigm/Programming (OOP) and/or methods from its super class to become somewhat "specialized" similar to Lego, which kids build new toys from assembling the existing is-a relationship: an object of a subclass is an object of its super class construction blocks of different shapes part-of relationship: OOP - doing programs by reusing (composing/inheriting) objects has-a relationship: (instantiated from classes) as much as possible, and only writing code when no exiting objects can be applied Reusability inheritance Two Fundamental Principles for OOP a sub/child/derived/extended class can inherit all properties from its generalization or reusability: the classes designed should target to super/parent/base/original class, with or without reusability, i.e., it should very generic and can be applied to lots of modification/override or addition situations/applications without much efforts; reusability comes from single inheritance and multiple inheritance (watch out naming inheritance and/or composition conflicts) encapsulation or information hiding: we can hide detailed or composition implementation specific information away from the users/programmers, so changing implementation using the same interfaces will not need Abstract or Virtual Classes modifying the application code only used as a super class for other classes, only specified but not fully defined, and can't be instantiated OOP Language vs.
    [Show full text]
  • [ Team Lib ] Crawford and Kaplan's J2EE Design Patterns Approaches
    [ Team LiB ] • Table of Contents • Index • Reviews • Reader Reviews • Errata J2EE Design Patterns By William Crawford, Jonathan Kaplan Publisher: O'Reilly Pub Date: September 2003 ISBN: 0-596-00427-3 Pages: 368 Crawford and Kaplan's J2EE Design Patterns approaches the subject in a unique, highly practical and pragmatic way. Rather than simply present another catalog of design patterns, the authors broaden the scope by discussing ways to choose design patterns when building an enterprise application from scratch, looking closely at the real world tradeoffs that Java developers must weigh when architecting their applications. Then they go on to show how to apply the patterns when writing realworld software. They also extend design patterns into areas not covered in other books, presenting original patterns for data modeling, transaction / process modeling, and interoperability. [ Team LiB ] [ Team LiB ] • Table of Contents • Index • Reviews • Reader Reviews • Errata J2EE Design Patterns By William Crawford, Jonathan Kaplan Publisher: O'Reilly Pub Date: September 2003 ISBN: 0-596-00427-3 Pages: 368 Copyright Preface Audience Organization of This Book For Further Reading Conventions Used in This Book Comments and Questions Acknowledgments Chapter 1. Java Enterprise Design Section 1.1. Design Patterns Section 1.2. J2EE Section 1.3. Application Tiers Section 1.4. Core Development Concepts Section 1.5. Looking Ahead Chapter 2. The Unified Modeling Language Section 2.1. Origins of UML Section 2.2. The Magnificent Seven Section 2.3. UML and Software Development Lifecycles Section 2.4. Use Case Diagrams Section 2.5. Class Diagrams Section 2.6. Interaction Diagrams Section 2.7.
    [Show full text]
  • Critical Resource Concurrency Pattern in C++
    ApriorIT Inc. Implementation of Critical Resource Concurrency Pattern in C++ Implementation of Critical Resource Concurrency Pattern in C++ The article is written by Vladimir Frolov, system developer of ApriorIT. The topic area of concurrency patterns is poorly covered in literature, so this text is called to fill a gap, at least partly. Many of those who have ever used Critical Section object for synchronization between threads were applying it together with Auto Critical Section object. Indeed, Auto Critical Section is a powerful synchronization object which use has a set of advantages. The code containing Auto Critical Section for Critical Section management turns safe, more readable and structured when compared with the code directly working with Critical Section. Moreover, Auto Critical Section has trivial implementation. Regarding Auto Critical Section object one might say that it wraps in Critical Section the scope in which it is being created. However, whether Auto Critical Section used or not, there is still a series of problems relating to Critical Section object: • the Critical Section and resource which it protects are being created separately and can potentially have different lifetime. • the code which uses the resource must know that access to it is synchronized by critical section. Both these problems are of little importance if the critical section is used for creation of a thread- safe class. In that case the critical section is being created as data member and about it should be aware only function members of the given class while creating an Auto Critical Section object on call. However, a problem appears if it is necessary to provide access to a resource or class object which doesn't make any attempts at synchronization from within.
    [Show full text]
  • 60 Years of Mastering Concurrent Computing Through Sequential Thinking Sergio Rajsbaum, Michel Raynal
    60 Years of Mastering Concurrent Computing through Sequential Thinking Sergio Rajsbaum, Michel Raynal To cite this version: Sergio Rajsbaum, Michel Raynal. 60 Years of Mastering Concurrent Computing through Sequential Thinking. ACM SIGACT News, Association for Computing Machinery (ACM), 2020, 51 (2), pp.59-88. 10.1145/3406678.3406690. hal-03162635 HAL Id: hal-03162635 https://hal.archives-ouvertes.fr/hal-03162635 Submitted on 17 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 60 Years of Mastering Concurrent Computing through Sequential Thinking ∗ Sergio Rajsbaumy, Michel Raynal?;◦ yInstituto de Matemáticas, UNAM, Mexico ?Univ Rennes IRISA, 35042 Rennes, France ◦Department of Computing, Hong Kong Polytechnic University [email protected] [email protected] Abstract Modern computing systems are highly concurrent. Threads run concurrently in shared-memory multi-core systems, and programs run in different servers communicating by sending messages to each other. Concurrent programming is hard because it requires to cope with many possible, unpre- dictable behaviors of the processes, and the communication media. The article argues that right from the start in 1960’s, the main way of dealing with concurrency has been by reduction to sequential reasoning.
    [Show full text]
  • Session 6 Software Design Patterns
    I402A Software Architecture and Quality Assessment Session 6 Software Design Patterns Sébastien Combéfis Fall 2019 This work is licensed under a Creative Commons Attribution – NonCommercial – NoDerivatives 4.0 International License. Objectives Implementation pattern and excellence in programming Communication, simplicity and flexibility Other categories of software design patterns Concurrency patterns for synchronisation, communication, etc. Architectural patterns in relation with enterprise solutions Green patterns for sustainable development 3 Implementation Pattern Implementation Pattern One should aim for excellence in programming Best program offerts best extension option, has no unrelated elements and is easy to understand Three values that are important to strive to excellence Communication: read can understand, modify and use Simplicity: no unnecessary complexity for the program Flexibility: allows for easy evolution and changes 5 Principle (1) Structure the code to ensure local consequences A change “here” can not result in a problem “there” Minimise repetitions of code, structure, algorithm, etc. Duplication, parallel class hierarchies, similar code Keep together data and the logic manipulating them Following the object oriented programming paradigm 6 Principle (2) Make explicit symmetry at different levels The presence of an add should suggest a remove Express intentions as declaratively as possible Use annotations in imperative programming Gather code and data by change rate Allows changes to the same place at the same time 7
    [Show full text]
  • POJO in Action.Book
    SAMPLE CHAPTER POJOs in Action by Chris Richardson Chapter 2 Copyright 2006 Chris Richardson contents PART 1OVERVIEW OF POJOS AND LIGHTWEIGHT FFFFFFFFFFFFFFFFRAMEWORKS .............................................1 Chapter 1 ■ Developing with POJOs: faster and easier 3 Chapter 2 ■ J2EE design decisions 31 PART 2A SIMPLER, FASTER APPROACH................... 59 Chapter 3 ■ Using the Domain Model pattern 61 Chapter 4 ■ Overview of persisting a domain model 95 Chapter 5 ■ Persisting a domain model with JDO 2.0 149 Chapter 6 ■ Persisting a domain model with Hibernate 3 195 Chapter 7 ■ Encapsulating the business logic with a POJO façade 243 PART 3VARIATIONS ........................................... 287 Chapter 8 ■ Using an exposed domain model 289 Chapter 9 ■ Using the Transaction Script pattern 317 Chapter 10 ■ Implementing POJOs with EJB 3 360 vii viii BRIEF CONTENTS PART 4DEALING WITH DATABASES AND CCCCCCCCCCCCCONCURRENCY .......................................405 Chapter 11 ■ Implementing dynamic paged queries 407 Chapter 12 ■ Database transactions and concurrency 451 Chapter 13 ■ Using offline locking patterns 488 J2EE design decisions This chapter covers ■ Encapsulating the business logic ■ Organizing the business logic ■ Accessing the database ■ Handling database concurrency 31 32 CHAPTER 2 J2EE design decisions Now that you have had a glimpse of how POJOs and lightweight frameworks such as Spring and JDO make development easier and faster, let’s take a step back and look at how you would decide whether and how to use them. If we blindly used POJOs and lightweight frameworks, we would be repeating the mistake the enter- prise Java community made with EJBs. Every technology has both strengths and weaknesses, and it’s important to know how to choose the most appropriate one for a given situation.
    [Show full text]
  • Patterns in Flexible Server Application Frameworks
    Patterns in Flexible Server Application Frameworks James C. Hu Christopher D. Gill [email protected] [email protected] Entera, Inc. Department of Computer Science Fremont, CA, USA Washington University St. Louis, MO, USA Abstract This article describes a collection of recurring patterns in the context of flexible server application frameworks. These patterns are organized into three categories, corresponding to distinct architectural levels of scale: foundation, scaffolding, and framework. In addition to identifying well-known patterns at each of these levels, this article describes three new patterns: the Concrete Bridge pattern at the founda- tion level, and the Library and Strategized Concurrency patterns at the framework level. 1 Introduction The context of this paper comes from experience designing, developing, refining, refac- toring, and reimplementing an object-oriented framework in C++ called the JAWS Adaptive Web System (JAWS). JAWS is an application framework for Web servers, de- signed as a research tool to study sytematically how different design decisions impact the performance of a server. Achieving this required that the framework efficiently fac- tor out differences in threading strategies (e.g., thread pool versus thread-per-request), event completion strategies (e.g., synchronous versus asynchronous), protocol speci- fications (e.g., HTTP, RTSP, FTP, etc.), and algorithms (e.g., cache replacement algo- rithms, hash algorithms, lookup algorithms, etc.). JAWS factors out these points of variation by employing classic design patterns [1], discovering new design patterns, and leveraging components available in the ACE [2] framework, upon which JAWS is built [3]. A full discussion of the JAWS framework is beyond the scope of this paper, but a detailed description can be found in [4].
    [Show full text]
  • CS110 Lecture 10: Threads and Mutexes
    CS110 Lecture 10: Threads and Mutexes Principles of Computer Systems Winter 2020 Stanford University Computer Science Department Instructors: Chris Gregg and Nick Troccoli PDF of this presentation 1 CS110 Topic 3: How can we have concurrency within a single process? 2 Learning About Processes Mutexes and Condition Introduction to Multithreading Condition Variables and Threads Patterns Variables Semaphores 2/3 Today 2/10 2/12 3 Today's Learning Goals Discover some of the pitfalls of threads sharing the same virtual address space Learn how locks can help us limit access to shared resources Get practice using condition variables to wait for signals from other threads 4 Plan For Today Recap: Threads in C++ Races When Accessing Shared Data Introducing Mutexes Break: Announcements Dining With Philosophers 5 Plan For Today Recap: Threads in C++ Races When Accessing Shared Data Introducing Mutexes Break: Announcements Dining With Philosophers 6 Threads A thread is an independent execution sequence within a single process. Most common: assign each thread to execute a single function in parallel Each thread operates within the same process, so they share global data (!) (text, data, and heap segments) They each have their own stack (e.g. for calls within a single thread) Execution alternates between threads as it does for processes Many similarities between threads and processes; in fact, threads are often called lightweight processes. 7 Threads vs. Processes Processes: isolate virtual address spaces (good: security and stability, bad: harder to share info) can run external programs easily (fork-exec) (good) harder to coordinate multiple tasks within the same program (bad) Threads: share virtual address space (bad: security and stability, good: easier to share info) can't run external programs easily (bad) easier to coordinate multiple tasks within the same program (good) 8 C++ thread A thread object can be spawned to run the specified function with the given arguments.
    [Show full text]
  • Proceedings of the 12Th International Conference on Characteristics That Make One Method More Efficient Space Operations, Spaceops
    The 26th International Conference ON Automated Planning AND Scheduling June 12-17, 2016. London, UK DoctorAL Consortium Dissertation AbstrACTS The DoctorAL Consortium BRINGS TOGETHER JUNIOR AND EXPERIENCED RESEARCHERS IN planning, SCHEDULING AND RELATED AREAS FROM ACROSS THE globe, IN PARTICULAR THOSE STUDYING FOR A DoctorAL degree. It PROVIDES A FORUM FOR NETWORKING WITH THE ICAPS COMMUNITY IN AN informal, SOCIAL setting. The DoctorAL Consortium WILL BE HELD AS A FULL DAY WORKSHOP ON June 12th, 2016. The PROGRAM INCLUDES AN INVITED TALK ON RESEARCH SKILLS AND CAREER DEVelopment, THE OPPORTUNITY FOR PARTICIPANT TO GIVE A SHORT presentation, AND A POSTER SESSION DURING THE MAIN conference. DC Chairs: • PETER Gregory (UnivERSITY OF Teeside, UK) • LEE McCluskEY (UnivERSITY OF Huddersfield, UK) • Fabio Mercorio (UnivERSITY OF Milan-Bicocca, Italy) AbstrACTS 1 Heuristic Search AND Applications ......................................... 3 Automated Planning AND Scheduling E0 Constellations’ OperATIONS USING Ant ColonY Optimization ... 4 Evridiki Ntagiou SolvER PARAMTER TUNING AND Runtime Predictions OF FleXIBLE Hybrid Mathematical MODELS ......... 10 Michael Barry Constructing Heuristics FOR PDDL+ Planning Domains ............................... 15 Wiktor PiotrOWSKI Risk-SensitivE Planning WITH Dynamic Uncertainty ................................. 21 Liana Marinescu 2 Multi Agent Planning & Plan ExECUTION ...................................... 27 A Distributed Online Multi-Agent Planning System ................................. 28 Rafael CarDOSO
    [Show full text]
  • Wiley & Sons, Inc
    Y L F M A E T Team-Fly® JavaJava™ EnterpriseEnterprise Design Patterns Patterns in JavaTM, Volume 3 MARK GRAND MARK GRAND John Wiley & Sons, Inc. New York ● ChichesterJohn● Weinheim Wiley &● Sons,Brisbane Inc. ● Singapore ● Toronto New York ● Chichester ● Weinheim ● Brisbane ● Singapore ● Toronto Publisher: Robert Ipsen Editor: Theresa Hudson Developmental Editor: Kathryn A. Malm Managing Editor: Angela Smith New Media Editor: Brian Snapp Text Design & Composition: Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or ALL CAPITAL LETTERS. Readers, how- ever, should contact the appropriate companies for more complete information regarding trademarks and registration. This book is printed on acid-free paper. ●∞ Copyright © 2002 by Mark Grand. All rights reserved. Published by John Wiley & Sons, Inc., New York Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ @ WILEY.COM.
    [Show full text]
  • On Enabling Technologies for the Internet of Important Things
    SPECIAL SECTION ON CYBER-PHYSICAL SYSTEMS Received December 31, 2018, accepted February 7, 2019, date of publication February 25, 2019, date of current version March 13, 2019. Digital Object Identifier 10.1109/ACCESS.2019.2901509 On Enabling Technologies for the Internet of Important Things MARTEN LOHSTROH 1, (Member, IEEE), HOKEUN KIM 1, JOHN C. EIDSON1, (Life Fellow, IEEE), CHADLIA JERAD2, BETH OSYK3, AND EDWARD A. LEE 1, (Fellow, IEEE) 1Department of Computer Sciences and Electrical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA 2National School of Computer Sciences, University of Manouba, Manouba 2010, Tunisia 3Edge Case Research, Pittsburgh, PA 15201, USA Corresponding author: Marten Lohstroh ([email protected]) This work was supported in part by the National Science Foundation (NSF), under Award CNS-1836601 (Reconciling Safety with the Internet), in part by the iCyPhy Research Center (Industrial Cyber-Physical Systems, supported by Avast, Camozzi Industries, Denso, Ford, Siemens, and Toyota), and in part by the Fulbright Scholar Program, a program of the United States Department of State Bureau of Educational and Cultural Affairs. ABSTRACT The Internet of Things leverages Internet technology in cyber-physical systems (CPSs), but the protocols and principles of the Internet were designed for interacting with information systems, not cyber- physical systems. For one, timeliness is not a factor in any widespread Internet technology, with quality- of-service features having been routinely omitted for decades. In addition, for things, safety, freedom from physical harm, is even more important than information security, the focus on the Internet. Nevertheless, properties of the Internet are valuable in CPSs, including a global namespace, reliable (eventual) delivery of messages, end-to-end security through asymmetric encryption, certificate-based authentication, and the ability to aggregate data from a multiplicity of sources in the cloud.
    [Show full text]
  • Java Design Patterns 101 Skill Level: Introductory
    Java design patterns 101 Skill Level: Introductory David Gallardo Author 08 Jan 2002 Design patterns capture the experience of expert software developers and present common recurring problems, their solutions, and the consequences of those solutions in methodical way. This tutorial explains why patterns are useful and important for object-oriented design and development; how patterns are documented, categorized, and cataloged; when they should be used; what some important patterns are; and how they are implemented. Section 1. About this tutorial Should I take this tutorial? This tutorial is for Java programmers who want to learn about design patterns as a means of improving their object-oriented design and development skills. After reading this tutorial you will: • Understand what design patterns are and how they are described and categorized in several well-known catalogs • Be able to use design patterns as a vocabulary for understanding and discussing object-oriented software design • Understand a few of the most common design patterns and know when and how they should be used This tutorial assumes that you are familiar with the Java language and with basic object-oriented concepts such as polymorphism, inheritance, and encapsulation. Java design patterns 101 © Copyright IBM Corporation 1994, 2008. All rights reserved. Page 1 of 20 developerWorks® ibm.com/developerWorks Some understanding of the Unified Modeling Language (UML) is helpful, but not required; this tutorial will provide an introduction to the basics. What is this tutorial about? Design patterns capture the experience of expert software developers, and present common recurring problems, their solutions, and the consequences of those solutions in methodical way.
    [Show full text]