Moe Structural Review Project Issue 10

Total Page:16

File Type:pdf, Size:1020Kb

Moe Structural Review Project Issue 10 Ministry of Education Canterbury Earthquakes Impact on the Ministry of Education’s School Buildings Ministry of Education Canterbury Earthquakes Impact on the Ministry of Education’s School Buildings Prepared By Opus International Consultants Ltd Toby Tscherry Christchurch Office Structural Engineer 20 Moorhouse Avenue PO Box 1482, Christchurch Mail Centre, Christchurch 8140 New Zealand Reviewed By Telephone: +64 3 363 5400 Will Parker Facsimile: +64 3 365 7858 Technical Principal – Earthquake Engineering & Building Structures Date: 16 January 2015 Reference: 5-C2102.00 Status: Issue 10 FINAL © Opus International Consultants Ltd 2015 Canterbury Earthquakes – Impact on the Ministry of Education’s School Buildings i Executive Summary This report has been written for the Ministry of Education (“the Ministry” or MoE). The purpose of this report is to review performance of school buildings in the Canterbury earthquake sequence. The intent is to assist the Ministry of Education in improving the resilience of their current and future school buildings in Christchurch and throughout New Zealand. The post-earthquake review sampled 70 school buildings in Canterbury classified into 25 types. The majority of school buildings reviewed are single storey, with the remainder being a maximum of 2 storeys. Buildings selected range in age from the 1930s through to 1990s. The buildings have been chosen to be representative of school blocks throughout New Zealand, thus the majority of the sample captures buildings from the 1950s through to the 1970s, when ‘standard’ designs were used nationally (or regionally). After this period, one-off designs prepared by local architects seem to dominate the building stock. It was not attempted to capture these newer designs in the sample, because the lessons from these one-off designs have less relevance to the national portfolio. Conclusions drawn about safety emphasize that there were no fatalities on school sites although some injuries occurred, mostly resulting during egress. The Ministry’s earthquake strengthening programme has been effective; it prevented building collapse, provided a safe environment for teachers and students and limited damage to buildings that would otherwise have been more severely affected. A significant conclusion is that a large proportion of damage was the result of ground deformation. A key recommendation is that the Ministry consider this and other site related risks nationally. Conclusions on structural performance are: Lightweight wall and roof timber buildings have performed very well generally and in excess of their calculated capacity. Seismic retrofit work undertaken has been effective. A large proportion of building damage was due to ground deformation. Lightweight buildings with suspended timber floors on shallow footings generally accommodate ground deformation well and can often be quickly and cost effectively re-levelled. Overhead heavy building services or items unsecured on shelves can be a falling hazard. Most heavy roofs have been removed and replaced with lightweight material, which has reduced the seismic load and damage. Where blocks have been joined together and the alignment of the principle axes are no longer maintained such that the footprint is not symmetrical, i.e. joined together to form a T shaped footprint, increased damage was observed. Heavy veneer cladding increases damage to internal linings. Overhead heavy veneer can be a falling hazard if not well tied to timber framing, particularly above doors and windows. The open plan blocks have minimal bracing which increases frame distortion and damage. Some CEBUS type buildings have external nail plates that have failed during shaking without resulting in collapse. These can be simply retrofitted. One of the Pre-1930’s Two Storey Block’s has Potential Critical Structural Weaknesses while up to 11 others have structural weaknesses. 5-C2102.00 | January 2015 Opus International Consultants Ltd Canterbury Earthquakes – Impact on the Ministry of Education’s School Buildings ii Site Considerations – Recommendations Buildings and Infrastructure An egress and evacuation plan should be put in place for each school site. The main issues are concerning stuck doors due to differential settlement and potential fall hazards. The assembly point should also be considered. Overhead falling hazards relating to poorly tied brick veneer, heavy building services or items on shelving should be assessed, and if required secured or removed to a lower height. Consideration should be given to assessing and, if required, strengthening, or removing the veneer at height to mitigate this risk in a future significant earthquake event. Lowering the veneer will have the added benefit of reducing the seismic load on the buildings’ structure and improving its overall performance. Consideration should be given to upgrading site infrastructure during significant developments. This would reduce the extent of aged, frequently extended, brittle pipe networks present on many school sites. Consideration should be given to the assessment of schools’ existing infrastructure networks, for their condition and capacity i.e. compliance and vulnerability. This would indicate a need for the upgrade of any existing infrastructure with newer, more robust systems. This also reduces the risk of major costs associated with repairing older systems, when repairs carried out in the future might trigger the requirement for a Building Consent. Discussion with Councils should also be considered to seek clarity on compliance requirements. Consideration should be given to contingency measures for lifeline services (water supply & sewer). Consider options for hardstands that include ‘full design life’ to mitigate known geotechnical risks. Process – Recommendations and further review Issue minimum standard brief and guidelines for engineering assessment and design which embodies current ‘best practice’. (We note that the Ministry have subsequently issued guidelines on importance level for retrofit and new design). Consider adopting damage resistant designs in high seismicity areas. This could also reduce the cost to repair non-structural damage, which is estimated to be approximately 70% of the total repair cost for commercial buildings. Review processes around construction quality control and construction monitoring by the designer and Territorial Authorities’ (TA’s) to ensure efficiency and confidence that the design intent is achieved during construction. Consider setting up a review panel, perhaps a continuation of the Engineering Strategy Group (ESG) or similar to USA practice where an independent consultant from an approved panel reviews design and or construction. Learnings from other commercial and Ministry of Education buildings should be applied to the portfolio, for example: Stairs; review in accordance with Ministry of Business, Innovation and Employment (MBIE) guidelines. Precast panels; especially connections and requirements for ductility. Shear walls; in line with interim design guidelines by Structural Engineering Society New Zealand (SESOC). Cross bracing; particularly Reid Brace especially connections and requirements for ductility. 5-C2102.00 | January 2015 Opus International Consultants Ltd Canterbury Earthquakes – Impact on the Ministry of Education’s School Buildings iii Contents Executive Summary .................................................................................................... i 1 Introduction ....................................................................................................... 1 2 Assessment Scope .............................................................................................. 1 2.1 Limitations ........................................................................................................................ 1 2.2 Infrastructure .................................................................................................................... 2 2.3 Peak Ground Acceleration ................................................................................................ 2 2.4 Geotechnical ...................................................................................................................... 7 2.5 Potential Structural Weaknesses .................................................................................... 12 3 Selection of Buildings ........................................................................................ 12 3.1 Considerations for Selection ........................................................................................... 12 3.2 Selection Criteria ............................................................................................................. 12 3.3 Buildings Selected ........................................................................................................... 12 4 Building Type Structural Review .......................................................................16 4.1 Rating System ................................................................................................................. 16 4.2 Flowcharts and Reference Material ................................................................................ 16 5 Key Findings .................................................................................................... 20 5.1 Summary of Building Results ......................................................................................... 20 5.2 Discussion/Analysis
Recommended publications
  • The Mw 6.3 Christchurch, New Zealand Earthquake of 22 February 2011
    THE MW 6.3 CHRISTCHURCH, NEW ZEALAND EARTHQUAKE OF 22 FEBRUARY 2011 A FIELD REPORT BY EEFIT THE CHRISTCHURCH, NEW ZEALAND EARTHQUAKE OF 22 FEBRUARY 2011 A FIELD REPORT BY EEFIT Sean Wilkinson Matthew Free Damian Grant David Boon Sarah Paganoni Anna Mason Elizabeth Williams Stuart Fraser Jenny Haskell Earthquake Field Investigation Team Institution of Structural Engineers 47 - 58 Bastwick Street London EC1V 3PS Tel 0207235 4535 Fax 0207235 4294 Email: [email protected] June 2011 The Mw 6.2 Christchurch Earthquake of 22 February 2011 1 CONTENTS ACKNOWLEDGEMENTS 3 1. INTRODUCTION 4 2. REGIONAL TECTONIC AND GEOLOGICAL SETTING 6 3. SEISMOLOGICAL ASPECTS 12 4. NEW ZEALAND BUILDING STOCK AND DESIGN PRACTICE 25 5. PERFORMANCE OF BUILDINGS 32 6. PERFORMANCE OF LIFELINES 53 7. GEOTECHNICAL ASPECTS 62 8. DISASTER MANAGEMENT 96 9. ECONOMIC LOSSES AND INSURANCE 108 10. CONCLUSIONS 110 11. REFERENCES 112 APPENDIX A: DETAILED RESIDENTIAL DAMAGE SURVEY 117 The Mw 6.2 Christchurch Earthquake of 22 February 2011 2 ACKNOWLEDGEMENTS The authors would like to express their thanks to the many individuals and organisations that have assisted with the EEFIT mission to Christchurch and in the preparation of this report. We thank Arup for enabling Matthew Free to attend this mission and the British Geological Survey for allowing David Boon to attend. We would also like to thank the Engineering and Physical Sciences Research Council for providing funding for Sean Wilkinson, Damian Grant, Elizabeth Paganoni and Sarah Paganoni to join the team. Their continued support in enabling UK academics to witness the aftermath of earthquakes and the effects on structures and the communities they serve is gratefully acknowledged.
    [Show full text]
  • Earthquake-Induced Ground Fissuring and Spring Formation in Foot-Slope Positions and Valley Floor of the Hillsborough Valley, Ch
    INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND GEOTECHNICAL ENGINEERING This paper was downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). The library is available here: https://www.issmge.org/publications/online-library This is an open-access database that archives thousands of papers published under the Auspices of the ISSMGE and maintained by the Innovation and Development Committee of ISSMGE. 6th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Earthquake-Induced Ground Fissuring and Spring Formation in Foot- Slope Positions and Valley Floor of the Hillsborough Valley, Christchurch, New Zealand C. S. Brownie1, M. Green2 and D. Bell3 ABSTRACT In the Hillsborough Valley of Christchurch, New Zealand, extensive loess soil fissuring and spring formation occurred following a series of local earthquakes in 2010 and 2011. Fissures were up to 800 m in length, contour-parallel and accompanied by lateral compression and spring formation in the valley floor. Soil compression likely led to the development of permeable pathways, allowing the upward migration of water resulting in springs. The spring water originates from volcanic bedrock, and has distinct rainwater contribution. The term “quasi-toppling failure” can describe the soil movement related to the fissuring, while the mechanism is a combination of the “trampoline effect”, the fault movement and bedrock fracturing, and “lateral spreading” which was exacerbated by intra-loess water coursing and tunnel gullying. Infiltration of water into the fissures has potential to cause further ground movement, and as such it is important that the all fissures are infilled to prevent water ingress.
    [Show full text]
  • Bays Area Community Directory 2020
    BAYS AREA COMMUNITY DIRECTORY 2020 1 | P a g e Proudly supported by Contents Welcome to the 2020 edition of the Bays Area Community Directory ............... 3 Emergency Information .............................................................................................. 4 Local Emergency Services ...................................................................................... 4 Community Response Teams.................................................................................. 5 Christchurch Hospital ............................................................................................... 5 After Hours Medical Care ........................................................................................ 5 Natural disasters ........................................................................................................ 5 Defibrillator Locations............................................................................................... 9 How to Stay Informed - Radio ............................................................................... 10 Notes about this directory ........................................................................................ 11 Key local organisations .......................................................................................... 11 Charitable Status .................................................................................................... 11 Public interest/good ..............................................................................................
    [Show full text]
  • REDCLIFFS SCHOOL SECTION 71 PROPOSAL Summary and Analysis of Submissions
    Not Government Policy – In confidence REDCLIFFS SCHOOL SECTION 71 PROPOSAL Summary and analysis of submissions April 2018 Table of Contents Background ................................................................................................................................................................... 2 Methodology ................................................................................................................................................................ 2 The Final Results ......................................................................................................................................................... 4 Analysing the responses ....................................................................................................................................... 4 Thematic Analysis of Submissions Received ......................................................................................................... 5 Out of scope comments ....................................................................................................................................... 5 Theme One – Urgency to re-establish a school back within the community (214 submissions) ...... 6 Theme Two – Natural hazards and other safety concerns with the proposed Redcliffs Park site (91 submissions) ..................................................................................................................................................... 6 Theme Three – Loss of recreational space (32 submissions) ....................................................................
    [Show full text]
  • Seismic Ratings for Degrading Structural Systems
    227 LANDSLIDES CAUSED BY THE 22 FEBRUARY 2011 CHRISTCHURCH EARTHQUAKE AND MANAGEMENT OF LANDSLIDE RISK IN THE IMMEDIATE AFTERMATH G. Dellow1, M. Yetton2, C. Massey3, G. Archibald3, D.J.A. Barrell3, D. Bell2, Z. Bruce3, A. Campbell1, T. Davies2, G. De Pascale2, M. Easton2, P.J. Forsyth3, C. Gibbons2, P. Glassey3, H. Grant2, R. Green2, G. Hancox3, R. Jongens3, P. Kingsbury2, J. Kupec1, D. Macfarlane2, B. McDowell2, B. McKelvey2, I. McCahon2, I. McPherson2, J. Molloy2, J. Muirson2, M. O’Halloran1, N. Perrin3, C. Price2, S. Read3, N. Traylen2, R. Van Dissen3, M. Villeneuve2 and I. Walsh2 ABSTRACT At 12.51 pm (NZST) on 22 February 2011 a shallow, magnitude MW 6.2 earthquake with an epicentre located just south of Christchurch, New Zealand, caused widespread devastation including building collapse, liquefaction and landslides. Throughout the Port Hills of Banks Peninsula on the southern fringes of Christchurch landslide and ground damage caused by the earthquake included rock-fall (both cliff collapse and boulder roll), incipient loess landslides, and retaining wall and fill failures. Four deaths from rock-fall occurred during the mainshock and one during an aftershock later in the afternoon of the 22nd. Hundreds of houses were damaged by rock-falls and landslide-induced ground cracking. Four distinct landslide or ground failure types have been recognised. Firstly, rocks fell from lava outcrops on the Port Hills and rolled and bounced over hundreds of metres damaging houses located on lower slopes and on valley floors. Secondly, over-steepened present-day and former sea-cliffs collapsed catastrophically. Houses were damaged by tension cracks on the slopes above the cliff faces and by debris inundation at the toe of the slopes.
    [Show full text]
  • Socio-Economic Mapping of Sub-Catchment Communities in the Heathcote Catchment, Christchurch
    Socio -economic mapping of sub-catchment communities in the Heathcote catchment, Christchurch Nicholas Ensor WCFM Report 2019-006 i REPORT: WCFM Report 2019-006 TITLE: Socio-economic mapping of sub-catchment communities in the Heathcote catchment, Christchurch PREPARED FOR: Christchurch City Council (CCC) PREPARED BY: Nicholas Ensor – BSc REVIEWED BY: Ed Challies, Crile Doscher, Clive Appleton AFFILIATION: Waterways Centre for Freshwater Management University of Canterbury & Lincoln University Private Bag 4800 Christchurch New Zealand DATE: November 2018 – February 2019 ii Executive Summary This report provides an analysis and evaluation of the spatial distribution of a range of socio- economic and demographic indicators aggregated within the sub-catchments of the Ōpāwaho/Heathcote river basin for the Christchurch City Council. The analysis is intended to assist in a targeted approach around local and community waterway health education and engagement. ArcGIS Pro and ArcGIS Online council services were utilised to process and aggregate publicly available census, council and NGO data employing standard geoprocessing tools. It was discovered that areas of low deprivation overlap with Port Hills sub-catchments, which tend to be wealthier and less populated, and the distribution seemed to have a stronger correlation with elevation within the catchment than with the basin’s hydrological patterns. Areas of high deprivation were mainly distributed throughout southern and eastern sub- catchments of low elevation. These inferences are also supported by income level and tertiary qualification data by sub-catchment. In carrying out this project, some challenges were encountered around limited availability of high-quality data at the level of detail required for the analysis. Public data sites such as canterburymaps.govt.nz and data.linz.govt.nz, while hosting hundreds of sets of high-quality data, did not have data at the level of local sub-catchments that were needed to produce accurate, clean outputs.
    [Show full text]
  • FT2 Earthquake Engineering Geology: Port Hills and Christchurch City
    Geosciences 2013 Annual Conference of the Geoscience Society of New Zealand. Christchurch. Field Trip 2 Sunday 24th November 2013 Earthquake Engineering Geology: Port Hills and Christchurch City. Guide authors: David Bell, Janet Brehaut and Maree Hemmingsen Trip Leaders: David Bell and Valerie Zimmer Department of Geological Sciences, University of Canterbury Cover photo: Shag Rock at the entrance to the Avon‐Heathcote Estuary, modified in the Canterbury Earthquake Sequence, and now locally referred to as Shag Pile. Bibliographic reference: Bell, D.H., Brehaut, J., Hemmingsen, M. and Zimmer, V. (2013). Earthquake Engineering Geology: Port Hills and Christchurch City. In: Reid, C.M. & Hampton, S.J. (compilers). Field Trip Guides, Geosciences 2013 Conference, Christchurch, New Zealand. Geoscience Society of New Zealand Miscellaneous Publication 136B. 23 p. ISBN 978‐1‐877480‐34‐8, ISSN 2230‐4487 (print) ISSN 2230‐4495 (online) Earthquake Engineering Geology: Port Hills and Christchurch City Geosciences Health and Safety: Most of the field trip stops will be off‐street in local parks, however please take care if crossing roads. All roads are public, with some being busy and congested due to remediation work in the area. High visibility vests will be provided, so please wear these whenever not on the bus. Sturdy footwear is recommended, however we will not venture far from the coach at most locations. Route: Leave 11.00 am and travel from University of Canterbury to Sumner (Wakefield Avenue). Sumner to Redcliffs, Huntsbury Hill (Vernon Terrace), via Opawa to Porritt Park, and Dallington. Return to University of Canterbury by 5.30 pm. 2 Earthquake Engineering Geology: Port Hills and Christchurch City Geosciences Background New Zealand is located at a plate boundary between the Pacific and Australian plates (Figure 1).
    [Show full text]
  • Dear Cancern Member Earlier This Week Cancern Had a Very
    Dear CanCERN Member Earlier this week CanCERN had a very productive meeting with Fletcher EQR to develop our relationship and exchange ideas. One of the outcomes of this meeting is information that can be passed directly on to residents about EMERGENCY REPAIRS. Fletcher EQR really wishes to ensure all houses are safe, secure and weathertight as we move into winter and beyond and so we have worked together to provide the following checklists. Please note: This information is intended to go to our residents who require emergency repairs, as defined below, to make their homes habitable. Firstly if you have sustained new damage on 22 February you need to lodge a new claim with EQC (call 0800 326 243). When you call, tell EQC that emergency repairs are also required. If you did not make this clear when you lodged the claim, or are unsure, call EQC again. If your emergency repairs are valued under $2000 you can arrange the repairs yourself. Talk to EQC before you go ahead as they will need to authorise the works and may require a quote from the repairer. If your emergency repairs are valued over $2000 they will be allocated to Fletcher EQR to manage. The Hub office in your area will call you to arrange the repairs. This may take a week at the moment, particularly in badly affected areas. If repairs relate to chimney damage, and you have lost the primary means of heating your home, EQC will advise Fletcher EQR’s Clean Heat Hub. They will contact you regarding the winter heating aspect of your repairs.
    [Show full text]
  • Woolston / Heathcote Cemetery Tour
    Woolston / Heathcote Cemetery Tour A colleague writes of Decra Art, principal sponsor of this tour: In 2000 I commissioned Decra Art to make a bronze plaque to mark a family reunion. While the plaque was expensive, the quality of workmanship was excellent and the service helpful and prompt. When I said that the site was not in Christchurch, they advised on packaging and installation and provided information to be sent to the appropriate local authority. I would certainly suggest that anyone seeking a permanent memorial approach Decra Art for advice and a quotation. Decra Art Ltd. Canterbury’s Leading Monumental Masons Master craftsmen and tradesmen All cemeteries, town and country Free quotes Workmanship guaranteed Pre-arranged memorials Friendly personal service at Decra Arts’ showroom or in private homes. Decra Art Ltd. 366-3932 Fax 365-6497 Compiled by Richard L. N. Greenaway June 2007 Woolston / Heathcote Cemetery 2006 1 Area 1 Row A No. 1 Murray-Aynsley Ina Winifred, 31, wife of C. P. Murray-Aynsley, died 12 April 1917 Elizabeth A. Murray-Aynsley died 1940 Mary Murray-Aynsley died 19 June 1946 These are members of the family who gave their name to Murray-Aynsley Hill. More prominent family members are buried elsewhere in the cemetery. Row B No. 40 Richardson Born at Cupar, Fifeshire, Scotland, John Richardson was left an orphan at an early age and brought up by an uncle, John Smith. Educated at Edinburgh, he was apprenticed to the leather trade and left his homeland with his uncle and aunt, arriving in Wellington by the ship West Australian on 1 July 1864.
    [Show full text]
  • The Story of Christchurch, New Zealand
    THE STORY OF CHRISTCHURCH, N.Z. JOHN ROBERT GODLEY, The Founder of Canterbury. THE STORY OF CHRISTCHURCH NEW ZEALAND. BY HENRY F. WIGRAM. CHRISTCHURCH: PRINTED AND PUBLISHED BY THE LYTTELTON TIMES Co., LTH I91B. 430 PREFACE. The story of the foundation and early growth of Canterbury was first told to me, bit by bit, more than thirty years ago, some of it by men and women who had actually taken part in the founding of the settlement, and shaping its destiny, and some by late-comers, who had followed closely on the heels of the pioneers. There were many people then living who delighted in talking of their strenuous life in the pioneering days, " when all the world was young," and in telling of events which are now passing into silent history. Many of the stories I heard then are still vivid in my memory, little episodes illustrating the daily life of a community which had to do everything for itself survey, settle, stock and till the land, build its own roads, bridges and railways, form its own religious, educa- tional, political and social institutions, and construct its own local government. It is no wonder that coming from the valley of the Thames, where the results of centuries of civilisation had come to be accepted as the natural condition of nineteenth century existence, I found the contrast interesting and inspiring. My wife and I were received with the kindly hospi- tality so typical of the time and country. Amongst our immediate neighbours at Upper Riccarton were many old settlers. Mr.
    [Show full text]
  • Detailed Site Investigation Report 35498 / 330 & 340 Port Hills Road / Hilton Haulage Ltd
    DETAILED SITE INVESTIGATION REPORT 35498 / 330 & 340 PORT HILLS ROAD / HILTON HAULAGE LTD 0800 999 333 [email protected] 11 Deans Avenue, Addington PO Box 589, Christchurch 8140 www.do.co.nz Davis Ogilvie & Partners Ltd Quality Assurance Title: Detailed Site Investigation – 330 & 340 Port Hills Road Client: Hilton Haulage Ltd File Location: T:\projects\35s\35498 - 24 Nuttall Drive and Desi Place\Environmental Science\004 Report\160923.csb.DSI.35498.docx Version: 1 Date: 17 October 2016 Project No: 35498 Prepared by: Charlotte Stephen-Brownie Signature: Engineering Geologist MSc Engineering Geology (Hons) BSc Geology & Geography Reviewed by: Andrew Bunce Signature: Engineering Geologist MSci Geology Authorised By: Warren Sharp Signature: Technical Director / SQEP Senior Environmental Scientist Detailed Site Investigation 330 & 340 Port Hills Road October 2016 Table of Contents 1.0 Introduction ................................................................................................................................. 1 1.1 Background ......................................................................................................................... 1 1.2 Objectives ........................................................................................................................... 1 1.3 Scope of Work..................................................................................................................... 2 2.0 Site Information ..........................................................................................................................
    [Show full text]
  • Sponsorship Options
    Pioneer Basketball Club Inc P.O. Box 33-487 Barrington Christchurch 8024 Pioneer Basketball Club The Pioneer Basketball Club was established in 2000 to provide basketball playing and development opportunities for local children. Most of our programmes are based at the Pioneer Sport and Recreation Centre in Spreydon and we have an office at Christchurch South Intermediate School. We employ a full time Development Officer, Tyla Hunt, and a part-time Administrator, Bronwyn Manderson. Our committee meets monthly and consists of 11 volunteer members. Through the success of our programmes we have grown steadily each year and we now boast a membership of over 1500. Most of our members live in the South Christchurch area, but we do have some members from other parts of Christchurch. We are seeking sponsorship for our various programmes to enable our club to continue to provide quality programmes for our growing membership. Sponsorship Options #1 Miniball Competition Our Miniball competition is run on Wed afternoon/evening during school terms 1 & 4 at Pioneer Sport and Recreation Centre, and it caters for children in year 4 and below i.e. 9 years and younger. During term 1 2014, 36 teams were drawn from local schools, including Hoon Hay, Our lady of Assumption, Prebbleton, St Marks, Somerfield, West Spreydon, Hillview Christian, St Martins, Halswell, Te Whanau Tahi, Sacred Heart. Approx 300 participants This programme has experienced huge growth since its introduction in 2013. Each week we see a stadium packed with excited children and supportive parents- a very positive environment. Miniball Sponsorship package - $1000 • Naming rights for competition • Sponsor name on all draws, score sheets and results charts • Sponsor banners/ signs (provided by sponsor) to be placed around gym during competition • Sponsor recognition on web site and club newsletters- distribution 1500+ members #2 Primary Schools Competition This is our largest junior programme.
    [Show full text]