Erwinia Chrysanthemi (Dickeya Spp.) What It Is, and What You Can Do

Total Page:16

File Type:pdf, Size:1020Kb

Erwinia Chrysanthemi (Dickeya Spp.) What It Is, and What You Can Do Erwinia chrysanthemi (Dickeya spp.) What it is, and what you can do The potato erwinias can all cause tuber soft rots, but only Erwinia carotovora subspecies atroseptica (Eca) and Erwinia chrysanthemi (Ech) produce economically damaging disease in the growing crop. Eca is the main cause of blackleg, but Ech causes sporadic stem rots in warmer parts of Great Britain when the temperature rises above 25ºC. It appears to be spreading on potatoes in Europe and reached England by 1990 . In common with other potato erwinias Ech is mostly spread via seed but can be controlled through good hygiene. The Safe Haven Certification Scheme, originally designed to protect against ring rot introduction, offers significant benefits for controlling the spread of all bacterial diseases, including Ech. Ech (or Dickeya dianthicola, the species that has been found in GB) has the potential to cause high levels of wilting in potato crops. This is particularly evident in the warmer southerly potato growing regions of Europe, but incidences in Britain are becoming more common as we experience warmer spring and summer conditions. It has not been found in Scotland to date. There is also evidence that low tuber inoculum levels can cause significant disease. The factors influencing disease development are generally the same as for blackleg. Best practice 1. BPC has published a disease risk assessment guide for blackleg and soft rot which is directly applicable to Ech (Dickeya spp.). In summary: • Check varietal susceptibility • Avoid de-sprouting at planting • Remove rots and clean grader prior to • Do not over-irrigate grading • Harvest crop as early as possible • Avoid poorly-drained fields • Minimise damage at harvest • Avoid short rotations • During early storage ventilate • Use diagnostics to test seed stocks for using dry air Erwinia (but see cautionary note in guide) See Managing the risk of blackleg and soft rot published by BPC*, January 2007. British Potato Council, 4300 Nash Court, John Smith Drive, Oxford Business Park South, Oxford, OX4 2RT Erwinia chrysanthemi (Dickeya spp.) – What it is, and what you can do 2. There is a major opportunity to reduce the risk of introducing Dickeya spp. into Britain through sourcing seed via the “Safe Haven Certification Scheme”, which was originally introduced to protect British growers from ring rot (Clavibacter michiganensis subsp. sepedonicus). This scheme involves minimal bureaucracy and reduces risk through a series of best practice standards covering all of the infection points. Combined with existing seed classification schemes and phytosanitary controls, the Safe Haven Certification Scheme provides the best chance of achieving exclusion. Action • Obtain and read the BPC’s risk guide Managing the risk of blackleg and soft rot. Available from BPC Publications.* • Read about the Safe Haven Certification Scheme – there is an 8 page guide available on the BPC website, or from BPC Publications.* Seed growers: Consider joining the scheme. Ware growers: Consider buying exclusively Safe Haven seed. See also: www.assuredproduce.co.uk/safehaven • Obtain and read the BPC’s report: Erwinia chrysanthemi (Dickeya spp.) – The Facts written by Dr John Elphinstone of the Central Science Laboratory, and Dr Ian Toth of the Scottish Crop Research Institute. Available on the BPC website, or from BPC publications.* * BPC Publications tel: 01865 782222 (24 hours), fax: 01865 782283, email: [email protected], website: www.potato.org.uk ht ht g g ri ri py py © CSL Crown Co © CSL Crown Co © CSL Crown Copyright Dickeya dianthicola (=Ech): internal stem symptoms © British Potato Council March 2007 2 Erwinia chrysanthemi (Dickeya spp.) – What it is, and what you can do Executive summary from: “Erwinia chrysanthemi (Dickeya spp.) – The Facts” The pathogen Erwinia chrysanthemi (Echr) is a complex of different bacteria now reclassified as species of Dickeya. While D. dadantii and D. zeae (formerly Echr biovar 3 or 8) are pathogens of potato in warmer countries, D. dianthicola (formerly Echr biovar 1 and 7) appears to be spreading on potatoes in Europe. The revised nomenclature of these pathogens has distinguished them from other soft rot erwiniae (including P. atrosepticum and P. carotovorum). Symptoms Symptoms of soft rot disease on potato tubers are similar whether caused by Dickeya or Pectobacterium spp. In the field, disease develops following movement of either pathogen from the stem base. Whereas P. atrosepticum typically causes blackleg symptoms under cool wet conditions, symptoms due to Dickeya spp. have been more commonly observed to occur under warm conditions (when temperatures exceed 25 ºC). The foliar symptoms most commonly associated with D. dianthicola in warm dry growing conditions include brown staining of the vascular tissues and occasionally necrosis and hollowing of the stem, which usually remains green until leaf desiccation is complete. Symptoms due to Dickeya spp. are also thought to occur later in the season. However, there is some dispute as to whether disease symptoms and timing alone can differentiate the two pathogens. Symptoms caused by D. dianthicola under warm dry conditions can be confused with those of other wilting diseases. Geographic distribution Dickeya spp. were first reported on potato in Europe in the Netherlands in the 1970s and has since been reported on potato in a number of other European countries. To date all European potato isolates appear to be D. dianthicola, although other Dickeya spp. have been found on potato in other countries including Australia and Peru. The pathogen has been reported worldwide on many hosts as Erwinia chrysanthemi, but the corresponding Dickeya spp. has yet to be determined in most cases. Over 40 outbreaks of D. dianthicola in England have been officially confirmed by laboratory testing at CSL since 1990, and is probably more widespread in potato crops in England and Wales than official records suggest. Most cases appear to be from imported seed but at least one was from UK-produced seed. To date there have been no findings of Dickeya spp. on potatoes in Scotland. Biology, survival and dissemination of the pathogen Factors influencing disease development on potato caused by Dickeya spp. are generally the same as for P. atrosepticum, with the exception of temperature, where a warmer spring and summer favours disease development by Dickeya spp. A lower level of inoculum, irrigation from contaminated water courses and more rapid movement through the vascular system of the plant may also favour disease caused by Dickeya spp. over P. atrosepticum. The most important means of dissemination for potato is movement of latently infected seed tubers. In other host plants, of which there is a wide range, spread over long distances and especially across borders, is mainly via infected vegetative material. Dickeya spp. have been identified in water courses in several countries and in one case in Sweden on the riparian weed Solanum dulcamara. Occurrence in GB watercourses or S. dulcamara is unknown. The high host diversity across the Dickeya species suggests that wild host plants could play an important role in survival. In plant-free soil, survival is less than 6 months and, therefore, over-wintering is unlikely. © British Potato Council March 2007 3 Erwinia chrysanthemi (Dickeya spp.) – What it is, and what you can do Assessment of risk and economic loss Unpublished UK studies found that D. dianthicola was highly contagious and aggressive with low tuber inoculum levels leading to high wilting incidence in field plots. However, losses due to potential infections by Dickeya spp. other than D. dianthicola are not expected to be significant under UK growing conditions, although seed infections may result in significant disease levels if seed is exported to warm climates or our own climate warms. Control and diagnostics Dickeya, like P. atrosepticum, is regarded as a seed-borne pathogen and is controlled largely through seed classification in line with domestic and EU legislation. In the UK, as in other European countries, the seed potato classification schemes set tolerances for diseases encountered during visual inspections of growing crops and harvested tubers. There is no official post-harvest testing programme, although voluntary testing services provide useful decision support. On-farm control measures for Dickeya spp. are currently the same as for P. atrosepticum, largely because there is insufficient data available to support alternative Dickeya-specific measures. However, where information is available, it suggests that the use of diagnostics, avoiding over-irrigation and controlling secondary hosts may be a way to avoid disease caused by Dickeya spp. In other European countries, as in the UK, there are no Dickeya spp.-specific control measures and no compulsory testing in operation. Some countries attempt to differentiate Dickeya spp. and P. atrosepticum based on visual inspection, while others also use diagnostics but on a voluntary basis. There are media-, antibody- and PCR-based diagnostics available for Dickeya spp. and in some cases for the soft rot erwiniae as a group. All three method types are used throughout Europe although PCR-based methods appear to be the most reliable. Most countries do not differentiate between these pathogens but consider disease as caused by “soft rot erwiniae” and use control measures accordingly. A major opportunity we have to reduce the risk of introducing Dickeya spp. into the UK is by growers joining the new “Safe Haven” Scheme. Threats D. dianthicola now appears to be as important on potato as P. atrosepticum in several Northern European countries, and experts consider it to be increasing in importance. It is very likely to pose a threat to UK potato production and has already been detected in an English seed crop. The range of wilting symptoms due to D. dianthicola estimated in English crops has varied from <1% to 20-30%. Currently, the protected Scottish seed potato regions appear to be clear of this pathogen but for how long remains to be seen. Effective control measures implemented now are our best, and possible only, chance of preventing economic losses caused by this pathogen as it gains a foothold in the UK.
Recommended publications
  • Phylogenetic Analysis of Erwinia Species Based on 16S Rrna Gene Sequences?
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Oct. 1997, p. 1061-1067 Voi. 47, No. 4 0020-771 3/97/$04.00+0 Copyright 0 1997, International Union of Microbiological Societies Phylogenetic Analysis of Erwinia Species Based on 16s rRNA Gene Sequences? SOON-WO KWON,'" SEUNG-JOO GO,' HEE-WAN KANG,l JIN-CHANG RYU,l AND JIN-KI J02 National Institute of Agricultural Science & Technology, Suwon, and Department of Animal Science, Kyungpook National University, Daegu, Karea The phylogenetic relationships of the type strains of 16 Erwinia species were investigated by performing a comparative analysis of the sequences of the 16s rRNA genes of these organisms. The sequence data were analyzed by the neighbor-joining method, and each branch was supported by moderate bootstrap values. The phylogenetic tree and sequence analyses confirmed that the genus Erwinia is composed of species that exhibit considerable heterogeneity and form four clades that are intermixed with members of other genera, such as Escherichia coli, Klebsiella pneumoniae, and Serratia marcescens. Cluster I includes the type strains of Envinia herbicola, Erwinia milletiae, Erwinia ananas, Erwinia uredovora, and Erwinia stewartii and corresponds to Dye's herbicola group. Cluster I1 consists of Erwinia persicinus, Erwinia rhapontici, Erwinia amylovora, and Erwinia cypripedii. Cluster I11 consists of Erwinia carotovora subspecies and Erwinia chrysanthemi and is characterized by the production of pectate lyases and cellulases. Envinia salicis, Erwinia rubrifaciens, and Erwinia nigrijluens form the cluster that is most distantly related to other Erwinia species. The data from the sequence analyses are discussed in the context of biochemical and DNA-DNA hybridization data. The genus Erwinia was proposed by Winslow et al.
    [Show full text]
  • Erwinia Chrysanthemi the Facts
    Erwinia chrysanthemi (Dickeya spp.) The Facts Compiled for the British Potato Council by; Dr John Elphinstone, Central Science Laboratory Dr Ian Toth, Scottish Crop Research Institute Erwinia chrysanthemi (Dickeya spp.) – The Facts Contents Executive Summary 1. Introduction 2. The pathogen 3. Symptoms • Distinction from symptoms caused by P. atrosepticum and P. carotovorum • Distinction from other diseases 4. Geographical distribution • Presence in GB • Europe • Overseas 5. Biology, survival and dissemination of the pathogen • Factors influencing disease development • Dissemination • Survival 6. Assessment of Risk and Economic Loss • Quarantine status • Potential GB economic impact • Economic impact to overseas markets 7. Control • Statutory (certification) • On farm • Specific approaches and control measures in other countries • Best practice guide 8. Diagnostic methods 9. Knowledge gaps 10. Threats, Opportunities and Recommendations 11. References 12. Glossary of terms 2 © British Potato Council 2007 Erwinia chrysanthemi (Dickeya spp.) – The Facts Executive Summary The pathogen Erwinia chrysanthemi (Echr) is a complex of different bacteria now reclassified as species of Dickeya. While D. dadantii and D. zeae (formerly Echr biovar 3 or 8) are pathogens of potato in warmer countries, D. dianthicola (formerly Echr biovar 1 and 7) appears to be spreading on potatoes in Europe. The revised nomenclature of these pathogens has distinguished them from other soft rot erwiniae (including P. atrosepticum and P. carotovorum). Symptoms Symptoms of soft rot disease on potato tubers are similar whether caused by Dickeya or Pectobacterium spp. In the field, disease develops following movement of either pathogen from the stem base. Whereas P. atrosepticum typically causes blackleg symptoms under cool wet conditions, symptoms due to Dickeya spp.
    [Show full text]
  • Data Sheet on Erwinia Chrysanthemi
    EPPO quarantine pest Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Erwinia chrysanthemi IDENTITY Name: Erwinia chrysanthemi Burkholder et al. Synonyms: Erwinia carotovora (Jones) Bergey et al. f.sp. parthenii Starr Erwinia carotovora (Jones) Bergey et al. f.sp. dianthicola (Hellmers) Bakker Pectobacterium parthenii (Starr) Hellmers Erwinia carotovora (Jones) Bergey et al. var. chrysanthemi (Burkholder et al.) Dye Taxonomic position: Bacteria: Gracilicutes Notes on taxonomy and nomenclature: Six pathovars of E. chrysanthemi are mentioned in the Bergey's Manual of Systematic Bacteriology (pv. chrysanthemi, pv. dianthicola, pv. dieffenbachiae, pv. paradisiaca, pv. parthenii and pv. zeae) on the basis of their host plants (Lelliott & Dickey, 1984). The pathovars are more or less related to six biochemical subdivisions (I-VI, Dickey & Victoria, 1980). Nine biovars (1-9; Ngwira & Samson, 1990) have been proposed for non-ambiguous biochemical typing. Some of the biochemical variants may be elevated to subspecies level or to another species name in the near future. Bayer computer code: ERWICH (also ERWIZE) EPPO A2 list: No. 53 EU Annex designation: II/A2 - pv. dianthicola only HOSTS Diseases have most often been reported on bananas, carnations, chrysanthemums, Dahlia, Dieffenbachia spp., Euphorbia pulcherrima, Kalanchoe blossfeldiana, maize, Philodendron spp., potatoes, Saintpaulia ionantha, Syngonium podophyllum. E. chrysanthemi has also been naturally found to attack Allium fistulosum, Brassica chinensis, Capsicum, cardamoms, carrots, celery, chicory, Colocasia esculenta, Poaceae such as Brachiaria mutica, B. ruziziensis, Panicum maximum and Pennisetum purpureum, Hyacinthus sp., Leucanthemum maximum, lucerne, onions, pineapples, radishes, rice, Sedum spectabile, sugarcane, sorghum, sweet potatoes, tobacco, tomatoes, tulips and glasshouse ornamentals such as Aechmea fasciata, Aglaonema pictum, Anemone spp., Begonia intermedia cv.
    [Show full text]
  • International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/Ijsem.0.001485
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/ijsem.0.001485 Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Mobolaji Adeolu,† Seema Alnajar,† Sohail Naushad and Radhey S. Gupta Correspondence Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Radhey S. Gupta L8N 3Z5, Canada [email protected] Understanding of the phylogeny and interrelationships of the genera within the order ‘Enterobacteriales’ has proven difficult using the 16S rRNA gene and other single-gene or limited multi-gene approaches. In this work, we have completed comprehensive comparative genomic analyses of the members of the order ‘Enterobacteriales’ which includes phylogenetic reconstructions based on 1548 core proteins, 53 ribosomal proteins and four multilocus sequence analysis proteins, as well as examining the overall genome similarity amongst the members of this order. The results of these analyses all support the existence of seven distinct monophyletic groups of genera within the order ‘Enterobacteriales’. In parallel, our analyses of protein sequences from the ‘Enterobacteriales’ genomes have identified numerous molecular characteristics in the forms of conserved signature insertions/deletions, which are specifically shared by the members of the identified clades and independently support their monophyly and distinctness. Many of these groupings, either in part or in whole, have been recognized in previous evolutionary studies, but have not been consistently resolved as monophyletic entities in 16S rRNA gene trees. The work presented here represents the first comprehensive, genome- scale taxonomic analysis of the entirety of the order ‘Enterobacteriales’.
    [Show full text]
  • PECTOBACTERIUM CAROTOVORUM Subsp
    Journal of Plant Pathology (2017), 99 (1), 149-160 Edizioni ETS Pisa, 2017 149 PECTOBACTERIUM CAROTOVORUM subsp. ODORIFERUM ON CABBAGE AND CHINESE CABBAGE: IDENTIFICATION, CHARACTERIZATION AND TAXONOMIC RELATEDNESS OF BACTERIAL SOFT ROT CAUSAL AGENTS* M. Oskiera, M. Kałuz˙na, B. Kowalska and U. Smolin´ska Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100, Skierniewice, Poland SUMMARY INTRODUCTION This study was aimed to isolate, identify and character- Cabbage (Brassica oleracea L. var. capitata L.) and Chi- ize Pectobacterium spp. causing soft rot disease of cabbage nese cabbage (Brassica rapa L. subsp. pekinensis L.) are im- and Chinese cabbage in Central Poland. Of fifty-two plant portant vegetable crops commonly cultivated in Poland. samples of cabbage and Chinese cabbage showing disease The main pathogens of Brassicaceae plants are Pectobacte- symptoms collected in Central Poland from 2007-2010, 542 rium carotovorum subsp. carotovorum (Pcc), Pseudomonas bacterial isolates were obtained. Of isolates 117 caused soft marginalis pv. marginalis, Pseudomonas syringae pv. maculi- rot on cabbage and Chinese cabbage leaves and potato cola and Xanthomonas campestris pv. campestris (Rimmer et slices and showed pectinolytic activity on crystal violet al., 2007). It is also known that Pseudomonas viridiflava can pectate medium. PCR using Y1/Y2 primers specific for occur on Brassicaceae plants, such as Chinese cabbage (Ma- Pectobacterium genus revealed that twenty-three of them ciel et al., 2010). The most common disease of Brassicaceae belonged to this genus. Phenotypic characterization in is soft rot mainly caused by highly pectinolytic bacteria combination with DNA-based typing methods (rep-PCRs) from the genus Pectobacterium (formerly Erwinia).
    [Show full text]
  • Downloaded from Genbank to Female Eclosion at 9 Days
    ORIGINAL RESEARCH published: 02 June 2021 doi: 10.3389/fmicb.2021.670383 Gut Bacterial Diversity in Different Life Cycle Stages of Adelphocoris suturalis (Hemiptera: Miridae) Hui Xue 1,2, Xiangzhen Zhu 1,2, Li Wang 1,2, Kaixin Zhang 1,2, Dongyang Li 1,2, Jichao Ji 1,2, Lin Niu 1,2, Changcai Wu 1,2, Xueke Gao 1,2*, Junyu Luo 1,2* and Jinjie Cui 1,2* 1 State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China, 2 Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China Bacteria and insects have a mutually beneficial symbiotic relationship. Bacteria participate in several physiological processes such as reproduction, metabolism, and detoxification Edited by: Adly M. M. Abdalla, of the host. Adelphocoris suturalis is considered a pest by the agricultural industry and International Atomic Energy Agency, is now a major pest in cotton, posing a serious threat to agricultural production. As with Vienna, Austria many insects, various microbes live inside A. suturalis. However, the microbial composition Reviewed by: Mohammad Mehrabadi, and diversity of its life cycle have not been well-studied. To identify the species and Tarbiat Modares University, Iran community structure of symbiotic bacteria in A. suturalis, we used the HiSeq platform to Monica Rosenblueth, perform high-throughput sequencing of the V3–V4 region in the 16S rRNA of symbiotic National Autonomous University of Mexico, Mexico bacteria found in A. suturalis throughout its life stages. Our results demonstrated that *Correspondence: younger nymphs (1st and 2nd instar nymphs) have higher species richness.
    [Show full text]
  • Dickeya Spp. (Erwinia Chrysanthemi )
    Dickeya spp. (Erwinia chrysanthemi ) What it is…and what you can do The bacteria Dickeya spp. (formerly Erwinia chrysanthemi ) and Pectobacterium spp. (formerly Erwinia carotovora ) all cause tuber soft rots. Pectobacterium atrosepticum has traditionally been considered the main cause of blackleg in the UK, but in recent years certain Dickeya species have been increasingly found to cause wilts and stem rots in warmer seasons, especially when the temperature rises above 25 ºC . Dickeya dianthicola was first discovered in England in 1990 in crops grown from seed of non-UK origin. An additional aggressive Dickeya strain (proposed to be named Dickeya “solani” ) is also known to be spreading across Europe since at least 2005. In England, D. “solani” has been detected since 2007 on both seed and ware crops, again all grown from seed of non-UK origin. These bacteria are mostly spread via seed and can be controlled through good hygiene. The Safe Haven Certification Scheme, originally designed to protect against ring rot introduction, therefore also offers significant benefits for controlling the movement of Dickeya spp. on infected seed. Dickeya species have the potential to cause high levels of wilting in potato crops. They are particularly suited to the warmer southerly potato growing regions of Europe and Mediterranean countries, but incidences of up to 30% are also being observed in Britain as we experience warmer spring and summer conditions. There is also some evidence that low tuber inoculum levels may cause significant disease. A number of other Dickeya species have been shown to infect potatoes worldwide, including Dickeya zeae (in Australia), D.
    [Show full text]
  • Genome Sequence of the Enterobacterial Phytopathogen Erwinia Carotovora Subsp
    Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors K. S. Bell*†, M. Sebaihia*, L. Pritchard†, M. T. G. Holden*, L. J. Hyman†, M. C. Holeva†, N. R. Thomson*, S. D. Bentley*, L. J. C. Churcher*, K. Mungall*, R. Atkin*, N. Bason*, K. Brooks*, T. Chillingworth*, K. Clark*, J. Doggett*, A. Fraser*, Z. Hance*, H. Hauser*, K. Jagels*, S. Moule*, H. Norbertczak*, D. Ormond*, C. Price*, M. A. Quail*, M. Sanders*, D. Walker*, S. Whitehead*, G. P. C. Salmond‡, P. R. J. Birch†, J. Parkhill*§, and I. K. Toth†§ *The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom; †Plant–Pathogen Interactions Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom; and ‡Department of Biochemistry, Tennis Court Road, Cambridge University, Cambridge CB2 1QW, United Kingdom Edited by Robert Haselkorn, University of Chicago, Chicago, IL, and approved June 3, 2004 (received for review April 6, 2004) The bacterial family Enterobacteriaceae is notable for its well Genome sequencing of the phytopathogens Pseudomonas studied human pathogens, including Salmonella, Yersinia, Shi- syringae pv. tomato (13), Ralstonia solanacearum (14), Xan- gella, and Escherichia spp. However, it also contains several plant thomonas campestris pv. campestris and Xanthomonas axonopo- pathogens. We report the genome sequence of a plant pathogenic dis pv. citri (15), Xylella fastidiosa (16, 17), and Agrobacterium enterobacterium, Erwinia carotovora subsp. atroseptica (Eca) strain tumefaciens (18, 19), has yielded a wealth of information on novel SCRI1043, the causative agent of soft rot and blackleg potato and shared candidate phytopathogenicity determinants. Here, diseases.
    [Show full text]
  • Isolation and Characterization of Salmonella Jumbo-Phage Psal-SNUABM-04
    viruses Article Isolation and Characterization of Salmonella Jumbo-Phage pSal-SNUABM-04 Jun Kwon, Sang Guen Kim, Hyoun Joong Kim, Sib Sankar Giri , Sang Wha Kim , Sung Bin Lee and Se Chang Park * Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; [email protected] (J.K.); [email protected] (S.G.K.); [email protected] (H.J.K.); [email protected] (S.S.G.); [email protected] (S.W.K.); [email protected] (S.B.L.) * Correspondence: [email protected]; Tel.: +82-2-880-1282 Abstract: The increasing emergence of antimicrobial resistance has become a global issue. Therefore, many researchers have attempted to develop alternative antibiotics. One promising alternative is bacteriophage. In this study, we focused on a jumbo-phage infecting Salmonella isolated from exotic pet markets. Using a Salmonella strain isolated from reptiles as a host, we isolated and characterized the novel jumbo-bacteriophage pSal-SNUABM-04. This phage was investigated in terms of its morphology, host infectivity, growth and lysis kinetics, and genome. The phage was classified as Myoviridae based on its morphological traits and showed a comparatively wide host range. The lysis efficacy test showed that the phage can inhibit bacterial growth in the planktonic state. Genetic analysis revealed that the phage possesses a 239,626-base pair genome with 280 putative open reading frames, 76 of which have a predicted function and 195 of which have none. By genome comparison with other jumbo phages, the phage was designated as a novel member of Machinavirus composed of Erwnina phages.
    [Show full text]
  • Erwinia Amylovora INTERNATIONAL STANDARD for PHYTOSANITARY MEASURES PHYTOSANITARY for STANDARD INTERNATIONAL DIAGNOSTIC PROTOCOLS
    ISPM 27 27 ANNEX 13 ENG DP 13: Erwinia amylovora INTERNATIONAL STANDARD FOR PHYTOSANITARY MEASURES PHYTOSANITARY FOR STANDARD INTERNATIONAL DIAGNOSTIC PROTOCOLS Produced by the Secretariat of the International Plant Protection Convention (IPPC) This page is intentionally left blank This diagnostic protocol was adopted by the Standards Committee on behalf of the Commission on Phytosanitary Measures in August 2016. The annex is a prescriptive part of ISPM 27. ISPM 27 Diagnostic protocols for regulated pests DP 13: Erwinia amylovora Adopted 2016; published 2016 CONTENTS 1. Pest Information ............................................................................................................................... 3 2. Taxonomic Information .................................................................................................................... 3 3. Detection ........................................................................................................................................... 3 3.1 Detection in plants with symptoms ................................................................................... 4 3.1.1 Symptoms .......................................................................................................................... 4 3.1.2 Sampling and sample preparation ..................................................................................... 4 3.1.3 Isolation ............................................................................................................................. 5 3.1.3.1
    [Show full text]
  • Blackleg & Bacterial Soft Rot of Potato
    University of Kentucky College of Agriculture Plant Pathology Extension CooPeratIve extension Service UnIversity oF Kentucky College oF agricultUre, FooD anD envIronment Plant Pathology Fact Sheet PPFS-VG-18 Blackleg & Bacterial Soft Rot of Potato Kenneth W. Seebold Extension Plant Pathologist Introduction Blackleg and soft rot are bacterial diseases that cause heavy losses in Kentucky potato patches in some years. These diseases may result in missing hills when seed pieces are destroyed or the sprouts decay before they emerge from the ground. Serious rotting of tubers in potato hills and in storage can also occur. Symptoms Sprouts of infected tubers may fail to emerge from the soil following planting; sprouts that do emerge may show curled upper leaves, compact foliage, stunting, and fading from green to yellow-green. Infected plants later assume a distinct yellow color and gradually die as the lower stem rots away. When pulled, affected plants will have slimy, rotted, dark or inky black, mushy stems. These blackened stems (Figure 1) give blackleg its name. Soft rot occurs as a slimy rot of tubers (Figures 2 & 3) without the dark coloration. Cause & Disease Development Blackleg is caused by Erwinia atroseptica (synonym: Pectobacterium carotovorum subsp. atrosepticum) and soft rot is caused by E. carotovora (synonym: Pectobacterium carotovorum subsp. carotovorum). These bacteria can live in soil, in decaying plant FIGURE 1. A POTATO PLANT WITH A BLACK, DECAYING STEM TYPICAL debris, and in seed tubers. Bacteria either enter OF BLACKLEG. seed potatoes and lower stems through wounds and injuries, or move directly from contaminated seed spread of the disease in plants.
    [Show full text]
  • NPC Seed Certification Sub-Committee
    NPC Seed Certification Sub-Committee Protocol for Detection of Dickeya and Pectobacterium in Potato Tubers, Stems, or Irrigation Water Last Revised: 22 Nov 2017 Reason(s) for Revision: Addition of Pectobacterium to protocol; Addition of peel samples for tuber testing; and Clarification that the protocol can be used for minitubers and tissue culture plantlets. The majority of this protocol was derived from Humphries et al. (1). Updates are from results of Secor (NDSU), Hao (University of Maine), Ishimaru (University of Minnesota) and Charkowski (CSU) based on work funded by USDA-ARS and multiple grower organizations. 1. Sample Collection Samples should be shipped in insulated containers to protect them from temperature extremes during shipment. In tubers, the bacteria will be present in lenticels the periderm, around the eyes, and in the stem end. Periderm and stem end samples may be collected separately from each tuber or the stem end may be sliced off and processed with the periderm intact. Symptomatic Tubers, Minitubers, Stems, or Micropropagated Plants Collect symptomatic tubers or stems individually from different lots/locations and place in separate labeled plastic bags to avoid cross contamination. Micropropagated plants can be shipped in the vessel used to grow the plant. To reduce shipping components, a 2-3 inch stem section that contains the intersection between diseased and healthy stem tissue (edge of lesions) should be collected. Decontaminate hand tools between samples if tools are used during collection. Ship samples overnight. Asymptomatic Tubers, Minitubers, Stems, or Micropropagated Plants For seed lot screening, collect random tuber or stem samples. The number of samples per seed lot will determine the probability of finding the pathogen (2).
    [Show full text]