Radar Spectrum Engineering and Management (Ingénierie Et Gestion Du Spectre Radar)

Total Page:16

File Type:pdf, Size:1020Kb

Radar Spectrum Engineering and Management (Ingénierie Et Gestion Du Spectre Radar) NORTH ATLANTIC TREATY SCIENCE AND TECHNOLOGY ORGANIZATION ORGANIZATION AC/323(SET-182)TP/695 www.sto.nato.int STO TECHNICAL REPORT TR-SET-182 Radar Spectrum Engineering and Management (Ingénierie et gestion du spectre radar) Final Report of Task Group SET-182. Published April 2016 Distribution and Availability on Back Cover NORTH ATLANTIC TREATY SCIENCE AND TECHNOLOGY ORGANIZATION ORGANIZATION AC/323(SET-182)TP/695 www.sto.nato.int STO TECHNICAL REPORT TR-SET-182 Radar Spectrum Engineering and Management (Ingénierie et gestion du spectre radar) Final Report of Task Group SET-182. The NATO Science and Technology Organization Science & Technology (S&T) in the NATO context is defined as the selective and rigorous generation and application of state-of-the-art, validated knowledge for defence and security purposes. S&T activities embrace scientific research, technology development, transition, application and field-testing, experimentation and a range of related scientific activities that include systems engineering, operational research and analysis, synthesis, integration and validation of knowledge derived through the scientific method. In NATO, S&T is addressed using different business models, namely a collaborative business model where NATO provides a forum where NATO Nations and partner Nations elect to use their national resources to define, conduct and promote cooperative research and information exchange, and secondly an in-house delivery business model where S&T activities are conducted in a NATO dedicated executive body, having its own personnel, capabilities and infrastructure. The mission of the NATO Science & Technology Organization (STO) is to help position the Nations’ and NATO’s S&T investments as a strategic enabler of the knowledge and technology advantage for the defence and security posture of NATO Nations and partner Nations, by conducting and promoting S&T activities that augment and leverage the capabilities and programmes of the Alliance, of the NATO Nations and the partner Nations, in support of NATO’s objectives, and contributing to NATO’s ability to enable and influence security and defence related capability development and threat mitigation in NATO Nations and partner Nations, in accordance with NATO policies. The total spectrum of this collaborative effort is addressed by six Technical Panels who manage a wide range of scientific research activities, a Group specialising in modelling and simulation, plus a Committee dedicated to supporting the information management needs of the organization. • AVT Applied Vehicle Technology Panel • HFM Human Factors and Medicine Panel • IST Information Systems Technology Panel • NMSG NATO Modelling and Simulation Group • SAS System Analysis and Studies Panel • SCI Systems Concepts and Integration Panel • SET Sensors and Electronics Technology Panel These Panels and Group are the power-house of the collaborative model and are made up of national representatives as well as recognised world-class scientists, engineers and information specialists. In addition to providing critical technical oversight, they also provide a communication link to military users and other NATO bodies. The scientific and technological work is carried out by Technical Teams, created under one or more of these eight bodies, for specific research activities which have a defined duration. These research activities can take a variety of forms, including Task Groups, Workshops, Symposia, Specialists’ Meetings, Lecture Series and Technical Courses. The content of this publication has been reproduced directly from material supplied by STO or the authors. Published April 2016 Copyright © STO/NATO 2016 All Rights Reserved ISBN 978-92-837-2095-9 Single copies of this publication or of a part of it may be made for individual use only by those organisations or individuals in NATO Nations defined by the limitation notice printed on the front cover. The approval of the STO Information Management Systems Branch is required for more than one copy to be made or an extract included in another publication. Requests to do so should be sent to the address on the back cover. ii STO-TR-SET-182 Table of Contents Page List of Figures vii List of Tables x List of Acronyms xi SET-182 Membership List xv Executive Summary and Synthèse ES-1 Chapter 1 – Introduction 1-1 1.1 Context 1-1 1.1.1 Adjacent-Band Interference Mitigation for Radar Emissions 1-2 1.1.2 Adaptive/Cognitive Emission Control 1-5 1.1.3 Electromagnetic Compatibility (EMC) 1-6 1.1.4 Receiver Interference Rejection 1-6 1.2 Objectives 1-7 1.3 Study Organization 1-7 1.4 Report Structure 1-7 Chapter 2 – Improved Transmitter Spectral Purity 2-1 2.1 Introduction 2-1 2.2 Background on Spectral Cleanliness 2-3 2.2.1 Spectrally Clean Waveform Formulation 2-4 2.2.2 Spectrally Clean Transmitter Design 2-7 2.2.3 Other Recent and Current Efforts on Improving Transmitter 2-10 Spectral Cleanliness 2.2.4 Technology Watch: Adaptive Solid-State Power Amplifiers and 2-11 Optimized Waveforms 2.2.4.1 Description of the Technology 2-11 2.2.4.2 Possible Impact of the Technology on a Military 2-12 Capability 2.4.4.3 Technology Readiness Level 2-13 2.4.4.4 Related to NATO Requirements 2-13 2.3 Controlling the Pulse Rise/Fall Time 2-13 2.3.1 LiNC-PCFM Radar Implementation 2-14 2.4 Reconfigurable Amplifier Design for Flexible Spectral Mask Compliance 2-18 2.4.1 Fast Load-Impedance Search for Power-Added Efficiency and 2-19 Adjacent-Channel Power Ratio 2.4.2 Load Impedance Optimization Based Directly on PAE and Spectral 2-24 Mask Compliance 2.4.3 The Smith Tube for Joint Circuit and Waveform Design 2-27 STO-TR-SET-182 iii 2.4.4 Next Steps in Joint Circuit and Waveform Optimization for 2-31 Spectrally Sensitive, Adaptive Radar Chapter 3 – Better Receivers 3-1 3.1 Introduction 3-1 3.2 Basic Analog Radar Receiver Topology 3-1 3.3 Dynamic Range 3-2 3.4 Mixers and Downconversion 3-3 3.5 Analog Coherent Detection 3-4 3.6 Digital Coherent Detection 3-5 Chapter 4 – Passive Bistatic Radar 4-1 4.1 Background 4-1 4.2 Commensal Radar 4-6 4.3 Vertical-Plane Coverage 4-6 4.4 Conclusions and Recommendations 4-8 Chapter 5 – Cognitive Techniques 5-1 5.1 Introduction 5-1 5.2 Cognition 5-1 5.3 Conclusions and Recommendations 5-5 Chapter 6 – Regulatory Issues 6-1 6.1 Summary 6-1 6.2 Today’s and Future Radar Spectrum Environments 6-1 6.3 Current Issues of Interference Between Wireless and Radar Systems 6-2 6.4 Sharing Studies for Coexistence of Systems in the Same Band 6-4 6.5 Sharing Studies for Coexistence of Systems in Adjacent Bands 6-4 6.6 White Space 6-5 6.7 Current Radar Regulatory Standards 6-5 6.7.1 Regulatory Standards at Worldwide Level – ITU 6-5 6.7.2 Regulatory Standards at European Level – NATO 6-6 6.7.3 Spectrum Enforcement and Legal Issues 6-6 6.7.4 Common Definitions 6-7 6.8 Spectrum Regulatory Discussions 6-8 6.8.1 Spectrum Regulatory Discussions at National Level 6-8 6.8.2 Spectrum Regulatory Discussions at Regional Level 6-8 6.8.3 Spectrum Regulatory Discussions at ITU-R Level 6-8 6.8.4 WRC 2015 Agenda Items Related to Radars 6-9 Chapter 7 – Conclusions and Recommendations 7-1 7.1 Summary and Conclusions 7-1 7.2 Recommendations 7-1 iv STO-TR-SET-182 Chapter 8 – References 8-1 Annex A – List of Meetings A-1 Annex B – Bibliography of Work/Outputs of SET-182 B-1 B.1 Book Chapters B-1 B.2 Journals B-1 B.3 Conferences/Workshops B-2 B.4 Journal Special Issue B-5 B.5 Conference Activities B-5 B.6 Tutorials B-5 B.7 Technical Committee B-6 B.8 SET-204 Two-day Specialists’ Meeting on “Waveform Diversity” B-6 29/30 September 2014, Berlin, Germany Annex C – Summary of SET-066 Report C-1 C.1 Introduction C-1 C.2 The Nature of the Problem C-1 C.3 Objectives C-2 C.4 Report Structure C-3 C.5 Mechanisms Which Cause Interference Between Military Radar and C-3 Civil Telecommunications C.5.1 Challenges Imposed on Radar Services C-3 C.5.1.1 Current Environment C-3 C.5.1.2 Future Environment C-4 C.5.1.3 Technical Reasoning C-5 C.5.1.4 Economic Reasoning C-5 C.5.2 The Nature of Interference C-6 C.5.2.1 In-Band Interference C-8 C.5.2.2 Out-Of-Band (OOB) Interference C-8 C.5.2.3 Spurious Band Interference C-8 C.5.3 Features that Affect the Interference Seen in the System C-9 C.5.3.1 Incident Field Strength C-9 C.5.3.2 Radar Receiver Selectivity C-9 C.5.3.3 Spurious Emission Limits of Interference Source C-10 C.5.3.4 Presence of Spurious Pass-Bands in Victim Receiver C-10 C.5.3.5 Radar Receiver Linearity C-10 C.5.3.6 Interference Frequency Offset C-10 C.5.3.7 Polarisation C-10 C.5.3.8 Modulation or Coding Used in the Radar C-11 C.5.3.9 Radar Receiver/Processor Mode of Operation C-13 C.5.4 Initial Considerations of Interference Mechanisms in the Radar C-13 Receiver C.5.4.1 Consideration of Interference-to-Noise Ratio I/N C-13 C.5.4.2 L-Band Range Reduction Caused by Variation in I/N C-13 STO-TR-SET-182 v C.5.4.3 Hostile Source Transmit Power Required to Cause C-15 Range Reduction C.5.4.4 Variation in Detection Probability (Pd) Due to C-16 Variation in I/N C.5.4.5 Receiver Blocking C-19 C.5.4.6 Range Accuracy C-20 C.5.4.7 Azimuth Accuracy C-21 C.5.4.8 Effects on Other Parameters C-25 C.5.4.9 Permanent Effects C-26 C.5.5 Some Interference Scenarios C-26 C.5.5.1 Scenario 1 – Interference Signals in the Frequency C-26 Domain C.5.5.2 Scenario 2 – Interference in the Time Domain C-29 C.6 Conclusions C-34 C.6.1 General C-34 C.6.2 Antennas C-34 C.6.3 Receivers C-35 C.6.4 Impact on Military Radars C-35 C.6.5 Impact of UWB C-35 C.6.6 Transmitter C-36 C.7 Reference C-36 vi STO-TR-SET-182 List of Figures Figure Page
Recommended publications
  • 5G Candidate Band Study
    5G Candidate Band Study Study on the Suitability of Potential Candidate Frequency Bands above 6GHz for Future 5G Mobile Broadband Systems Final Report to Ofcom, March 2015 Contributors Steve Methley, William Webb, Stuart Walker, John Parker Quotient Associates Limited Compass House, Vision Park, Chivers Way, Histon, Cambridge, CB24 9AD, UK EMAIL [email protected] WEB www.QuotientAssociates.com Ver si on 02 Status Approved History Reviewed by Ofcom Type Public 5G Candidate Band Study | Contributors Final Report : qa1015 © Quotient Associates Ltd. 2015 Commercial in Confidence. No part of the contents of this document may be disclosed, used or reproduced in any form, or by any means, without the prior written consent of Quotient Associates Ltd. ii EXECUTIVE SUMMARY Objective and scope Within industry and academia there is significant activity in research and development towards the next generation of mobile broadband technologies (5G). Coupled with this there is increasing interest in identifying the frequency bands that will be needed to deliver 5G services. At the moment there is no overall consensus on what 5G will actually be. Work in ITU-R (WP5D) is ongoing to develop a vision for 5G (IMT 2020) including identifying the target capabilities. It is, however, widely accepted that at least one element of 5G will require the use of spectrum bands at much higher frequencies than those that current mobile broadband technologies can make use of, e.g. bands above 6 GHz. A first step currently being discussed is a proposal for an agenda item for the World Radio Conference after next (WRC-19) to identify suitable high frequency spectrum for 5G in the ITU Radio Regulations.
    [Show full text]
  • Overview of Sensors for Applications
    OVERVIEW OF SENSORS FOR APPLICATIONS Deepak Putrevu Head, MTDD/AMHTDG EM SPECTRUM Visible 0.4-0.7μm Near infrared (NIR) 0.7-1.5μm Optical Infrared Shortwave infrared (SWIR) 1.5-3.0μm Mid-wave infrared (MWIR) 3.0-8.0μm (OIR) Region Longwave IR(LWIR)/Thermal IR(TIR) 8.0-15μm Far infrared (FIR) Beyond15μm Gamma Rays X Rays UV Visible NIR SWIR Thermal IR Microwave P-band: ~0.25 – 1 GHz Microwave Region L-band: 1 -2 GHz S-band: 2-4 GHz •Sensors are 24x365 C-band: 4-8 GHz •Signal data characteristics X-band: 8-12 GHz unique to the microwave region of the EM spectrum Ku-band: 12-18 GHz K-band: 18-26 GHz •Response is primarily governed by geometric Ka-band: 26-40 GHz structures and hence V-band: 40 - 75 GHz complementary to optical W-band: 75-110 GHz imaging mm-wave: 110 – 300GHz Basic Interactions between Electromagnetic Energy and the Earth’s Surface Incident Power reflected, ρP Reflectivity: The fractional part of the radiation, P incident radiation that is reflected by the surface. Power absorbed, αP Absorptivity: the fractional part of the = Power emitted, εP incident radiation that is absorbed by the surface. Power transmitted, τP Emissivity: The ratio of the observed flux emitted by a body or surface to that of a P= Pr + Pt + Pa blackbody under the same condition. 푃 푃 푃 푟 + 푡 + 푎 = 1 푃 푃 푃 Transmissivity: The fractional part of the ρ + τ + α =1 radiation transmitted through the medium. At thermal equilibrium, absorption and emission are the same.
    [Show full text]
  • Design of SWB Antenna with Triple Band Notch Characteristics for Multipurpose Wireless Applications
    applied sciences Article Design of SWB Antenna with Triple Band Notch Characteristics for Multipurpose Wireless Applications Warsha Balani 1, Mrinal Sarvagya 1, Tanweer Ali 2,* , Ajit Samasgikar 3, Saumya Das 4, Pradeep Kumar 5,* and Jaume Anguera 6,7 1 School of Electronics and Communication Engineering, Reva University, Bangalore 560064, India; [email protected] (W.B.); [email protected] (M.S.) 2 Department of Electronics and Communication, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India 3 MMRFIC Technology Pvt Ltd., Bangalore 560016, India; [email protected] 4 Department of Information Technology, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Sikkim 737102, India; [email protected] 5 Discipline of Electrical, Electronic and Computer Engineering, University of KwaZulu-Natal, Durban 4041, South Africa 6 Fractus Antennas, 08174 Barcelona, Spain; [email protected] 7 Electronics and Telecommunication Department, Universitat Ramon LLull, 08022 Barcelona, Spain * Correspondence: [email protected] (T.A.); [email protected] (P.K.) Abstract: A compact concentric structured monopole antenna for super wide band (SWB) applica- tions with triple notch band characteristics is designed and experimentally validated. The antenna covers an immense impedance bandwidth (1.6–47.5 GHz) with sharp triple notch bands at 1.8– 2.2 GHz, 4–7.2 GHz, and 9.8–10.4 GHz to eliminate interference from co-existing advanced wireless services (AWS), C bands, and X bands, respectively. By loading an E-shaped stub connected at the top of the patch and by etching a split elliptical slot at the lower end of the radiating patch, the band rejection characteristics from 1.8–2.2 GHz for the AWS and 4–7.2 GHz for the C band are achieved, Citation: Balani, W.; Sarvagya, M.; respectively.
    [Show full text]
  • Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on Behalf of the Satellite Industry Association1
    Spectrum & the Technological Transformation of the Satellite Industry Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on behalf of the Satellite Industry Association1 1 AT&T, a member of SIA, does not necessarily endorse all conclusions of this study. Page 1 of 75 Spectrum & the Technological Transformation of the Satellite Industry 1. Table of Contents 1. Table of Contents ................................................................................................ 1 2. Executive Summary ............................................................................................. 4 2.1. What the satellite industry does for the U.S. today ............................................... 4 2.2. What the satellite industry offers going forward ................................................... 4 2.3. Innovation in the satellite industry ........................................................................ 5 3. Introduction ......................................................................................................... 7 3.1. Overview .................................................................................................................. 7 3.2. Spectrum Basics ...................................................................................................... 8 3.3. Satellite Industry Segments .................................................................................... 9 3.3.1. Satellite Communications ..............................................................................
    [Show full text]
  • A Layman's Interpretation Guide L-Band and C-Band Synthetic
    A Layman’s Interpretation Guide to L-band and C-band Synthetic Aperture Radar data Version 2.0 15 November, 2018 Table of Contents 1 About this guide .................................................................................................................................... 2 2 Briefly about Synthetic Aperture Radar ......................................................................................... 2 2.1 The radar wavelength .................................................................................................................... 2 2.2 Polarisation ....................................................................................................................................... 3 2.3 Radar backscatter ........................................................................................................................... 3 2.3.1 Sigma-nought .................................................................................................................................................. 3 2.3.2 Gamma-nought ............................................................................................................................................... 3 2.4 Backscatter mechanisms .............................................................................................................. 4 2.4.1 Direct backscatter ......................................................................................................................................... 4 2.4.2 Forward scattering ......................................................................................................................................
    [Show full text]
  • Assessment on Use of Spectrum in the 10-17 Ghz Band for the GSO Fixed-Satellite Service in Region 1
    Report ITU-R S.2365-0 (09/2015) Assessment on use of spectrum in the 10-17 GHz band for the GSO fixed-satellite service in Region 1 S Series Fixed satellite service ii Rep. ITU-R S.2365-0 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio- frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Reports (Also available online at http://www.itu.int/publ/R-REP/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • Terahertz (Thz) Generator and Detection
    Electrical Science & Engineering | Volume 02 | Issue 01 | April 2020 Electrical Science & Engineering https://ojs.bilpublishing.com/index.php/ese REVIEW Terahertz (THz) Generator and Detection Jitao Li#,* Jie Li# School of Precision Instruments and OptoElectronics Engineering, Tianjin University, Tianjin, 300072, China #Authors contribute equally to this work. ARTICLE INFO ABSTRACT Article history In the whole research process of electromagnetic wave, the research of Received: 26 March 2020 terahertz wave belongs to a blank for a long time, which is the least known and least developed by far. But now, people are trying to make up the blank Accepted: 30 March 2020 and develop terahertz better and better. The charm of terahertz wave origi- Published Online: 30 April 2020 nates from its multiple attributes, including electromagnetic field attribute, photon attribute and thermal attribute, which also attracts the attention of Keywords: researchers in different fields and different countries, and also terahertz Terahertz technology have been rated as one of the top ten technologies to change the future world by the United States. The multiple attributes of terahertz make Generation it have broad application prospects in military and civil fields, such as med- Detection ical imaging, astronomical observation, 6G communication, environmental monitoring and material analysis. It is no exaggeration to say that mastering terahertz technology means mastering the future. However, it is because of the multiple attributes of terahertz that the terahertz wave is difficult to be mastered. Although terahertz has been applied in some fields, controlling terahertz (such as generation and detection) is still an important issue. Now- adays, a variety of terahertz generation and detection technologies have been developed and continuously improved.
    [Show full text]
  • Potential of Different Optical and SAR Data in Forest and Land Cover Classification to Support REDD+ MRV
    remote sensing Article Potential of Different Optical and SAR Data in Forest and Land Cover Classification to Support REDD+ MRV Laura Sirro 1,*, Tuomas Häme 1, Yrjö Rauste 1, Jorma Kilpi 1 ID , Jarno Hämäläinen 2, Katja Gunia 2, Bernardus de Jong 3 and Fernando Paz Pellat 4 1 VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, VTT FI-02044, Finland; tuomas.hame@vtt.fi (T.H.); yrjo.rauste@vtt.fi (Y.R.); jorma.kilpi@vtt.fi (J.K.) 2 Arbonaut Ltd., Kaislakatu 2, Joensuu FI-80130, Finland; [email protected] (J.H.); [email protected] (K.G.) 3 El Colegio de la Frontera Sur, Av. Rancho Polígono 2-A, Parque Industrial Lerma, Campeche, Campeche CP 24500, Mexico; [email protected] 4 Colegio de Postgraduados, Km 36.5 Carretera México-Texcoco, Texcoco 56230, Mexico; [email protected] * Correspondence: laura.sirro@vtt.fi; Tel.: +358-40-538-7769 Received: 9 May 2018; Accepted: 11 June 2018; Published: 14 June 2018 Abstract: The applicability of optical and synthetic aperture radar (SAR) data for land cover classification to support REDD+ (Reducing Emissions from Deforestation and Forest Degradation) MRV (measuring, reporting and verification) services was tested on a tropical to sub-tropical test site. The 100 km by 100 km test site was situated in the State of Chiapas in Mexico. Land cover classifications were computed using RapidEye and Landsat TM optical satellite images and ALOS PALSAR L-band and Envisat ASAR C-band images. Identical sample plot data from Kompsat-2 imagery of one-metre spatial resolution were used for the accuracy assessment.
    [Show full text]
  • Molecfit: a General Tool for Telluric Absorption Correction I
    A&A 576, A77 (2015) Astronomy DOI: 10.1051/0004-6361/201423932 & c ESO 2015 Astrophysics Molecfit: A general tool for telluric absorption correction I. Method and application to ESO instruments?;?? A. Smette1, H. Sana1;2, S. Noll3, H. Horst1;4, W. Kausch3;5, S. Kimeswenger6;3, M. Barden7, C. Szyszka3, A. M. Jones3, A. Gallenne8, J. Vinther9, P. Ballester9, and J. Taylor9 1 European Southern Observatory, Casilla 19001, Alonso de Cordova 3107 Vitacura, Santiago, Chile e-mail: [email protected] 2 now at ESA/Space Telescope Science Institute, 3700 San Martin Dr, Baltimore, MD 21218, USA 3 Institute for Astro and Particle Physics, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria 4 Josef-Führer-Straße 33, 80997 München, Germany 5 University of Vienna, Department of Astrophysics, Türkenschanzstr. 17 (Sternwarte), 1180 Vienna, Austria 6 Instituto de Astronomía, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile 7 International Graduate School of Science and Engineering, Technische Universität München, Boltzmannstr. 17, 85748 Garching bei München, Germany 8 Universidad de Concepción, Casilla 160-C, Concepción, Chile 9 European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei München, Germany Received 2 April 2014 / Accepted 23 December 2014 ABSTRACT Context. The interaction of the light from astronomical objects with the constituents of the Earth’s atmosphere leads to the formation of telluric absorption lines in ground-based collected spectra. Correcting for these lines, mostly affecting the red and infrared region of the spectrum, usually relies on observations of specific stars obtained close in time and airmass to the science targets, therefore using precious observing time.
    [Show full text]
  • L- and X-Band Like- and Cross-Polarized Synthetic Aperture Radar for Investigating ! Urban Environments
    BARRYN. HMCK* Regional Remote Sensing Facility Nairobi, Kenya L- and X-Band Like- and Cross-Polarized Synthetic Aperture Radar for Investigating ! Urban Environments The X-band like-polarized data were the most useful, the L-band cross- polarized data were the least useful, and the texture calculations used in this study did not contribute toward urban cover type delineations. 1982) and texture analysis (Fasler, 1980); and for different environments, i.e., geology (Ford, 1980), HE EXAMINATION of radar data for the mapping agriculture (Ulaby and Bare, 1980), land use (Hen- T and analysis of Earth surface features has con- derson, 1979), and urban (Bryan, 1979). The pur- siderably increased in the last few years. Much of pose of this study was to examine two synthetic ap- this increase is a function of the recent availability erture radar (SAR)bands, L-band and X-band, at both of these data. The increase is also due to the aware- like- and cross-polarizations in order to assess their ness that radar has unique attributes, such as its all- usefulness for urban land-cover delineations. Rather weather and night and day capabilities, which may than a visual analysis of images as has been done make it a very useful tool for resource inventory and previously with similar data, this study examined ABSTRACT:Four synthetic aperture airborne radar data sets, L- and x-band like- and cross-polarizations, were spatially registered to a common map base for a portion of the Los Angeles basin. Texture calculations for the four SAR data sets were also obtained.
    [Show full text]
  • Soil Dielectric Characterization at L-Band Microwave Frequencies
    https://doi.org/10.5194/hess-2020-291 Preprint. Discussion started: 10 July 2020 c Author(s) 2020. CC BY 4.0 License. Soil dielectric characterization at L-band microwave frequencies during freeze-thaw transitions Alex Mavrovic1-2, Renato Pardo Lara3, Aaron Berg3, François Demontoux4, Alain Royer5- 2, Alexandre Roy1-2 5 1 Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada 2 Centre d’Études Nordiques, Université Laval, Québec, Québec, G1V 0A6, Canada 3 University of Guelph, Guelph, Ontario, N1G 2W1, Canada 4 Laboratoire de l'Intégration du Matériau au Système, Bordeaux, 33400 Talence, France 5 Centre d’Applications et de Recherches en Télédétection, Université de Sherbrooke, Sherbrooke, Québec, 10 J1K 2R1, Canada Correspondence to: Alex Mavrovic ([email protected]) Abstract. Soil microwave permittivity is a crucial parameter in passive microwave retrieval algorithms but remains a challenging variable to measure. To validate and improve satellite microwave data products, 15 precise and reliable estimations of the relative permittivity (ɛr = ɛ/ɛ0 = ɛ’-jɛ’’; unitless) of soils are required, particularly for frozen soils. In this study, permittivity measurements were acquired using two different instruments: the newly designed open-ended coaxial probe (OECP) and the conventional Stevens HydraProbe. Both instruments were used to characterize the permittivity of soil samples undergoing several freeze/thaw cycles in a laboratory environment. The measurements were compared to soil permittivity 20 models. We show that the OECP is a suitable device for measuring frozen (ɛ’frozen = [3.5;6.0], ɛ’’frozen = [0.4;1.2]) and thawed (ɛ’thawed = [6.5;22.8], ɛ’’thawed = [1.4;5.7]) soil microwave permittivity.
    [Show full text]
  • Federal Communications Commission FCC 20-158
    Federal Communications Commission FCC 20-158 Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of ) ) Amendment of Parts 2 and 25 of the Commission’s ) IB Docket No. 20-330 Rules to Enable GSO Fixed-Satellite Service ) (Space-to-Earth) Operations in the 17.3-17.8 GHz ) RM-11839 (terminated) Band, to Modernize Certain Rules Applicable to ) 17/24 GHz BSS Space Stations, and to Establish ) Off-Axis Uplink Power Limits for Extended Ka- ) Band FSS Operations. ) NOTICE OF PROPOSED RULEMAKING Adopted: November 18, 2020 Released: November 19, 2020 Comment Date: 30 days after date of publication in the Federal Register Reply Comment Date: 45 days after date of publication in the Federal Register By the Commission: Chairman Pai issuing a statement. TABLE OF CONTENTS Heading Paragraph # I. INTRODUCTION .................................................................................................................................. 1 II. BACKGROUND .................................................................................................................................... 4 A. Current Allocations and Use of the 17.3-17.8 GHz Band ................................................................ 4 B. SES Americom Petition for Rulemaking ......................................................................................... 7 III. DISCUSSION ...................................................................................................................................... 12 A. Proposed GSO FSS Allocation in
    [Show full text]