Philosophy of String Theory

Total Page:16

File Type:pdf, Size:1020Kb

Philosophy of String Theory Philosophy of String Theory Richard Dawid∗ August 21, 2019 Abstract 1 Introduction The basic idea of string theory goes back to the late 1960s. (For textbooks on string theory, see Polchinski 1999, Zwiebach 2007, Becker, Becker and Schwarz 2007. For a collection of texts on early string theory, see Cap- pelli, Castellani, Colomo, Di Vecchia 2012. A philosophy-minded history of string theory is Rickles 2013.) After its foundations had been laid from 1968 onwards as a candidate theory for describing strong interaction (Veneziano 1968), string theory was proposed as a universal theory of all interactions in 1974 (Scherk and Schwarz 1974) and became popular after the formulation of the action of a quantized superstring (Green and Schwarz 1984). Since then, string theory has played the role of the leading approach to a unified theory of all interactions. String theory's history as a subject of philosophical investigation is much shorter. Apart from Weingard (1989), which introduced string theory to philosophers, not a single philosophical paper on string theory was written in the 20th century. After a second philosophical "suggestion" to look at the theory at turn of the 21st century in Butterfield and Isham (2001), the theory became a subject of more extensive philosophical inquiry about a decade ago. Increasing activity in recent years may indicate the emergence of a fully fledged philosophical field of research. ∗Department of Philosophy, Stockholm University, 10691 Stockholm, Sweden. email: [email protected] 1 2 The Role of String Theory A consistent theory of quantum gravity is a main desideratum of contempo- rary fundamental physics. Observed phenomena in high energy physics at this point can be very well accounted for by the standard model of particle physics. Observed gravitational phenomena are covered in a satisfactory way by general relativity. However, neither of those two theories on its own can provide a satisfactory description of the very early and dense states of the universe. What is needed is a consistent theoretical scheme that accounts for both types of phenomena, nuclear interactions and gravity. There are two and a half ways to search for such a theory. The half- option would be to retain the theories of general relativity and quantum field theory and just try to make them consistent with each other so that they can work in conjunction to describe regimes where both types of interaction are relevant.1 No promising headway has been made in that direction and there are reasons to doubt that this is a viable way to go. The other two options start from one of the existing conceptual frameworks and build a theory from that starting point that can cover the other side as well. Canonical quantum gravity, loop quantum gravity, and related approaches start from gravity and aim at developing a quantized theory of gravity. String theory starts from the perspective of particle physics and aims to generalize it to include gravity. In the eyes of string theorists, two general observations speaks in favor of the latter approach. First, the principles of gauge field theory, on which the standard model of particle physics is based, put strong constraints on theory building. The requirement that the theory of quantum gravity should enforce that its low energy effective theory is a gauge field theory therefore is a powerful guideline for theory building. Second, the approach seems to work in principle, which is by no means a trivial observation. An extension of the gauge principle to supersymmetry leads to a graviton, which suggests that quantum gravity is a natural extension of gauge field theory. String theory started from a perturbative perspective, keeping the for- mat of calculating Feynman diagrams but replacing the pointlike particles of quantum field theory by small one-dimensional objects, the strings. This modification is assumed to generate a finite theory, thereby offering a solution to the problem of the non-renormalizability of quantum field theories of grav- ity. Moreover, the fact that a quantized string necessarily contains a graviton as one of its oscillation modes renders the approach a natural framework for describing quantum gravity. The posit of extended elementary objects also seems consistent with the high energy behaviour one is led to expect from 1for a philosophical perspective on that strategy, see W¨uthrich (2004). 2 a theory of quantum gravity. The generation of black holes in particle col- lisions at the Planck scale enforces an upper limit to testing energy scales that fits well with the intrinsic fundamental length scale of the string. This vague initial argument was later fleshed out based on the minimal length scale imposed by string theory's duality structure (see below). The seemingly innocent step towards extended fundamental objects car- ries huge conceptual implications. A quantized string theory that describes both fermions and bosons must be supersymmetric (that is, show a symmetry under transformations between fermionic and bosonic degrees of freedom). The quantization of this superstring only works in a consistent way in 10 spatiotemporal dimensions. The 6 extra dimensions remain invisible at low energies. They are understood to run back into themselves like cylinder surfaces, thereby generating a topologically complex spactime structure (a Calabi-Yau space). Moving beyond a strictly perturbative perspective reveals that string the- ory contains higher-dimensional objects of various dimensions called branes (Polchinski 1995). Branes play a crucial role in one of the most remarkable features of string theory. In a number of cases, specific realizations of string theory that differ with respect to the kinds of symmetries they have, the radii of their compact dimensions, their spacetime topologies, the dimensionality of their higher dimensional objects and other characteristics are dual to each other: they are empirically fully equivalent and the features of one formula- tion are related to features of its dual by a duality transformation. Duality relations connect all five types of superstring theory.(Witten 1995) Another duality relation connects string theory on AdS space (a space with constant negative curvature that corresponds to the solution of the Einstein equa- tions for empty space with a negative cosmological constant) to a conformal string theory on the boundary (Maldacena 1998), thereby revealing a deep connection between string theory and gauge field theory. String theory in many respects is a very different kind of conceptual scheme than any other physical theory we know. In the following, I will give a brief survey of some of the most important novel characteristics of string theory that deserve serious philosophical attention. A number of them have by now been addressed extensively in a philosophical context. Others still lack the philosophical attention they deserve. 3 3 Specific Physical Characteristics of String Theory 3.1 The central role of the concept of duality As already emphasized in the introduction, dualities play a pivotal role in string theory. They have also been at the center of the theory's philosophical analysis. Dawid (2007, 2013), Matsubara (2013) and Rickles (2011, 2017) identified string dualities as a serious problem for scientific realism. The extent to which dual theories differ from each other with respect to their fundamental ontologies is incompatible with ontological scientific realism (Dawid 2007). For a number of reasons, dual formulations of string theory should be treated as different perspectives on one theory rather than as distinct theories: string theorists clearly treat them as one theory (Matsubara 2013); only the entire web of dual formulations allows an adequate understanding of string physics (Dawid 2013); dual theories can be transformed into each other by duality transformations (Rickles 2017). As pointed out by Castellani (2009), viewing duals as different perspectives on the same theory goes counter to the classical view that links theory individuation to a theory's ontological import.2 Dawid (2007, 2013) and Matsubara (2103) argue that structural realism is in a better position than ontological realism to account for dualities but faces problems of its own. Dawid (2007) suggests that string theory might support a specific form of structural realism (consistent structure realism) that relies on the fact that string theory at a fundamental level is fully deter- mined by consistency arguments. (It has no free parameters and no freedom of model choice.) Rickles (2017) also favors a structuralist approach. He emphasises that duality transformations, in revealing physically irrelevant transformational degrees of freedom, are comparable to gauge transforma- tions (see also de Haro, Teh, Butterfield 2017). This analogy suggests that anything that can be changed under duality transformations is unphysical and no candidate for the theory's real content. Only characteristics invariant under duality transformations, such as the global symmetry group, should thus be acknowledged as real. Rickles argues that this leaves sufficient room for a structural realist take on string theory. An interesting specific context for analysing the anti-realist import of du- alities is provided by S-duality. S-duality transforms a theory into a dual with inverse coupling constant. In string theory, S-duality arises as one of the pivotal duality relations that connect all five types of superstring theo- 2See e.g. Coffey (2014) for a recent exposition of the latter view. 4 ries. The fundamental strings of one theory show up as solitonic solutions (nonperturbative effects characterised by a topological charge) in its S-dual theory (Harvey and Strominger 1995). The fundamental objects of one the- ory thus emerge as complex composite objects of its dual. String physicists Sen (1999) and Susskind (2013) have taken this characteristic of string theory to indicate that the theory does not allow for a reductionist understanding of the world. Objects don't stand in an unequivocal constituent-compound relations to each other. Sen's and Susskind's arguments support the incom- patibility of string theory with ontological scientific realism.
Recommended publications
  • ABSTRACT Investigation Into Compactified Dimensions: Casimir
    ABSTRACT Investigation into Compactified Dimensions: Casimir Energies and Phenomenological Aspects Richard K. Obousy, Ph.D. Chairperson: Gerald B. Cleaver, Ph.D. The primary focus of this dissertation is the study of the Casimir effect and the possibility that this phenomenon may serve as a mechanism to mediate higher dimensional stability, and also as a possible mechanism for creating a small but non- zero vacuum energy density. In chapter one we review the nature of the quantum vacuum and discuss the different contributions to the vacuum energy density arising from different sectors of the standard model. Next, in chapter two, we discuss cosmology and the introduction of the cosmological constant into Einstein's field equations. In chapter three we explore the Casimir effect and study a number of mathematical techniques used to obtain a finite physical result for the Casimir energy. We also review the experiments that have verified the Casimir force. In chapter four we discuss the introduction of extra dimensions into physics. We begin by reviewing Kaluza Klein theory, and then discuss three popular higher dimensional models: bosonic string theory, large extra dimensions and warped extra dimensions. Chapter five is devoted to an original derivation of the Casimir energy we derived for the scenario of a higher dimensional vector field coupled to a scalar field in the fifth dimension. In chapter six we explore a range of vacuum scenarios and discuss research we have performed regarding moduli stability. Chapter seven explores a novel approach to spacecraft propulsion we have proposed based on the idea of manipulating the extra dimensions of string/M theory.
    [Show full text]
  • Theory of Change and Organizational Development Strategy INTRODUCTION Dear Reader
    Theory of Change and Organizational Development Strategy INTRODUCTION Dear Reader: The Fetzer Institute was founded in 1986 by John E. Fetzer with a vision of a transformed world, powered by love, in which all people can flourish. Our current mission, adopted in 2016, is to help build the spiritual foundation for a loving world. Over the past several years, we have been identifying and exploring new ways to make our vision of a loving world a reality. One aspect of this work has been the development of a new conceptual frame resulting in a comprehensive Theory of Change. This document aspires to ground our work for the next 25 years. Further, this in-depth articulation of our vision allows us to invite thought leaders across disciplines to help sharpen our thinking. This document represents a moment when many strands of work and planning by the Institute board and staff came together in a very powerful way that enabled us to articulate our Theory of Change. However, this is a dynamic, living document, and we encourage you to read it as such. For example, we are actively developing detailed goals and action plans, and we continue to examine our conceptual frame, even as we make common cause with all who are working toward a shared and transformative sacred story for humanity in the 21st century. We continue to use our Theory of Change to focus our work, inspire and grow our partnerships, and identify the most pressing needs in our world. I look forward to your feedback and invite you to learn about how our work is coming alive in the world through our program strategies, initiatives, and stories at Fetzer.org.
    [Show full text]
  • Duality and Strings Dieter Lüst, LMU and MPI München
    Duality and Strings Dieter Lüst, LMU and MPI München Freitag, 15. März 13 Luis made several very profound and important contributions to theoretical physics ! Freitag, 15. März 13 Luis made several very profound and important contributions to theoretical physics ! Often we were working on related subjects and I enjoyed various very nice collaborations and friendship with Luis. Freitag, 15. März 13 Luis made several very profound and important contributions to theoretical physics ! Often we were working on related subjects and I enjoyed various very nice collaborations and friendship with Luis. Duality of 4 - dimensional string constructions: • Covariant lattices ⇔ (a)symmetric orbifolds (1986/87: W. Lerche, D.L., A. Schellekens ⇔ L. Ibanez, H.P. Nilles, F. Quevedo) • Intersecting D-brane models ☞ SM (?) (2000/01: R. Blumenhagen, B. Körs, L. Görlich, D.L., T. Ott ⇔ G. Aldazabal, S. Franco, L. Ibanez, F. Marchesano, R. Rabadan, A. Uranga) Freitag, 15. März 13 Luis made several very profound and important contributions to theoretical physics ! Often we were working on related subjects and I enjoyed various very nice collaborations and friendship with Luis. Duality of 4 - dimensional string constructions: • Covariant lattices ⇔ (a)symmetric orbifolds (1986/87: W. Lerche, D.L., A. Schellekens ⇔ L. Ibanez, H.P. Nilles, F. Quevedo) • Intersecting D-brane models ☞ SM (?) (2000/01: R. Blumenhagen, B. Körs, L. Görlich, D.L., T. Ott ⇔ G. Aldazabal, S. Franco, L. Ibanez, F. Marchesano, R. Rabadan, A. Uranga) ➢ Madrid (Spanish) Quiver ! Freitag, 15. März 13 Luis made several very profound and important contributions to theoretical physics ! Often we were working on related subjects and I enjoyed various very nice collaborations and friendship with Luis.
    [Show full text]
  • Detailing Coherent, Minimum Uncertainty States of Gravitons, As
    Journal of Modern Physics, 2011, 2, 730-751 doi:10.4236/jmp.2011.27086 Published Online July 2011 (http://www.SciRP.org/journal/jmp) Detailing Coherent, Minimum Uncertainty States of Gravitons, as Semi Classical Components of Gravity Waves, and How Squeezed States Affect Upper Limits to Graviton Mass Andrew Beckwith1 Department of Physics, Chongqing University, Chongqing, China E-mail: [email protected] Received April 12, 2011; revised June 1, 2011; accepted June 13, 2011 Abstract We present what is relevant to squeezed states of initial space time and how that affects both the composition of relic GW, and also gravitons. A side issue to consider is if gravitons can be configured as semi classical “particles”, which is akin to the Pilot model of Quantum Mechanics as embedded in a larger non linear “de- terministic” background. Keywords: Squeezed State, Graviton, GW, Pilot Model 1. Introduction condensed matter application. The string theory metho- dology is merely extending much the same thinking up to Gravitons may be de composed via an instanton-anti higher than four dimensional situations. instanton structure. i.e. that the structure of SO(4) gauge 1) Modeling of entropy, generally, as kink-anti-kinks theory is initially broken due to the introduction of pairs with N the number of the kink-anti-kink pairs. vacuum energy [1], so after a second-order phase tran- This number, N is, initially in tandem with entropy sition, the instanton-anti-instanton structure of relic production, as will be explained later, gravitons is reconstituted. This will be crucial to link 2) The tie in with entropy and gravitons is this: the two graviton production with entropy, provided we have structures are related to each other in terms of kinks and sufficiently HFGW at the origin of the big bang.
    [Show full text]
  • From Vibrating Strings to a Unified Theory of All Interactions
    Barton Zwiebach From Vibrating Strings to a Unified Theory of All Interactions or the last twenty years, physicists have investigated F String Theory rather vigorously. The theory has revealed an unusual depth. As a result, despite much progress in our under- standing of its remarkable properties, basic features of the theory remain a mystery. This extended period of activity is, in fact, the second period of activity in string theory. When it was first discov- ered in the late 1960s, string theory attempted to describe strongly interacting particles. Along came Quantum Chromodynamics— a theoryof quarks and gluons—and despite their early promise, strings faded away. This time string theory is a credible candidate for a theoryof all interactions—a unified theoryof all forces and matter. The greatest complication that frustrated the search for such a unified theorywas the incompatibility between two pillars of twen- tieth century physics: Einstein’s General Theoryof Relativity and the principles of Quantum Mechanics. String theory appears to be 30 ) zwiebach mit physics annual 2004 the long-sought quantum mechani- cal theory of gravity and other interactions. It is almost certain that string theory is a consistent theory. It is less certain that it describes our real world. Nevertheless, intense work has demonstrated that string theory incorporates many features of the physical universe. It is reasonable to be very optimistic about the prospects of string theory. Perhaps one of the most impressive features of string theory is the appearance of gravity as one of the fluctuation modes of a closed string. Although it was not discov- ered exactly in this way, we can describe a logical path that leads to the discovery of gravity in string theory.
    [Show full text]
  • Introduction to Conformal Field Theory and String
    SLAC-PUB-5149 December 1989 m INTRODUCTION TO CONFORMAL FIELD THEORY AND STRING THEORY* Lance J. Dixon Stanford Linear Accelerator Center Stanford University Stanford, CA 94309 ABSTRACT I give an elementary introduction to conformal field theory and its applications to string theory. I. INTRODUCTION: These lectures are meant to provide a brief introduction to conformal field -theory (CFT) and string theory for those with no prior exposure to the subjects. There are many excellent reviews already available (or almost available), and most of these go in to much more detail than I will be able to here. Those reviews con- centrating on the CFT side of the subject include refs. 1,2,3,4; those emphasizing string theory include refs. 5,6,7,8,9,10,11,12,13 I will start with a little pre-history of string theory to help motivate the sub- ject. In the 1960’s it was noticed that certain properties of the hadronic spectrum - squared masses for resonances that rose linearly with the angular momentum - resembled the excitations of a massless, relativistic string.14 Such a string is char- *Work supported in by the Department of Energy, contract DE-AC03-76SF00515. Lectures presented at the Theoretical Advanced Study Institute In Elementary Particle Physics, Boulder, Colorado, June 4-30,1989 acterized by just one energy (or length) scale,* namely the square root of the string tension T, which is the energy per unit length of a static, stretched string. For strings to describe the strong interactions fi should be of order 1 GeV. Although strings provided a qualitative understanding of much hadronic physics (and are still useful today for describing hadronic spectra 15 and fragmentation16), some features were hard to reconcile.
    [Show full text]
  • D-Branes in Topological Membranes
    OUTP/03–21P HWM–03–14 EMPG–03–13 hep-th/0308101 August 2003 D-BRANES IN TOPOLOGICAL MEMBRANES P. Castelo Ferreira Dep. de Matem´atica – Instituto Superior T´ecnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal and PACT – University of Sussex, Falmer, Brighton BN1 9QJ, U.K. [email protected] I.I. Kogan Dept. of Physics, Theoretical Physics – University of Oxford, Oxford OX1 3NP, U.K. R.J. Szabo Dept. of Mathematics – Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K. [email protected] Abstract arXiv:hep-th/0308101v1 15 Aug 2003 It is shown how two-dimensional states corresponding to D-branes arise in orbifolds of topologically massive gauge and gravity theories. Brane vertex operators naturally appear in induced worldsheet actions when the three-dimensional gauge theory is minimally coupled to external charged matter and the orbifold relations are carefully taken into account. Boundary states corresponding to D-branes are given by vacuum wavefunctionals of the gauge theory in the presence of the matter, and their various constraints, such as the Cardy condition, are shown to arise through compatibility relations between the orbifold charges and bulk gauge invariance. We show that with a further conformally-invariant coupling to a dynamical massless scalar field theory in three dimensions, the brane tension is naturally set by the bulk mass scales and arises through dynamical mechanisms. As an auxilliary result, we show how to describe string descendent states in the three-dimensional theory through the construction of gauge-invariant excited wavefunctionals. Contents 1 INTRODUCTION AND SUMMARY 1 1.1 D-Branes ....................................
    [Show full text]
  • Universit`A Degli Studi Di Padova
    UNIVERSITA` DEGLI STUDI DI PADOVA Dipartimento di Fisica e Astronomia “Galileo Galilei” Corso di Laurea Magistrale in Fisica Tesi di Laurea Finite symmetry groups and orbifolds of two-dimensional toroidal conformal field theories Relatore Laureando Prof. Roberto Volpato Tommaso Macrelli Anno Accademico 2017/2018 Contents Introduction 5 1 Introduction to two dimensional Conformal Field Theory 7 1.1 The conformal group . .7 1.1.1 Conformal group in two dimensions . .9 1.2 Conformal invariance in two dimensions . 12 1.2.1 Fields and correlation functions . 12 1.2.2 Stress-energy tensor and conformal transformations . 13 1.2.3 Operator formalism: radial quantization . 14 1.3 General structure of a Conformal Field Theory in two dimensions . 16 1.3.1 Meromorphic Conformal Field Theory . 18 1.4 Examples . 22 1.4.1 Free boson . 22 1.4.2 Free Majorana fermion . 26 1.4.3 Ghost system . 27 2 Elements of String and Superstring Theory 28 2.1 Bosonic String Theory . 29 2.1.1 Classical Bosonic String . 29 2.1.2 Quantization . 31 2.1.3 BRST symmetry and Hilbert Space . 33 2.1.4 Spectrum of the Bosonic String . 34 2.1.5 What’s wrong with Bosonic String? . 36 2.2 Superstring Theory . 37 2.2.1 Introduction to Superstrings . 37 2.2.2 Heterotic String . 39 3 Compactifications of String Theory 41 3.1 An introduction: Kaluza-Klein compactification . 42 3.2 Free boson compactified on a circle . 43 3.2.1 Closed strings and T-Duality . 45 3.2.2 Enhanced symmetries at self-dual radius .
    [Show full text]
  • Sacred Rhetorical Invention in the String Theory Movement
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Communication Studies Theses, Dissertations, and Student Research Communication Studies, Department of Spring 4-12-2011 Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement Brent Yergensen University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/commstuddiss Part of the Speech and Rhetorical Studies Commons Yergensen, Brent, "Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement" (2011). Communication Studies Theses, Dissertations, and Student Research. 6. https://digitalcommons.unl.edu/commstuddiss/6 This Article is brought to you for free and open access by the Communication Studies, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Communication Studies Theses, Dissertations, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT by Brent Yergensen A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Communication Studies Under the Supervision of Dr. Ronald Lee Lincoln, Nebraska April, 2011 ii SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT Brent Yergensen, Ph.D. University of Nebraska, 2011 Advisor: Ronald Lee String theory is argued by its proponents to be the Theory of Everything. It achieves this status in physics because it provides unification for contradictory laws of physics, namely quantum mechanics and general relativity. While based on advanced theoretical mathematics, its public discourse is growing in prevalence and its rhetorical power is leading to a scientific revolution, even among the public.
    [Show full text]
  • What Scientific Theories Could Not Be Author(S): Hans Halvorson Reviewed Work(S): Source: Philosophy of Science, Vol
    What Scientific Theories Could Not Be Author(s): Hans Halvorson Reviewed work(s): Source: Philosophy of Science, Vol. 79, No. 2 (April 2012), pp. 183-206 Published by: The University of Chicago Press on behalf of the Philosophy of Science Association Stable URL: http://www.jstor.org/stable/10.1086/664745 . Accessed: 03/12/2012 10:32 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and Philosophy of Science Association are collaborating with JSTOR to digitize, preserve and extend access to Philosophy of Science. http://www.jstor.org This content downloaded by the authorized user from 192.168.52.67 on Mon, 3 Dec 2012 10:32:52 AM All use subject to JSTOR Terms and Conditions What Scientific Theories Could Not Be* Hans Halvorson†‡ According to the semantic view of scientific theories, theories are classes of models. I show that this view—if taken literally—leads to absurdities. In particular, this view equates theories that are distinct, and it distinguishes theories that are equivalent. Furthermore, the semantic view lacks the resources to explicate interesting theoretical relations, such as embeddability of one theory into another.
    [Show full text]
  • Introduction to String Theory A.N
    Introduction to String Theory A.N. Schellekens Based on lectures given at the Radboud Universiteit, Nijmegen Last update 6 July 2016 [Word cloud by www.worldle.net] Contents 1 Current Problems in Particle Physics7 1.1 Problems of Quantum Gravity.........................9 1.2 String Diagrams................................. 11 2 Bosonic String Action 15 2.1 The Relativistic Point Particle......................... 15 2.2 The Nambu-Goto action............................ 16 2.3 The Free Boson Action............................. 16 2.4 World sheet versus Space-time......................... 18 2.5 Symmetries................................... 19 2.6 Conformal Gauge................................ 20 2.7 The Equations of Motion............................ 21 2.8 Conformal Invariance.............................. 22 3 String Spectra 24 3.1 Mode Expansion................................ 24 3.1.1 Closed Strings.............................. 24 3.1.2 Open String Boundary Conditions................... 25 3.1.3 Open String Mode Expansion..................... 26 3.1.4 Open versus Closed........................... 26 3.2 Quantization.................................. 26 3.3 Negative Norm States............................. 27 3.4 Constraints................................... 28 3.5 Mode Expansion of the Constraints...................... 28 3.6 The Virasoro Constraints............................ 29 3.7 Operator Ordering............................... 30 3.8 Commutators of Constraints.......................... 31 3.9 Computation of the Central Charge.....................
    [Show full text]
  • Foundations of Mathematics and Physics One Century After Hilbert: New Perspectives Edited by Joseph Kouneiher
    FOUNDATIONS OF MATHEMATICS AND PHYSICS ONE CENTURY AFTER HILBERT: NEW PERSPECTIVES EDITED BY JOSEPH KOUNEIHER JOHN C. BAEZ The title of this book recalls Hilbert's attempts to provide foundations for mathe- matics and physics, and raises the question of how far we have come since then|and what we should do now. This is a good time to think about those questions. The foundations of mathematics are growing happily. Higher category the- ory and homotopy type theory are boldly expanding the scope of traditional set- theoretic foundations. The connection between logic and computation is growing ever deeper, and significant proofs are starting to be fully formalized using software. There is a lot of ferment, but there are clear payoffs in sight and a clear strategy to achieve them, so the mood is optimistic. This volume, however, focuses mainly on the foundations of physics. In recent decades fundamental physics has entered a winter of discontent. The great triumphs of the 20th century|general relativity and the Standard Model of particle physics| continue to fit almost all data from terrestrial experiments, except perhaps some anomalies here and there. On the other hand, nobody knows how to reconcile these theories, nor do we know if the Standard Model is mathematically consistent. Worse, these theories are insufficient to explain what we see in the heavens: for example, we need something new to account for the formation and structure of galaxies. But the problem is not that physics is unfinished: it has always been that way. The problem is that progress, extremely rapid during most of the 20th century, has greatly slowed since the 1970s.
    [Show full text]