Development of Electrospun Nanofiber Composites for Point-Of-Use Water Treatment." Phd (Doctor of Philosophy) Thesis, University of Iowa, 2016

Total Page:16

File Type:pdf, Size:1020Kb

Development of Electrospun Nanofiber Composites for Point-Of-Use Water Treatment. University of Iowa Iowa Research Online Theses and Dissertations Fall 2016 Development of electrospun nanofiber composites for point-of- use water treatment Katherine T. Peter University of Iowa Follow this and additional works at: https://ir.uiowa.edu/etd Part of the Civil and Environmental Engineering Commons Copyright © 2016 Katherine T. Peter This dissertation is available at Iowa Research Online: https://ir.uiowa.edu/etd/2259 Recommended Citation Peter, Katherine T.. "Development of electrospun nanofiber composites for point-of-use water treatment." PhD (Doctor of Philosophy) thesis, University of Iowa, 2016. https://doi.org/10.17077/etd.ga58rdni Follow this and additional works at: https://ir.uiowa.edu/etd Part of the Civil and Environmental Engineering Commons DEVELOPMENT OF ELECTROSPUN NANOFIBER COMPOSITES FOR POINT- OF-USE WATER TREATMENT by Katherine T. Peter A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree in Civil and Environmental Engineering in the Graduate College of The University of Iowa December 2016 Thesis Supervisor: Associate Professor David M. Cwiertny Copyright by KATHERINE T. PETER 2016 All Rights Reserved Graduate College The University of Iowa Iowa City, Iowa CERTIFICATE OF APPROVAL ____________________________ PH.D. THESIS _________________ This is to certify that the Ph.D. thesis of Katherine T. Peter has been approved by the Examining Committee for the thesis requirement for the Doctor of Philosophy degree in Civil and Environmental Engineering at the December 2016 graduation. Thesis Committee: ____________________________________________ David M. Cwiertny, Thesis Supervisor ____________________________________________ Gene F. Parkin ____________________________________________ Craig L. Just ____________________________________________ Tori Z. Forbes ____________________________________________ C. Allan Guymon To my parents, thank you for your love and support. ii ACKNOWLEDGEMENTS I would like to thank my advisor, David Cwiertny, for his support, encouragement, and advice. Your enthusiasm is contagious, and I am truly grateful for your mentorship and the opportunity to work with you. To my lab mates and colleagues, Jiajie Qian, Katie Greenstein, Edgard Verdugo, Brandon Jennings, Nick Pflug, Kathryn Klarich, Jason Haase, Kyle Nelson, Matt Nagorzanski, and AJ Johns – thank you for your friendship, assistance, and laughter. You made our lab a fun and interesting place to work. Thank you to our collaborators at the University of Illinois Urbana Champaign, Helen Nyugen and Ruiqing Lu, for their contributions to this work. I look forward to continuing collaborations. Thank you also to Marty St. Clair and Susan Noreuil at Coe College, for your assistance and the indispensable use of your ICP-OES. I am immensely grateful to the National Science Foundation for funding my graduate career. It was an honor to be a Graduate Research Fellow. A thank you as well to the EPA for funding this research. I would like to extend my gratitude to my undergraduate advisors, Dr. John Fortner and Dr. Jay Turner, who fostered my interest in research, provided essential mentoring and advice, and encouraged me to attend graduate school. Thank you for helping me find the right path. I owe a big thank you to the wonderful folks at Iowa Valley Habitat for Humanity. You inspired me every week, and made me feel truly a part of this community. Of course, a huge thank you to my friends and family. Kate – thanks for being my roommate, even from four hours away. Your friendship and support mean the world iii to me. Eric – thanks for supporting me through both college and grad school, and for being a great big brother. Mom and Dad – thanks for your love and encouragement, for always being a phone call away, and for all the wonderful snail mail. I appreciate you and everything you have done for me, more than words can express. Jason, thank you for being my rock and my best friend, for spending countless hours in cars and planes to visit Iowa and travel with me, and for your unconditional love and support. I am lucky to have you by my side. iv ABSTRACT A range of chemical pollutants now contaminate drinking water sources and present a public health concern, including organic compounds, such as pharmaceuticals and pesticides, and both metalloids and heavy metals, such as arsenic and lead. Metalloids and heavy metals have been detected in private drinking water wells, which do not fall under federal drinking water regulations, as well as in urban tap water, due to the introduction of contamination to the drinking water distribution system. Further, many so-called “emerging organic contaminants,” which are present in drinking water sources at detectable levels but have unknown long-term health implications, do not fall under federal drinking water regulations. To protect the health of consumers, drinking water treatment at the point-of-use (POU) (i.e., the tap) is essential. Next-generation POU treatment technologies must require minimal energy inputs, be simple enough to permit broad application among different users, and be easily adaptable for removal of a wide range of pollutants. Nanomaterials, such as carbon nanotubes and iron oxide nanoparticles, are ideal candidates for next-generation drinking water treatment, as they exhibit unique, high reactivity and necessitate small treatment units. However, concerns regarding water pressure requirements and nanomaterial release into the treated supply limit their application in traditional reactor designs. To bridge the gap between potential and practical application of nanomaterials, this study utilizes electrospinning to fabricate composite nanofiber filters that effectively deploy nanomaterials in drinking water treatment. In electrospinning, a high voltage draws a polymer precursor solution (which v can contain nanomaterial additives, in the case of nanocomposites) from a needle to deposit a non-woven nanofiber filter on a collector surface. Using electrospinning, we develop an optimized, macroporous carbon nanotube- carbon nanofiber composite that utilizes the sorption capacity of embedded carbon nanotubes, and achieves a key balance between material strength and reactivity towards organic pollutants. Additionally, via single-pot syntheses, we develop two optimized polymer-iron oxide composites for removal of heavy metal contamination by inclusion of iron oxide nanoparticles and either cationic or anionic surfactants in the electrospinning precursor solution. In hybrid materials that contain a well-retained quaternary ammonium surfactant (tetrabutylammonium bromide) and iron oxide nanoparticles, ion exchange sites and iron oxide sites are selective for chromate and arsenate removal, respectively. We demonstrated that a sulfonate surfactant, sodium dodecyl sulfate, acted as a removable porogen and an agent for surface segregation of iron oxide nanoparticles, thus enhancing composite performance for removal of lead, copper, and cadmium. Notably, nanoparticles embedded in composites exhibited comparable activity to freely dispersed nanoparticles. Collectively, the composites developed in this work represent a substantial advance towards the overlap of effective nanomaterial immobilization and utilization of nanomaterial reactivity. Outcomes of this work advance current knowledge of nanocomposite fabrication, and contribute to the responsible and effective deployment of nanomaterials in POU drinking water treatment. vi PUBLIC ABSTRACT A range of chemical pollutants is present in drinking water sources, including organic compounds, (e.g., pharmaceuticals and pesticides) and heavy metals (e.g., arsenic and lead). To protect the health of consumers, particularly those with private drinking water wells and in urban areas with aging water distribution systems, drinking water treatment at the point of use (POU) is essential. Next-generation POU technologies must require minimal energy, efficiently remove a range of pollutants, and be simple enough to permit broad application across users. Nanomaterials are ideal candidates for such technologies, as they exhibit high reactivity within small physical footprints. However, concerns regarding pressure requirements and material release challenge their application in traditional reactor designs. To bridge the gap between potential and practical application of nanomaterials, this study utilizes electrospinning to fabricate composite nanofiber filters. In electrospinning, a high voltage draws a polymer precursor solution (which can contain nanomaterial additives) from a needle, depositing a non-woven nanofiber filter on a collector. Using electrospinning, we develop an optimized carbon nanotube-carbon nanofiber composite that achieves a key balance between material strength and reactivity towards organic pollutants. Additionally, we develop two optimized polymer nanocomposites with embedded iron oxide nanoparticles and/or ion exchange groups, and demonstrate their application for removal of a range of metal contaminants (e.g., arsenic, chromium, lead, copper, and cadmium). Outcomes of this work establish novel methods for nanocomposite fabrication, contributing to the responsible and effective deployment of nanomaterials in POU drinking water treatment. vii TABLE OF CONTENTS LIST OF TABLES ............................................................................................................. xi LIST OF FIGURES .........................................................................................................
Recommended publications
  • Review of Green Methods of Iron Nanoparticles Synthesis and Applications
    BioNanoScience https://doi.org/10.1007/s12668-018-0516-5 Review of Green Methods of Iron Nanoparticles Synthesis and Applications Heba Mohamed Fahmy1 & Fatma Mahmoud Mohamed1 & Mariam Hisham Marzouq1 & Amira Bahaa El-Din Mustafa1 & Asmaa M. Alsoudi1 & Omnia Ashoor Ali1 & Maha A. Mohamed1 & Faten Ahmed Mahmoud1 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Green chemistry becomes an eye-catching topic of interest in the past few years because it is a comfortable, secure, inexpensive, and eco-friendly way of synthesis. Iron oxide nanoparticles with different morphologies and sizes have been extensively studied due to their broad applications. Iron nanoparticles (Fe NPs) have drawn interest in site remediation and also in the treatment of organic or inorganic pollutants of water. The present review shows different synthesis methods of zero-valent and iron oxide nanoparticles from different plant extracts including tea extracts (Oolong tea, tea powder, tea waste,andtea polyphenols), from other plant extracts (Amaranthus dubius, Murraya koenigii, Eucalyptus, Syzygium aromaticum, curcuma, Ocimum sanctum, Emblica officinalis, Tridax procumbens, Dodonaea viscosa, Spinacia oleracea, Lawsonia inermis (henna), Gardenia jasminoides, Punica granatum, and Colocasia esculenta), from bio-microorganisms (Acinetobacter spp. bacterium, Aspergillus oryzae, Sargassum muticum), and from magnetite sand. The different potential applications of iron nanoparticles in remediation, in dye removal, and as an antibacterial agent point
    [Show full text]
  • Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook
    REVIEW published: 04 December 2020 doi: 10.3389/fnano.2020.579954 Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook Deepti Mittal 1, Gurjeet Kaur 2, Parul Singh 3, Karmveer Yadav 1 and Syed Azmal Ali 3* 1 Laboratory of Environmental Nanotechnology, Division of Biochemistry, National Dairy Research Institute, Karnal, India, 2 Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia, 3 Cell Biology and Proteomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India In the current scenario, it is an urgent requirement to satisfy the nutritional demands of the rapidly growing global population. Using conventional farming, nearly one third of crops get damaged, mainly due to pest infestation, microbial attacks, natural disasters, poor soil quality, and lesser nutrient availability. More innovative technologies are immediately required to overcome these issues. In this regard, nanotechnology has contributed to the agrotechnological revolution that has imminent potential to reform Edited by: the resilient agricultural system while promising food security. Therefore, nanoparticles Mietek Jaroniec, are becoming a new-age material to transform modern agricultural practices. The Kent State University, United States variety of nanoparticle-based formulations, including nano-sized pesticides, herbicides, Reviewed by: fungicides, fertilizers, and sensors, have been widely investigated for plant health Vasileios Fotopoulos, Cyprus University of management and soil improvement. In-depth understanding of plant and nanomaterial Technology, Cyprus interactions opens new avenues toward improving crop practices through increased Anshu Rastogi, Poznan University of Life properties such as disease resistance, crop yield, and nutrient utilization. In this review, Sciences, Poland we highlight the critical points to address current nanotechnology-based agricultural *Correspondence: research that could benefit productivity and food security in future.
    [Show full text]
  • Characterization and Antibacterial Activity of Synthesized Silver And
    dicine e & N om a n n a o t N e f c o h l n Journal of a o n l Yadav et al., J Nanomed Nanotechnol 2016, 7:3 o r g u y o J DOI: 10.4172/2157-7439.1000384 ISSN: 2157-7439 Nanomedicine & Nanotechnology Research Article Open Access Characterization and Antibacterial Activity of Synthesized Silver and Iron Nanoparticles using Aloe vera Yadav JP*, Kumar S, Budhwar L, Yadav A and Yadav M Department of Genetics, M. D. University, Rohtak-124001, Haryana, India Abstract The main aim of this study was to evaluate the comparative antibacterial potential of silver and Iron nanoparticles synthesized from aqueous plant extracts of Aloe vera. The synthesized nanoparticles were characterzed by UV-VIS spectroscopy, Fourier Transform Infra-Red spectroscopy and Transmission Electron Microscopy. The antibacterial activity of synthesized silver and iron nanoparticles was compared by agar well diffussion method and minimum inhibitory concentration was also calculated. The zone of inhibition varied in range of 9 to 18 mm for silver nanoparticales and 10 to17 mm for iron nanoparticles. The maximum zone of inhibition for silver nanoparticles was 18 mm against Proteus mirabilis. The maximum zone of inhibition for iron nanoparticles was 17 mm against Klebsiella pneumonia. MICs of silver nanoparticles were found to be in a range from 195 to 780 μg/ml and that of iron was 390 to 1560 μg/ml against tested microbes. The synthesized silver nanoparticles of aqueous Aloe vera extracts have shown good antibacterial efficacy as compared to iron nanoparticles and may prove to be better antibacterial agent against wide range of microbes.
    [Show full text]
  • Green Synthesized of Novel Iron Nanoparticles As Promising Antimicrobial Agent: a Review
    Green synthesized of novel iron nanoparticles as promising antimicrobial agent: A review Chetna M Sangode, Samiksha A Mahant, Pranjal C Tidke, Milind J Umekar and Radheshyam T Lohiya * Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur (M.S)-441002, India. GSC Biological and Pharmaceutical Sciences, 2021, 15(02), 117–127 Publication history: Received on 13 April 2021; revised on 20 May 2021; accepted on 24 May 2021 Article DOI: https://doi.org/10.30574/gscbps.2021.15.2.0130 Abstract Green synthesis of nanoparticles utilizing plant extract has shown enormous advantages over the methods of synthesis. Green nanoparticles are generally synthesized using metal atoms like silver, iron, copper, zinc, and plant extract containing reducible phytoconstituents like alkaloids, flavonoids, tannins, etc. Several Iron nanoparticles are reported using plant extracts. Iron nanoparticles have a greater advantage of small size, affordable cost stability, or having some biomedical application. Such as tissue repair, hypothermia, cell separation, and most important is the integral component of our body system. In the present review, the account of methodologies for the synthesis of iron nanoparticles and the various plant extract having antimicrobial activity has been discussed. Keywords: Iron nanoparticles; Plant extract; Green synthesis; Antimicrobial activity Graphical Abstract Corresponding author: Radheshyam T Lohiya Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur (M.S)-441002. Copyright © 2021 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0. GSC Biological and Pharmaceutical Sciences, 2021, 15(02), 117–127 1. Introduction Nanoparticles are submicron moieties with diameters range starting from 1-100 nm made up of organic or inorganic materials having novel properties as compared to a large number of materials [1].
    [Show full text]
  • Sodium Arsenate Dibasic Heptahydrate
    Sodium arsenate dibasic heptahydrate sc-212937 Material Safety Data Sheet Hazard Alert Code Key: EXTREME HIGH MODERATE LOW Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME Sodium arsenate dibasic heptahydrate STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. NFPA FLAMMABILITY0 HEALTH2 HAZARD INSTABILITY0 SUPPLIER Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800 EMERGENCY ChemWatch Within the US & Canada: 877–715–9305 Outside the US & Canada: +800 2436 2255 (1–800-CHEMCALL) or call +613 9573 3112 SYNONYMS H-As-Na2-O4, AsHO4.2Na, H-As_Na2-O4.7H2O, AsHO4.2Na.7H2O, H-As-Na2-O4.12H2O, AsHO4.2Na.12H2O, "arsenic acid, disodium salt, heptahydrate", "sodium arseniate", "dibasic sodium arsenate heptahydrate", "sodium arsenate heptahydrate", "sodium acid arsenate", "sodium monohydrogen orthoarsenate" Section 2 - HAZARDS IDENTIFICATION CHEMWATCH HAZARD RATINGS Min Max Flammability: 0 Toxicity: 3 Body Contact: 2 Min/Nil=0 Low=1 Reactivity: 0 Moderate=2 High=3 Chronic: 4 Extreme=4 CANADIAN WHMIS SYMBOLS 1 of 10 EMERGENCY OVERVIEW RISK May cause CANCER. Toxic by inhalation and if swallowed. Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS SWALLOWED ! Toxic effects may result from the accidental ingestion of the material; animal experiments indicate that ingestion of less than 40 gram may be fatal or may produce serious damage to the health of the individual. ! Ingestion may produce nausea, vomiting and diarrhea, bloody stools, shock, rapid pulse and coma. Severe gastritis or gastroenteritis may occur as a result of lesions produced by vascular damage from absorbed arsenic (and not local corrosion); symptoms may be delayed for several hours.
    [Show full text]
  • Synthesis of Iron Nanoparticles Mediated By
    SYNTHESIS OF IRON NANOPARTICLES MEDIATED BY CELLULOSE NANOCRYSTALS SYNTHESIS OF IRON NANOPARTICLES MEDIATED BY CELLULOSE NANOCRYSTALS by MARIA XIMENA RUIZ-CALDAS, B. Chemical Engineering A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Master of Applied Science McMaster University © Copyright by Maria Ruiz-Caldas, September 2018 M.A.Sc. Thesis – Maria Ruiz-Caldas McMaster University – Chemical Engineering MASTER OF APPLIED SCIENCE (2018) McMaster University (Chemical Engineering) Hamilton, Ontario TITLE: Synthesis of iron nanoparticles mediated by cellulose nanocrystals AUTHOR: Maria Ximena Ruiz-Caldas B. Chemical Engineering (Universidad Nacional de Colombia) SUPERVISOR: Professor Charles François de Lannoy NUMBER OF PAGES: xi, 84 i M.A.Sc. Thesis – Maria Ruiz-Caldas McMaster University – Chemical Engineering …To my parents, my dog and my brother (in that order)… ii M.A.Sc. Thesis – Maria Ruiz-Caldas McMaster University – Chemical Engineering Acknowledgments First of all, I want to express my sincere gratitude to my supervisor Dr. Charles de Lannoy for accepting me as his master’s student. There are no words to describe how grateful I am to Dr. de Lannoy for giving me the opportunity to be his first master’s student. It is an honor to start my career in scientific research under his supervision. I am so grateful for his great patience, guidance, mentoring and for all the help that I get throughout my master’s degree. I could not have asked for a better supervisor. Part of my experiments were made at the Canadian Center for Electron Microscopy (CCEM). I am truly grateful to the staff at CCEM, especially with Dr.
    [Show full text]
  • Therapeutic Nanomedicine Surmounts the Limitations of Pharmacotherapy
    Open Med. 2017; 12: 271-287 Review Article Arome Odiba*, Victoria Ottah, Comfort Ottah, Ogechukwu Anunobi, Chimere Ukegbu, Affiong Edeke, Robert Uroko, Kingsley Omeje Therapeutic nanomedicine surmounts the limitations of pharmacotherapy https://doi.org/10.1515/med-2017-0041 have gained approval through one clinical trial stage or received June 13, 2017; accepted July 17, 2017 the other. Abstract: Science always strives to find an improved way of doing things and nanoscience is one such approach. Keywords: Nanotechnology; Nanomedicine; Nanoparti- Nanomaterials are suitable for pharmaceutical appli- cle; Therapeutic; Medicine cations mostly because of their size which facilitates absorption, distribution, metabolism and excretion of the nanoparticles. Whether labile or insoluble nanoparticles, their cytotoxic effect on malignant cells has moved the use of nanomedicine into focus. Since nanomedicine can 1 Introduction be described as the science and technology of diagnos- Nanotechnology has stayed with us for more than a ing, treating and preventing diseases towards ultimately decade now, and governments as well as independent improving human health, a lot of nanotechnology options funding organizations/agencies have pumped billions of have received approval by various regulatory agencies. US dollars into research that has produced tens of thou- Nanodrugs also have been discovered to be more precise sands of published papers. But what exactly are we talking in targeting the desired site, hence maximizing the ther- about? This question is pertinent because the very next apeutic effects, while minimizing side-effects on the rest follow-up issues are considerations on how to carve-out of the body. This unique property and more has made “Nanoscience” and the associated fields into a different nanomedicine popular in therapeutic medicine employ- discipline rather than remaining an integrated concept in ing nanotechnology in genetic therapy, drug encapsula- other disciplines.
    [Show full text]
  • Inorganic Arsenic Compounds Other Than Arsine Health and Safety Guide
    OS INTERNATiONAL I'ROGRAMME ON CHEMICAL SAFETY Health and Safety Guide No. 70 INORGANIC ARSENIC COMPOUNDS OTHER THAN ARSINE HEALTH AND SAFETY GUIDE i - I 04 R. Q) UNEP UNITED NATIONS INTERNATIONAL ENVIRONMENT I'R( )GRAMME LABOUR ORGANISATION k\s' I V WORLD HEALTH ORGANIZATION WORLD HEALTH ORGANIZATION, GENEVA 1992 IPcs Other H EA LTH AND SAFETY GUIDES available: Aerytonitrile 41. Clii rdeon 2. Kekvau 42. Vatiadiuni 3 . I Bula not 43 Di meLhyI ftirmatnide 4 2-Buta101 44 1-Dryliniot 5. 2.4- Diehlorpheiioxv- 45 . Ac rylzi mule acetic Acid (2.4-D) 46. Barium 6. NIcihylene Chhride 47. Airaziiie 7 . ie,i-Buia nol 48. Benlm'.ie 8. Ep Ichioroli) Olin 49. Cap a 64 P. ls.ihutaiiol 50. Captaii I o. feiddin oeth N lene Si. Parai.tuat II. Tetradi ion 51 Diquat 12. Te nacelle 53. Alpha- and Betal-lexachloro- 13 Clils,i (lane cyclohexanes 14 1 kpia Idor 54. Liiidaiic IS. Propylene oxide 55. 1 .2-Diciilroetiiane Ethylene Oxide 5t. Hydrazine Eiulosiillaii 57. F-orivaldehydc IS. Die h lorvos 55. MLhyI Isobu I V I kcloiic IV. Pculaehloro1heiiol 59. fl-Flexaric 20. Diiiiethoaie 61), Endrin 2 1 . A iii in and Dick) 0in 6 I . I sh IIZiLI1 22. Cyperniellirin 62. Nicki. Nickel Caution I. and some 23. Quiiiloieiic Nickel Compounds 24. Alkthrins 03. Hexachlorocyclopeuladiene 25. Rsiiiethii ins 64. Aidicaib 26. Pyr rot ii,id inc Alkaloids 65. Fe nitrolhioit 27. Magnetic Fields hib. Triclilorlon 28. Phosphine 67. Acroleiii 29. Diiiiethyl Sull'ite 68. Polychlurinated hiphenyls (PCBs) and 30. Dc lianteth nil polyc h In ruiated letlilienyls (fs) 31.
    [Show full text]
  • THE OPTIMIZATION of GOLD COATED IRON NANOPARTICLE SYNTHESIS METHODS by Mark Riggs, B.S., B.S. a Thesis Submitted to the Gradua
    THE OPTIMIZATION OF GOLD COATED IRON NANOPARTICLE SYNTHESIS METHODS by Mark Riggs, B.S., B.S. A thesis submitted to the Graduate Council of Texas State University in partial fulfillment of the requirements for the degree of Master of Science with a Major in Chemistry August 2014 Committee Members: Gary Beall Shannon Weigum Clois Powell COPYRIGHT by Mark Riggs 2014 FAIR USE AND AUTHOR’S PERMISSION STATEMENT Fair Use This work is protected by the Copyright Laws of the United States (Public Law 94-553, section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations from this material are allowed with proper acknowledgment. Use of this material for financial gain without the author’s express written permission is not allowed. Duplication Permission As the copyright holder of this work I, Mark Riggs, authorize duplication of this work, in whole or in part, for educational or scholarly purposes only. DEDICATION I dedicate this to my wife, Melissa. Her constant support and encouragement were nothing short of heroic. Careful and delicate allocation of my focus became ever- increasing in importance throughout the progression of this research, primarily due to the birth of my beautiful daughter, Olivia Marie, on February 4th of 2014. My daughter’s arrival impacted my perception in ways I couldn’t have fully understood prior to that wonderful moment. I will be forever indebted to Melissa for showing me how blessed I am, enabling me to live a better life than I could have conceived, and providing never- ending assistance with caring for our daughter.
    [Show full text]
  • Laboratory Directed Research and Development Program
    LBNL/PUB-5515 Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2006 Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, CA 94720 Prepared for the U.S. Department of Energy under Contract No. DE-AC03-76SF00098 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California. Lawrence Berkeley Laboratory is an equal opportunity employer. Table of Contents Introduction..........................................................................................................................................................
    [Show full text]
  • Interagency Committee on Chemical Management
    DECEMBER 15, 2020 INTERAGENCY COMMITTEE ON CHEMICAL MANAGEMENT EXECUTIVE ORDER NO. 02-19 REPORT TO THE GOVERNOR WALKE, PETER Table of Contents Executive Summary ...................................................................................................................... 2 I. Introduction ............................................................................................................................. 4 II. Chemical Nomination Review Framework .......................................................................... 6 III. Summary of Chemical Use in the State Based on Reported Chemical Inventories.......... 8 IV. Summary of Identified Risks to Human Health and the Environment from Reported Chemical Inventories .............................................................................................................. 9 V. Summary of any change under Federal Statute or Rule affecting the Regulation of Chemicals in the State ............................................................................................................ 9 VI. Recommended Legislative or Regulatory Action to Reduce Risks to Human Health and the Environment from Regulated and Unregulated Chemicals of Emerging Concern . 25 VII. Final Thoughts ................................................................................................................. 26 Appendices ................................................................................................................................... 27 1 Executive Summary On August 7, 2017, Governor
    [Show full text]
  • Interagency Committee on Chemical Management
    DECEMBER 14, 2018 INTERAGENCY COMMITTEE ON CHEMICAL MANAGEMENT EXECUTIVE ORDER NO. 13-17 REPORT TO THE GOVERNOR WALKE, PETER Table of Contents Executive Summary ...................................................................................................................... 2 I. Introduction .......................................................................................................................... 3 II. Recommended Statutory Amendments or Regulatory Changes to Existing Recordkeeping and Reporting Requirements that are Required to Facilitate Assessment of Risks to Human Health and the Environment Posed by Chemical Use in the State ............................................................................................................................ 5 III. Summary of Chemical Use in the State Based on Reported Chemical Inventories....... 8 IV. Summary of Identified Risks to Human Health and the Environment from Reported Chemical Inventories ........................................................................................................... 9 V. Summary of any change under Federal Statute or Rule affecting the Regulation of Chemicals in the State ....................................................................................................... 12 VI. Recommended Legislative or Regulatory Action to Reduce Risks to Human Health and the Environment from Regulated and Unregulated Chemicals of Emerging Concern ..............................................................................................................................
    [Show full text]