Socio-Economic Mapping of Sub-Catchment Communities in the Heathcote Catchment, Christchurch
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Mw 6.3 Christchurch, New Zealand Earthquake of 22 February 2011
THE MW 6.3 CHRISTCHURCH, NEW ZEALAND EARTHQUAKE OF 22 FEBRUARY 2011 A FIELD REPORT BY EEFIT THE CHRISTCHURCH, NEW ZEALAND EARTHQUAKE OF 22 FEBRUARY 2011 A FIELD REPORT BY EEFIT Sean Wilkinson Matthew Free Damian Grant David Boon Sarah Paganoni Anna Mason Elizabeth Williams Stuart Fraser Jenny Haskell Earthquake Field Investigation Team Institution of Structural Engineers 47 - 58 Bastwick Street London EC1V 3PS Tel 0207235 4535 Fax 0207235 4294 Email: [email protected] June 2011 The Mw 6.2 Christchurch Earthquake of 22 February 2011 1 CONTENTS ACKNOWLEDGEMENTS 3 1. INTRODUCTION 4 2. REGIONAL TECTONIC AND GEOLOGICAL SETTING 6 3. SEISMOLOGICAL ASPECTS 12 4. NEW ZEALAND BUILDING STOCK AND DESIGN PRACTICE 25 5. PERFORMANCE OF BUILDINGS 32 6. PERFORMANCE OF LIFELINES 53 7. GEOTECHNICAL ASPECTS 62 8. DISASTER MANAGEMENT 96 9. ECONOMIC LOSSES AND INSURANCE 108 10. CONCLUSIONS 110 11. REFERENCES 112 APPENDIX A: DETAILED RESIDENTIAL DAMAGE SURVEY 117 The Mw 6.2 Christchurch Earthquake of 22 February 2011 2 ACKNOWLEDGEMENTS The authors would like to express their thanks to the many individuals and organisations that have assisted with the EEFIT mission to Christchurch and in the preparation of this report. We thank Arup for enabling Matthew Free to attend this mission and the British Geological Survey for allowing David Boon to attend. We would also like to thank the Engineering and Physical Sciences Research Council for providing funding for Sean Wilkinson, Damian Grant, Elizabeth Paganoni and Sarah Paganoni to join the team. Their continued support in enabling UK academics to witness the aftermath of earthquakes and the effects on structures and the communities they serve is gratefully acknowledged. -
Earthquake-Induced Ground Fissuring and Spring Formation in Foot-Slope Positions and Valley Floor of the Hillsborough Valley, Ch
INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND GEOTECHNICAL ENGINEERING This paper was downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). The library is available here: https://www.issmge.org/publications/online-library This is an open-access database that archives thousands of papers published under the Auspices of the ISSMGE and maintained by the Innovation and Development Committee of ISSMGE. 6th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Earthquake-Induced Ground Fissuring and Spring Formation in Foot- Slope Positions and Valley Floor of the Hillsborough Valley, Christchurch, New Zealand C. S. Brownie1, M. Green2 and D. Bell3 ABSTRACT In the Hillsborough Valley of Christchurch, New Zealand, extensive loess soil fissuring and spring formation occurred following a series of local earthquakes in 2010 and 2011. Fissures were up to 800 m in length, contour-parallel and accompanied by lateral compression and spring formation in the valley floor. Soil compression likely led to the development of permeable pathways, allowing the upward migration of water resulting in springs. The spring water originates from volcanic bedrock, and has distinct rainwater contribution. The term “quasi-toppling failure” can describe the soil movement related to the fissuring, while the mechanism is a combination of the “trampoline effect”, the fault movement and bedrock fracturing, and “lateral spreading” which was exacerbated by intra-loess water coursing and tunnel gullying. Infiltration of water into the fissures has potential to cause further ground movement, and as such it is important that the all fissures are infilled to prevent water ingress. -
Bays Area Community Directory 2020
BAYS AREA COMMUNITY DIRECTORY 2020 1 | P a g e Proudly supported by Contents Welcome to the 2020 edition of the Bays Area Community Directory ............... 3 Emergency Information .............................................................................................. 4 Local Emergency Services ...................................................................................... 4 Community Response Teams.................................................................................. 5 Christchurch Hospital ............................................................................................... 5 After Hours Medical Care ........................................................................................ 5 Natural disasters ........................................................................................................ 5 Defibrillator Locations............................................................................................... 9 How to Stay Informed - Radio ............................................................................... 10 Notes about this directory ........................................................................................ 11 Key local organisations .......................................................................................... 11 Charitable Status .................................................................................................... 11 Public interest/good .............................................................................................. -
REDCLIFFS SCHOOL SECTION 71 PROPOSAL Summary and Analysis of Submissions
Not Government Policy – In confidence REDCLIFFS SCHOOL SECTION 71 PROPOSAL Summary and analysis of submissions April 2018 Table of Contents Background ................................................................................................................................................................... 2 Methodology ................................................................................................................................................................ 2 The Final Results ......................................................................................................................................................... 4 Analysing the responses ....................................................................................................................................... 4 Thematic Analysis of Submissions Received ......................................................................................................... 5 Out of scope comments ....................................................................................................................................... 5 Theme One – Urgency to re-establish a school back within the community (214 submissions) ...... 6 Theme Two – Natural hazards and other safety concerns with the proposed Redcliffs Park site (91 submissions) ..................................................................................................................................................... 6 Theme Three – Loss of recreational space (32 submissions) .................................................................... -
Seismic Ratings for Degrading Structural Systems
227 LANDSLIDES CAUSED BY THE 22 FEBRUARY 2011 CHRISTCHURCH EARTHQUAKE AND MANAGEMENT OF LANDSLIDE RISK IN THE IMMEDIATE AFTERMATH G. Dellow1, M. Yetton2, C. Massey3, G. Archibald3, D.J.A. Barrell3, D. Bell2, Z. Bruce3, A. Campbell1, T. Davies2, G. De Pascale2, M. Easton2, P.J. Forsyth3, C. Gibbons2, P. Glassey3, H. Grant2, R. Green2, G. Hancox3, R. Jongens3, P. Kingsbury2, J. Kupec1, D. Macfarlane2, B. McDowell2, B. McKelvey2, I. McCahon2, I. McPherson2, J. Molloy2, J. Muirson2, M. O’Halloran1, N. Perrin3, C. Price2, S. Read3, N. Traylen2, R. Van Dissen3, M. Villeneuve2 and I. Walsh2 ABSTRACT At 12.51 pm (NZST) on 22 February 2011 a shallow, magnitude MW 6.2 earthquake with an epicentre located just south of Christchurch, New Zealand, caused widespread devastation including building collapse, liquefaction and landslides. Throughout the Port Hills of Banks Peninsula on the southern fringes of Christchurch landslide and ground damage caused by the earthquake included rock-fall (both cliff collapse and boulder roll), incipient loess landslides, and retaining wall and fill failures. Four deaths from rock-fall occurred during the mainshock and one during an aftershock later in the afternoon of the 22nd. Hundreds of houses were damaged by rock-falls and landslide-induced ground cracking. Four distinct landslide or ground failure types have been recognised. Firstly, rocks fell from lava outcrops on the Port Hills and rolled and bounced over hundreds of metres damaging houses located on lower slopes and on valley floors. Secondly, over-steepened present-day and former sea-cliffs collapsed catastrophically. Houses were damaged by tension cracks on the slopes above the cliff faces and by debris inundation at the toe of the slopes. -
FT2 Earthquake Engineering Geology: Port Hills and Christchurch City
Geosciences 2013 Annual Conference of the Geoscience Society of New Zealand. Christchurch. Field Trip 2 Sunday 24th November 2013 Earthquake Engineering Geology: Port Hills and Christchurch City. Guide authors: David Bell, Janet Brehaut and Maree Hemmingsen Trip Leaders: David Bell and Valerie Zimmer Department of Geological Sciences, University of Canterbury Cover photo: Shag Rock at the entrance to the Avon‐Heathcote Estuary, modified in the Canterbury Earthquake Sequence, and now locally referred to as Shag Pile. Bibliographic reference: Bell, D.H., Brehaut, J., Hemmingsen, M. and Zimmer, V. (2013). Earthquake Engineering Geology: Port Hills and Christchurch City. In: Reid, C.M. & Hampton, S.J. (compilers). Field Trip Guides, Geosciences 2013 Conference, Christchurch, New Zealand. Geoscience Society of New Zealand Miscellaneous Publication 136B. 23 p. ISBN 978‐1‐877480‐34‐8, ISSN 2230‐4487 (print) ISSN 2230‐4495 (online) Earthquake Engineering Geology: Port Hills and Christchurch City Geosciences Health and Safety: Most of the field trip stops will be off‐street in local parks, however please take care if crossing roads. All roads are public, with some being busy and congested due to remediation work in the area. High visibility vests will be provided, so please wear these whenever not on the bus. Sturdy footwear is recommended, however we will not venture far from the coach at most locations. Route: Leave 11.00 am and travel from University of Canterbury to Sumner (Wakefield Avenue). Sumner to Redcliffs, Huntsbury Hill (Vernon Terrace), via Opawa to Porritt Park, and Dallington. Return to University of Canterbury by 5.30 pm. 2 Earthquake Engineering Geology: Port Hills and Christchurch City Geosciences Background New Zealand is located at a plate boundary between the Pacific and Australian plates (Figure 1). -
Dear Cancern Member Earlier This Week Cancern Had a Very
Dear CanCERN Member Earlier this week CanCERN had a very productive meeting with Fletcher EQR to develop our relationship and exchange ideas. One of the outcomes of this meeting is information that can be passed directly on to residents about EMERGENCY REPAIRS. Fletcher EQR really wishes to ensure all houses are safe, secure and weathertight as we move into winter and beyond and so we have worked together to provide the following checklists. Please note: This information is intended to go to our residents who require emergency repairs, as defined below, to make their homes habitable. Firstly if you have sustained new damage on 22 February you need to lodge a new claim with EQC (call 0800 326 243). When you call, tell EQC that emergency repairs are also required. If you did not make this clear when you lodged the claim, or are unsure, call EQC again. If your emergency repairs are valued under $2000 you can arrange the repairs yourself. Talk to EQC before you go ahead as they will need to authorise the works and may require a quote from the repairer. If your emergency repairs are valued over $2000 they will be allocated to Fletcher EQR to manage. The Hub office in your area will call you to arrange the repairs. This may take a week at the moment, particularly in badly affected areas. If repairs relate to chimney damage, and you have lost the primary means of heating your home, EQC will advise Fletcher EQR’s Clean Heat Hub. They will contact you regarding the winter heating aspect of your repairs. -
Woolston / Heathcote Cemetery Tour
Woolston / Heathcote Cemetery Tour A colleague writes of Decra Art, principal sponsor of this tour: In 2000 I commissioned Decra Art to make a bronze plaque to mark a family reunion. While the plaque was expensive, the quality of workmanship was excellent and the service helpful and prompt. When I said that the site was not in Christchurch, they advised on packaging and installation and provided information to be sent to the appropriate local authority. I would certainly suggest that anyone seeking a permanent memorial approach Decra Art for advice and a quotation. Decra Art Ltd. Canterbury’s Leading Monumental Masons Master craftsmen and tradesmen All cemeteries, town and country Free quotes Workmanship guaranteed Pre-arranged memorials Friendly personal service at Decra Arts’ showroom or in private homes. Decra Art Ltd. 366-3932 Fax 365-6497 Compiled by Richard L. N. Greenaway June 2007 Woolston / Heathcote Cemetery 2006 1 Area 1 Row A No. 1 Murray-Aynsley Ina Winifred, 31, wife of C. P. Murray-Aynsley, died 12 April 1917 Elizabeth A. Murray-Aynsley died 1940 Mary Murray-Aynsley died 19 June 1946 These are members of the family who gave their name to Murray-Aynsley Hill. More prominent family members are buried elsewhere in the cemetery. Row B No. 40 Richardson Born at Cupar, Fifeshire, Scotland, John Richardson was left an orphan at an early age and brought up by an uncle, John Smith. Educated at Edinburgh, he was apprenticed to the leather trade and left his homeland with his uncle and aunt, arriving in Wellington by the ship West Australian on 1 July 1864. -
The Story of Christchurch, New Zealand
THE STORY OF CHRISTCHURCH, N.Z. JOHN ROBERT GODLEY, The Founder of Canterbury. THE STORY OF CHRISTCHURCH NEW ZEALAND. BY HENRY F. WIGRAM. CHRISTCHURCH: PRINTED AND PUBLISHED BY THE LYTTELTON TIMES Co., LTH I91B. 430 PREFACE. The story of the foundation and early growth of Canterbury was first told to me, bit by bit, more than thirty years ago, some of it by men and women who had actually taken part in the founding of the settlement, and shaping its destiny, and some by late-comers, who had followed closely on the heels of the pioneers. There were many people then living who delighted in talking of their strenuous life in the pioneering days, " when all the world was young," and in telling of events which are now passing into silent history. Many of the stories I heard then are still vivid in my memory, little episodes illustrating the daily life of a community which had to do everything for itself survey, settle, stock and till the land, build its own roads, bridges and railways, form its own religious, educa- tional, political and social institutions, and construct its own local government. It is no wonder that coming from the valley of the Thames, where the results of centuries of civilisation had come to be accepted as the natural condition of nineteenth century existence, I found the contrast interesting and inspiring. My wife and I were received with the kindly hospi- tality so typical of the time and country. Amongst our immediate neighbours at Upper Riccarton were many old settlers. Mr. -
Detailed Site Investigation Report 35498 / 330 & 340 Port Hills Road / Hilton Haulage Ltd
DETAILED SITE INVESTIGATION REPORT 35498 / 330 & 340 PORT HILLS ROAD / HILTON HAULAGE LTD 0800 999 333 [email protected] 11 Deans Avenue, Addington PO Box 589, Christchurch 8140 www.do.co.nz Davis Ogilvie & Partners Ltd Quality Assurance Title: Detailed Site Investigation – 330 & 340 Port Hills Road Client: Hilton Haulage Ltd File Location: T:\projects\35s\35498 - 24 Nuttall Drive and Desi Place\Environmental Science\004 Report\160923.csb.DSI.35498.docx Version: 1 Date: 17 October 2016 Project No: 35498 Prepared by: Charlotte Stephen-Brownie Signature: Engineering Geologist MSc Engineering Geology (Hons) BSc Geology & Geography Reviewed by: Andrew Bunce Signature: Engineering Geologist MSci Geology Authorised By: Warren Sharp Signature: Technical Director / SQEP Senior Environmental Scientist Detailed Site Investigation 330 & 340 Port Hills Road October 2016 Table of Contents 1.0 Introduction ................................................................................................................................. 1 1.1 Background ......................................................................................................................... 1 1.2 Objectives ........................................................................................................................... 1 1.3 Scope of Work..................................................................................................................... 2 2.0 Site Information .......................................................................................................................... -
Sponsorship Options
Pioneer Basketball Club Inc P.O. Box 33-487 Barrington Christchurch 8024 Pioneer Basketball Club The Pioneer Basketball Club was established in 2000 to provide basketball playing and development opportunities for local children. Most of our programmes are based at the Pioneer Sport and Recreation Centre in Spreydon and we have an office at Christchurch South Intermediate School. We employ a full time Development Officer, Tyla Hunt, and a part-time Administrator, Bronwyn Manderson. Our committee meets monthly and consists of 11 volunteer members. Through the success of our programmes we have grown steadily each year and we now boast a membership of over 1500. Most of our members live in the South Christchurch area, but we do have some members from other parts of Christchurch. We are seeking sponsorship for our various programmes to enable our club to continue to provide quality programmes for our growing membership. Sponsorship Options #1 Miniball Competition Our Miniball competition is run on Wed afternoon/evening during school terms 1 & 4 at Pioneer Sport and Recreation Centre, and it caters for children in year 4 and below i.e. 9 years and younger. During term 1 2014, 36 teams were drawn from local schools, including Hoon Hay, Our lady of Assumption, Prebbleton, St Marks, Somerfield, West Spreydon, Hillview Christian, St Martins, Halswell, Te Whanau Tahi, Sacred Heart. Approx 300 participants This programme has experienced huge growth since its introduction in 2013. Each week we see a stadium packed with excited children and supportive parents- a very positive environment. Miniball Sponsorship package - $1000 • Naming rights for competition • Sponsor name on all draws, score sheets and results charts • Sponsor banners/ signs (provided by sponsor) to be placed around gym during competition • Sponsor recognition on web site and club newsletters- distribution 1500+ members #2 Primary Schools Competition This is our largest junior programme. -
ABSTRACT: the Mw 6.3 February 22, 2011 Christchurch Earthquake Was
OVERVIEW OF BRIDGE PERFORMANCE DURING THE 2011 CHRISTCHURCH EARTHQUAKE by A. Palermo(1), L. Wotherspoon(2), L. Hogan(2), A. Kivell(1), M. Yashinsky(3), M. Bruneau(4) & E. Camnasio(5) ABSTRACT: The Mw 6.3 February 22, 2011 Christchurch earthquake was centred 10 km south east of central Christchurch on the edge of the city at a depth of 5 km. Peak Ground Accelera- tions (PGA) in the area of Southeast Christchurch were much higher than the design level in the period range of New Zealand road and highway bridges, with exceptional values of vertical acceleration being registered. However, overall most of the bridges performed well, with only eight bridges out of 300 in the area of Christchurch suffering moderate- to-extensive damage. The majority of damage was a result of lateral spreading of the riv- er banks, with only three bridges damaged on non-liquefiable sites. 1 INTRODUCTION The February 22, 2011 moment magnitude (Mw) 6.2 resulted in strong ground shaking in the central and eastern regions of Christchurch, with the majority of significant bridge damage focused in this region. Most of the damage was a result of liquefaction and lateral spreading of the river banks, with very few examples of significant bridge damage on non-liquefiable sites. A number of bridges suffered non-structural damage such as slump- ing of abutment aprons and fracture of deck drainage pipes. Overall, bridges suffered lit- tle structural damage compared to other structures such as residential houses and com- mercial buildings. In spite of the expected damage threshold level being much lower than the estimated bridge response accelerations in the earthquakes, only a few bridges suffered significant visible structural damage as a result of ground shaking.