Featured Articles : Neuroscience Gateway

Total Page:16

File Type:pdf, Size:1020Kb

Featured Articles : Neuroscience Gateway FEATURED ARTICLES With friends like these... Neuroscience Gateway (May 2007) | doi:10.1038/aba1747 Using a proteomics approach, researchers identify 234 proteins that bind to the protein associated with Huntington's disease and may modify disease progression. Powerful people involved in scandals often take their associates down with them when they fall from grace. Similarly, some mutant proteins involved in neurodegeneration bind and sequester proteins important in cellular function in inclusion bodies that clog cellular functions. Huntington's disease is a fatal neurodegenerative disorder caused by the polyglutamine expansion of the huntingtin protein, which forms potentially toxic cellular aggregates. Kaltenbach et al. identify over 200 proteins, including several potential therapeutic targets, that bind to normal and polyglutamine-expanded huntingtin in a high-throughput proteomics screen reported in PLoS Genetics. Normally, the amino terminus of huntingtin contains several repeats of the amino acid glutamine. In people with Huntington's disease, the huntingtin polyglutamine tract contains more than 35 glutamines. Symptoms of Huntington's disease, including involuntary movements (chorea), muscle rigidity and cognitive dysfuntion, begin during middle age. There is no cure, and most patients die within 15 years of symptom onset. The authors screened for proteins in mouse and human brain that interact with normal and polyglutamine-expanded huntingtin by affinity purification followed by mass spectrometry and yeast two- hybrid. They used 'baits' from various regions of huntingtin protein. Regardless of the number of glutamine repeats, only baits from the amino terminus of huntingtin (amino acids 1 to 90) formed complexes with other proteins. After stringent filtering, affinity purification identified 130 and yeast two-hybrid identified 104 mouse and human proteins that bound to normal or polyglutamine-expanded huntingtin. The two proteomics techniques identified different sets of huntingtin-interacting proteins. Affinity purification pulled out more proteins involved in metabolism, whereas yeast two-hybrid screening pulled out more proteins involved in transcription, cell signaling and protein turnover. Only 4 proteins were common to both lists: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), clathrin, pyruvate kinase and tyrosine 3- monooxygenase/tryptophan 5-monooxygenase activation protein, beta (YWHAB). Do the identified proteins affect neurodegeneration? Polyglutamine-expanded huntingtin induces degeneration of Drosophila photoreceptors. The authors mutated or overexpressed genes encoding 60 of the 234 huntingtin- interacting proteins in Drosophila expressing polyglutamine- expanded huntingtin. Altered expression of 27 of the proteins (45%) modified photoreceptor degeneration. Loss of function of 17 proteins reduced neurodegeneration, suggesting that drugs that inhibit these proteins might prolong survival for people with Huntington's disease. SNARE proteins are important in the fusion of neurotransmitter- fillled synaptic vesicles to neuron membranes. Wild-type and mutant huntingtin associated with several SNARE proteins, including syntaxin 1a (STX1a), N-ethylmaleimide sensitive fusion protein attachment protein alpha (NAPA), the delta subunit of the voltage-gated calcium channel (CACNA2D1) and synaptosomal- associated protein 25 (SNAP25). For STX1a, NAPA and CACNA2D1, partial knockdown decreased and overexpression increased neurodegeneration induced by polyglutamine-expanded huntingtin. Reduced expression of STX1a increased lifespan and improved neuromuscular function for Drosophila expressing polyglutamine-expanded huntingtin. The SNARE proteins did not show a preference for wild-type or polyglutamine-expanded huntingtin, suggesting that huntingtin normally interacts with SNARE proteins, and the polyglutamine expansion of huntingtin either disturbs the interaction or disturbs SNARE protein function. Perhaps other polyglutamine expansion disorders, including spinocerebellar ataxia and Kennedy's disease, also prevent the normal function of synaptic proteins. Debra Speert, 1. L. S.Kaltenbachet al.Huntingtin interacting proteins are genetic modifiers of neurodegeneration.PLoS Genetics.3,e82–(2007) © 2008 Nature Publishing Group - All Rights Reserved | Privacy policy.
Recommended publications
  • An Arf1 Synthetic Lethal Screen Identifies a New Clathrin Heavy
    Copyright 1998 by the Genetics Society of America An arf1D Synthetic Lethal Screen Identi®es a New Clathrin Heavy Chain Conditional Allele That Perturbs Vacuolar Protein Transport in Saccharomyces cerevisiae Chih-Ying Chen and Todd R. Graham Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235 Manuscript received March 5, 1998 Accepted for publication June 16, 1998 ABSTRACT ADP-ribosylation factor (ARF) is a small GTP-binding protein that is thought to regulate the assembly of coat proteins on transport vesicles. To identify factors that functionally interact with ARF, we have performed a genetic screen in Saccharomyces cerevisiae for mutations that exhibit synthetic lethality with an arf1D allele and de®ned seven genes by complementation tests (SWA1-7 for synthetically lethal with arf1D). Most of the swa mutants exhibit phenotypes comparable to arf1D mutants such as temperature-conditional growth, hypersensitivity to ¯uoride ions, and partial protein transport and glycosylation defects. Here, we report that swa5-1 is a new temperature-sensitive allele of the clathrin heavy chain gene (chc1-5), which carries a frameshift mutation near the 39 end of the CHC1 open reading frame. This genetic interaction between arf1 and chc1 provides in vivo evidence for a role for ARF in clathrin coat assembly. Surprisingly, strains harboring chc1-5 exhibited a signi®cant defect in transport of carboxypeptidase Y or carboxypepti- dase S to the vacuole that was not observed in other chc1 ts mutants. The kinetics of invertase secretion or transport of alkaline phosphatase to the vacuole were not signi®cantly affected in the chc1-5 mutant, further implicating clathrin speci®cally in the Golgi to vacuole transport pathway for carboxypeptidase Y.
    [Show full text]
  • ADP-Ribosylation Factor, a Small GTP-Binding Protein, Is Required for Binding of the Coatomer Protein Fl-COP to Golgi Membranes JULIE G
    Proc. Natl. Acad. Sci. USA Vol. 89, pp. 6408-6412, July 1992 Biochemistry ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein fl-COP to Golgi membranes JULIE G. DONALDSON*, DAN CASSEL*t, RICHARD A. KAHN*, AND RICHARD D. KLAUSNER* *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, and tLaboratory of Biological Chemistry, Division of Cancer Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 Communicated by Marc Kirschner, April 20, 1992 (receivedfor review February 11, 1992) ABSTRACT The coatomer is a cytosolic protein complex localized to the Golgi complex, although their functions have that reversibly associates with Golgi membranes and is Impli- not been defined. Distinct among these proteins is the ADP- cated in modulating Golgi membrane transport. The associa- ribosylation factor (ARF), originally identified as a cofactor tion of 13-COP, a component of coatomer, with Golgi mem- required for in vitro cholera toxin-catalyzed ADP- branes is enhanced by guanosine 5'-[v-thioltriphosphate ribosylation of the a subunit of the trimeric GTP-binding (GTP[yS]), a nonhydrolyzable analogue of GTP, and by a protein G, (G,.) (19). ARF is an abundant cytosolic protein mixture of aluminum and fluoride ions (Al/F). Here we show that reversibly associates with Golgi membranes (20, 21). that the ADP-ribosylation factor (ARF) is required for the ARF has been shown to be present on Golgi coated vesicles binding of (-COP. Thus, 13-COP contained in a coatomer generated in the presence of GTP[yS], but it is not a com- fraction that has been resolved from ARF does not bind to Golgi ponent of the cytosolic coatomer (22).
    [Show full text]
  • Dynamin Action at the Final Stage of Clathrin- Mediated Endocytosis
    Dynamin Action at the Final Stage of Clathrin- Mediated Endocytosis Ning Fang ( [email protected] ) Georgia State University https://orcid.org/0000-0003-4710-0984 Xiaodong Cheng Georgia State University Kuangcai Chen Georgia State University https://orcid.org/0000-0002-9321-9225 Bin Dong Georgia State University https://orcid.org/0000-0002-3196-0712 Meek Yang Georgia State University Seth Filbrun Georgia State University Yong Myoung Georgia State University Teng-Xiang Huang Georgia State University Yan Gu The Bristol-Myers Squibb Company Gufeng Wang Georgia State University Article Keywords: Dynamin, clathrin-mediated endocytosis, scission, vesicle ssion Posted Date: February 5th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-134570/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/25 Abstract Dynamin plays an important role in clathrin-mediated endocytosis by cutting the neck of nascent vesicles from the cell membrane. Gold nanorods were used as imaging probes to observe dynamin action on cargo vesicles during live endocytosis events. Invariant is that at the peak of dynamin accumulation, the cargo-containing vesicle always gives abrupt, right-handed rotations that nishes in a short time (~ 0.28 s). The large and quick twist, herein named the super twist, is the result of the coordinated dynamin helix action upon GTP hydrolysis. After the super twist, the rotational freedom of the vesicle drastically increases, accompanied with simultaneous or delayed translational movement, indicating that it detaches from the cell membrane. These observations suggest that dynamin-mediated scission at the nal stage involves a large torque generated by coordinated actions of multiple dynamins in the helix, which is the main driving force for scission.
    [Show full text]
  • Membrane Remodeling in Clathrin-Mediated Endocytosis Volker Haucke1,2,* and Michael M
    © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs216812. doi:10.1242/jcs.216812 REVIEW Membrane remodeling in clathrin-mediated endocytosis Volker Haucke1,2,* and Michael M. Kozlov3,* ABSTRACT membrane fission and vesicle uncoating to eventually allow fusion Clathrin-mediated endocytosis is an essential cellular mechanism by of the nascent endocytic vesicle with endosomes (Box 1). which all eukaryotic cells regulate their plasma membrane composition In spite of important advances in the characterization of these to control processes ranging from cell signaling to adhesion, migration factors, key questions regarding the endocytic process remain. and morphogenesis. The formation of endocytic vesicles and For example, different models have been proposed regarding the tubules involves extensive protein-mediated remodeling of the initiation of clathrin-coated pit (CCP) formation and the onset of plasma membrane that is organized in space and time by protein– membrane curvature acquisition. Moreover, knowledge regarding protein and protein–phospholipid interactions. Recent studies the nanoscale distribution of endocytic proteins within the bilayer combining high-resolution imaging with genetic manipulations of plane during vesicle formation and the mechanisms that guide the endocytic machinery and with theoretical approaches have led their orchestrated assembly and disassembly is only now beginning to novel multifaceted phenomenological data of the temporal and to emerge. Finally, our understanding of the nature and dynamics spatial organization of the endocytic reaction. This gave rise to of membrane phospholipids (Box 2) and their associations with various – often conflicting – models as to how endocytic proteins endocytic proteins during endocytic membrane remodeling and their association with lipids regulate the endocytic protein remains limited.
    [Show full text]
  • Cryo-Tomography of Coat Complexes ISSN 2059-7983
    research papers Visualizing membrane trafficking through the electron microscope: cryo-tomography of coat complexes ISSN 2059-7983 Evgenia A. Markova and Giulia Zanetti* Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England. Received 8 March 2019 *Correspondence e-mail: [email protected] Accepted 12 April 2019 Coat proteins mediate vesicular transport between intracellular compartments, Keywords: cryo-electron tomography; which is essential for the distribution of molecules within the eukaryotic cell. three-dimensional reconstruction; coat proteins; The global arrangement of coat proteins on the membrane is key to their vesicular transport; COPII; subtomogram function, and cryo-electron tomography and subtomogram averaging have been averaging. used to study membrane-bound coat proteins, providing crucial structural insight. This review outlines a workflow for the structural elucidation of coat proteins, incorporating recent developments in the collection and processing of cryo-electron tomography data. Recent work on coat protein I, coat protein II and retromer performed on in vitro reconstitutions or in situ is summarized. These studies have answered long-standing questions regarding the mechanisms of membrane binding, polymerization and assembly regulation of coat proteins. 1. Introduction Recent advances in cryo-electron microscopy (cryo-EM) have enabled numerous high-resolution studies which have addressed long-standing structural biology questions. The large body of cryo-EM work carried out for protein structure characterization has utilized single-particle electron micro- scopy (Cheng, 2018). Recently, developments in hardware, data collection and data processing have placed cryo-electron tomography (cryo-ET) and subtomogram averaging (STA) at the forefront of structural studies of repetitive assemblies, reaching resolutions comparable to those of single-particle EM (Schur et al., 2016; Wan et al., 2017; Hutchings et al., 2018; Dodonova et al., 2017; Himes & Zhang, 2018).
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • A Trafficome-Wide Rnai Screen Reveals Deployment of Early and Late Secretory Host Proteins and the Entire Late Endo-/Lysosomal V
    bioRxiv preprint doi: https://doi.org/10.1101/848549; this version posted November 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 A trafficome-wide RNAi screen reveals deployment of early and late 2 secretory host proteins and the entire late endo-/lysosomal vesicle fusion 3 machinery by intracellular Salmonella 4 5 Alexander Kehl1,4, Vera Göser1, Tatjana Reuter1, Viktoria Liss1, Maximilian Franke1, 6 Christopher John1, Christian P. Richter2, Jörg Deiwick1 and Michael Hensel1, 7 8 1Division of Microbiology, University of Osnabrück, Osnabrück, Germany; 2Division of Biophysics, University 9 of Osnabrück, Osnabrück, Germany, 3CellNanOs – Center for Cellular Nanoanalytics, Fachbereich 10 Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany; 4current address: Institute for Hygiene, 11 University of Münster, Münster, Germany 12 13 Running title: Host factors for SIF formation 14 Keywords: siRNA knockdown, live cell imaging, Salmonella-containing vacuole, Salmonella- 15 induced filaments 16 17 Address for correspondence: 18 Alexander Kehl 19 Institute for Hygiene 20 University of Münster 21 Robert-Koch-Str. 4148149 Münster, Germany 22 Tel.: +49(0)251/83-55233 23 E-mail: [email protected] 24 25 or bioRxiv preprint doi: https://doi.org/10.1101/848549; this version posted November 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
    [Show full text]
  • A Targeted Rnai Screen Identifies Endocytic Trafficking Factors That
    Diabetes Volume 67, March 2018 385 A Targeted RNAi Screen Identifies Endocytic Trafficking Factors That Control GLP-1 Receptor Signaling in Pancreatic b-Cells Teresa Buenaventura,1 Nisha Kanda,1 Phoebe C. Douzenis,1 Ben Jones,2 Stephen R. Bloom,2 Pauline Chabosseau,1 Ivan R. Corrêa Jr.,3 Domenico Bosco,4 Lorenzo Piemonti,5,6 Piero Marchetti,7 Paul R. Johnson,8 A.M. James Shapiro,9 Guy A. Rutter,1 and Alejandra Tomas1 Diabetes 2018;67:385–399 | https://doi.org/10.2337/db17-0639 The glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) is a key binding, GLP-1Rs signal through stimulatory G (Gs) pro- target for type 2 diabetes (T2D) treatment. Because endocytic teins to raise intracellular cAMP levels and modulate insulin trafficking of agonist-bound receptors is one of the most secretion from pancreatic b-cells. important routes for regulation of receptor signaling, a better As with other G protein–coupled receptors (GPCRs), SIGNAL TRANSDUCTION understanding of this process may facilitate the develop- GLP-1R signaling is tightly regulated through endocytic ment of new T2D therapeutic strategies. Here, we screened trafficking (2). Activated GLP-1Rs are rapidly internalized – 29 proteins with known functions in G protein coupled recep- and recycled to the plasma membrane or distributed through- fi tor traf cking for their role in GLP-1R potentiation of insulin out endocytic compartments (3). Despite the pivotal role b fi secretion in pancreatic -cells. We identify ve (clathrin, of trafficking in GPCR signaling, neither the molecular dynamin1, AP2, sorting nexins [SNX] SNX27, and SNX1) details nor the key factors responsible for GLP-1R endo- that increase and four (huntingtin-interacting protein 1 cytosis and postendocytic sorting have been thoroughly [HIP1], HIP14, GASP-1, and Nedd4) that decrease insulin investigated.
    [Show full text]
  • New Perspectives on SNARE Function in the Yeast Minimal Endomembrane System
    G C A T T A C G G C A T genes Review New Perspectives on SNARE Function in the Yeast Minimal Endomembrane System James H. Grissom 1, Verónica A. Segarra 2 and Richard J. Chi 1,* 1 Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] 2 Department of Biology, High Point University, High Point, NC 27268, USA; [email protected] * Correspondence: [email protected] Received: 30 June 2020; Accepted: 2 August 2020; Published: 6 August 2020 Abstract: Saccharomyces cerevisiae is one of the best model organisms for the study of endocytic membrane trafficking. While studies in mammalian cells have characterized the temporal and morphological features of the endocytic pathway, studies in budding yeast have led the way in the analysis of the endosomal trafficking machinery components and their functions. Eukaryotic endomembrane systems were thought to be highly conserved from yeast to mammals, with the fusion of plasma membrane-derived vesicles to the early or recycling endosome being a common feature. Upon endosome maturation, cargos are then sorted for reuse or degraded via the endo-lysosomal (endo-vacuolar in yeast) pathway. However, recent studies have shown that budding yeast has a minimal endomembrane system that is fundamentally different from that of mammalian cells, with plasma membrane-derived vesicles fusing directly to a trans-Golgi compartment which acts as an early endosome. Thus, the Golgi, rather than the endosome, acts as the primary acceptor of endocytic vesicles, sorting cargo to pre-vacuolar endosomes for degradation. The field must now integrate these new findings into a broader understanding of the endomembrane system across eukaryotes.
    [Show full text]
  • Sorting Nexin 9 in Clathrin-Mediated Endocytosis
    UMEÅ UNIVERSITY MEDICAL DISSERTATIONS New Series No. 875; ISSN 0346-6612; ISBN 91-7305-599-9 Department of Medical Biochemistry and Biophysics Umeå University, Sweden Editor: The Dean of the Faculty of Medicine Sorting Nexin 9 in Clathrin-mediated Endocytosis Richard Lundmark Department of Medical Biochemistry and Biophysics Umeå University, Sweden Umeå 2004 © Richard Lundmark ISBN 91-7305-599-9 Printed in Sweden at Solfjädern Offset AB Umeå 2004 Tillägnad min älskade familj Samuel, Elias och Ida TABLE OF CONTENTS ABBREVIATIONS ...................................................................................................................2 ABSTRACT...............................................................................................................................3 PUBLICATION LIST ...............................................................................................................4 OVERVIEW ..............................................................................................................................5 1. INTRODUCTION .................................................................................................................5 2. ADAPTOR PROTEIN COMPLEXES..................................................................................6 3. CLATHRIN ...........................................................................................................................6 4. ENDOCYTOSIS....................................................................................................................7
    [Show full text]
  • Vesicle Coats: Structure, Function, And
    Review Vesicle coats: structure, function, and general principles of assembly 1 2 2 1,3 Marco Faini , Rainer Beck , Felix T. Wieland , and John A.G. Briggs 1 Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany 2 Heidelberg University Biochemistry Center, Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany 3 Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany The transport of proteins and lipids between distinct The three best-characterized types of vesicular carrier cellular compartments is conducted by coated vesicles. involved in intracellular trafficking are distinguished by These vesicles are formed by the self-assembly of coat their different coat proteins and their different trafficking proteins on a membrane, leading to collection of the routes. Clathrin-coated vesicles (CCVs) act in the late vesicle cargo and membrane bending to form a bud. secretory pathway and in the endocytic pathway, Scission at the bud neck releases the vesicle. X-ray COPII-coated vesicles export proteins from the endoplas- crystallography and electron microscopy (EM) have re- mic reticulum (ER), and COPI-coated vesicles shuttle cently generated models of isolated coat components within the Golgi organelle and from the Golgi back to and assembled coats. Here, we review these data to the ER. Despite having different compartment specifici- present a structural overview of the three main coats: ties and different structural components, the mechanisms clathrin, COPII, and COPI. The three coats have similar of their formation follow similar rules. The time and place function, common ancestry, and structural similarities, at which vesicle formation occurs are most often regulated but exhibit fundamental differences in structure and by small GTP-binding proteins.
    [Show full text]
  • Studies on the Inhibition of Endosome Fusion by Gtpγs-Bound ARF
    Journal of Cell Science 112, 3477-3485 (1999) 3477 Printed in Great Britain © The Company of Biologists Limited 1999 JCS0438 Studies on the inhibition of endosome fusion by GTPγS-bound ARF Arwyn T. Jones1, David J. Spiro1, Tomas Kirchhausen2, Paul Melançon3 and Marianne Wessling-Resnick1,* 1Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA 2Department of Cell Biology, Harvard Medical School, Center for Blood Research, Boston, MA 02115, USA 3Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada *Author for correspondence (e-mail: [email protected]) Accepted 28 July; published on WWW 30 September 1999 SUMMARY Using a cell free assay, we have previously shown that ARF independent of endosomal acidification since assays is not required for endosome fusion but that inhibition of performed in the presence of the vacuolar ATPase inhibitor fusion by GTPγS is dependent on a cytosolic pool of ARFs. bafilomycin A1 are equally sensitive to GTPγS-bound ARF. Since ARF is proposed to function in intracellular Finally, in contrast to reported effects on lysosomes, we membrane traffic by promoting vesicle biogenesis, and demonstrate that ARF-GTPγS does not induce endosomal components of clathrin- and COP-coated vesicles have been lysis. These combined data argue that sequestration of localized on endosomal structures, we investigated whether known coat proteins to membranes by activated ARF is not ARF-mediated inhibition of early endosome fusion involves involved in the inhibition of early endosome fusion and that the recruitment or irreversible association of these proteins its capacity to inhibit fusion involves other specific onto endosomal membranes.
    [Show full text]