PORTFOLIO of Member Opportunities

Total Page:16

File Type:pdf, Size:1020Kb

PORTFOLIO of Member Opportunities PORTFOLIO of Member Opportunities 1996 through June, 2013 KAAPA’s mission is to seek and acquire opportunities that can increase member profits and net worth while promoting agriculture in general; which may be accomplished by its members producing for, or investing in, value-added ag projects. KAAPA’s vision is to be a highly successful farmer-based alliance that is recognized throughout all of the grain belt, and beyond, as being an innovative organization that seeks, creates, and promotes value-added agricultural opportunities, both for its members and for agriculture in general. KAAPA Cooperative P. O. Box 1301 Kearney, NE 68848 308-234-2712 [email protected] www.kaapacoop.com BACKGROUND In 1994, Leadership Kearney, a volunteer group which seeks economic development opportunities for the city of Kearney, Nebraska, identified a need for an agricultural based cooperative group. In part, this came from the unsuccessful bid for the white corn Frito Lay plant to locate in the Kearney area. It was recognized that it would have been beneficial to have a group that could ‘talk the talk and walk the walk’ of agriculture and that having such a group may have led to Frito Lay deciding to locate in Buffalo County. At the “Community Development Conference” held in April of 1994, the creation of an ag development cooperative was one of the items identified as a priority for the community of Kearney and the surrounding area. From that meeting an Ag Development Task Force was appointed. This Task Force began its efforts with organizing a group to ’speak as one voice’ along with setting up test plots from which quality data would be collected to promote the quality grains produced in the area. Also in the spring of 1995 the acronym ‘KAAPA’ was born when the group arrived at naming this Task Force the “Kearney Area Ag Producers Alliance.” Koch Industries provided the initial capital to launch KAAPA (over $100,000), and with those funds the group organized a Board of Directors and began recruiting members that paid dues of $100 per year. They hired a General Manager in 1996, the year of KAAPA’s official creation, and began to focus on “identity preserved” grain contracts. As well that The KAAPA Logo year, they began work with Heartland Fibers which was promoting a At a quick glance the significance of the KAAPA logo may not be technology that converted corn stover to paper pulp. KAAPA proceeded apparent. Yet, if you have ever to raise approx. $10MM for the project, acquire contracts for the stover seen an aerial view of the corn belt, its meaning will become very clear. and seek a building site. What seemed at the time to be a failure because the technology could never fulfill the initial objectives and the project was The superior quality and reliable scratched, turned into the creation of a solid foundation of experience for production of crops in Nebraska is due in large part to irrigation, and KAAPA. What the group learned through the project provided it with the more specifically center pivot confidence that it was on the right track with its mission and objectives. irrigation. The logo represents sections of farm ground, in greens In 2003, this confidence led KAAPA to create one of the most successful and golds for corn and other crops, businesses in Nebraska, KAAPA Ethanol. with the circles created by center pivots. The blue is for the In 1998, high oil corn was planted and a total of 750,000 bushels reservoirs of water, which is the life blood for crop production. The were delivered to Japan in 1999. Soon thereafter, in early 2000, the winding “S” represents the Platte group started its first discussions about building and operating an ethanol River and Ogallala Aquifer — the sources of that precious irrigation plant. From 2000 through 2003, the entire KAAPA Board led by a group water. of approximately 6 individuals worked tenaciously on the planning, engineering, and development of the project, including raising capital in excess of $28MM for the plant. In November 2003, KAAPA Ethanol had its Grand Opening and filled its first rail car with ethanol. Since then, it has repaid, many times over, its initial investors their original investment. The plant operates successfully yet today and is recognized as a leader in the ethanol industry. During those same years, KAAPA supported efforts to attract dairies to central Nebraska and those efforts resulted in three state-of-the art dairy facilities being started in and around Buffalo County. Fast forward to 2012 and you can review this booklet to see the projects that were presented to KAAPA for its consideration, projects in which it invested certain resources such as time, money and effort, projects that were fully developed, and projects that are currently being considered for either managerial or financial support. With nearly 450 members throughout Nebraska, KAAPA membership represents hundreds of thousands of acres of farm ground, and it continues to fulfill its original mission of “enhancing the bottom line” of those members through value-added ag opportunities. The “KAAPA” family now includes KAAPA Ethanol, KAAPA Grains, KAAPA Country-Adventures, KAAPA-MEX, KAAPA Investments , KAAPA Investments II, and KAAPA Aqua Ventures Alliance. Since inception, KAAPA has secured nearly $50,000,000 in capital. It has often been said that KAAPA is ahead of its time as it has supported projects and concepts long before they were even on the radar screen of the general public. Perhaps that statement is true . KAAPA’s original project in 1996 was to add value to biomass (corn stover) and now, in 2013, biomass is being sought by a large number of companies because the product is recognized to have a high value in a multitude of applications. Projects that KAAPA is reviewing and considering today will shape the future of agriculture. KAAPA is the original “KAAPA” organization and is generally referred to as KAAPA Cooperative because it is owned by members and operates for its members, while all of the entities it has created operate as ‘for profit’ ventures. You can visit www.kaapacoop.com to read more up-to-date information, learn the value of becoming a member, Entities Under Consideration: KAAPA Biomass and how you can join KAAPA Futures Fund KAAPA. KAAPA Bio-based Plastics KAAPA Investments III, LLC TABLE OF CONTENTS Membership Opportunities PURSUED . KAAPA Fibers, LLC; Dairy Attraction/Expansion . 2 Tofu Soybeans, High Oil Corn, Yellow Field Peas . 3 KAAPA Ethanol, KAAPA-Mex; Bakery . 4 Lutein Extraction, KAAPA Country-Adventures . 5 New Market Tax Credits, Bio-Diesel . 6 Rivas Technologies, Molecular Fuel Injection . 7 Energy Grains Biomass, KAAPA Investments LLC, KAAPA Investments II, LLC . 8 Furfural, DDG Range Cubes . 9 Laurel BioComposite, Rare Earth Solar . 10 KAAPA Aqua Ventures Alliance, LignoTech, LTD . 11 Membership Opportunities CONSIDERED . Access Venture Partners, Ag Development Center, Agristand, Alfalfa America, All Fuels, Ammonia Project, Aratana Therapuetics, Aronia Project . 14 Area of WY Waste to Energy Plant, Biorefining, Blue Water Satelite, Central States Marketing Group, Clean Flex, Cropmetrics, Eagle Technologies LLC, Fairbury Plastics . 15 Feedlogic, Flour Mill Project, Food & Ag Discovery Center, Gryphon Wireless, IPC, Krystal Planet, Machinerylink/FarmLink, Mexico Grain Export Project . 16 MFS, Natural Earth Solutions, Naturally Scientific, Nebraska Organic, Oklahoma Hydrogen Gas Technologies, PEI, Peptide Production of Algae, Power Energy Fuels . 17 Proman PTO LLC, RC Fuels Inc, Renew Source LLC, Responsible Transportation, Rolling Plains Holding Company, Show Me Green Coal Coop, Southwest Nebraska Dairy, Sparks Companies Inc . 18 Thunderhead Brewing, Turkey Growers Project, Western Area Power Authority, Westland Resources LLC, Wind Energy Project, WyoComposits LLC . 19 Membership Opportunities EMERGING . Smart Yield . 22 LignoTech, Ltd. 23 NU Bio-Fibers Initiative . 24 Misc. Project Ideas . .. 25 KAAPA has nearly 450 members who represent hundreds of thousands of acres of farm ground in both small and large farming operations. As a member, you will be informed of the investment and production opportunities such as those presented in this Portfolio. You participate in the projects of your choice and at the investment level with which you are comfortable, as there are no minimum participation requirements. The annual membership dues are $250. These dues provide for the overhead and operations of the office, staff, and basic development efforts. Anyone can join KAAPA, either as a “Producer Member” or as an “Associate Member.” Only Producer Members are able to serve on the Board of Directors which assures members that KAAPA projects are related to value-added agriculture or in some manner benefit its members. KAAPA Cooperative P. O. Box 1301 Kearney, NE 68848 308-234-2712 [email protected] Whereas it may be desirable for the reader to learn more about a project or the names of the companies involved in some of the projects listed herein, Non- Disclosure Agreements and other factors prevent us from providing all of the names and details. KAAPA Cooperative has been successful in attracting a number of grants from local, state and federal agencies. These are not listed in the report. The total grant awards received is nearly $1,000,000. 1996 – Technology Failed A Minnesota company proposed a partnership with KAAPA to design, construct and finance a manufacturing plant in Buffalo County, Nebraska, that would use corn stover as the fiber source for producing specialty pulp for making paper and paper products. With corn stover—the raw product—readily available from the major corn growing area in central Nebraska and the entire production—the finished product— of the first plant committed under an allocation basis to a select group of paper mills, it seemed that the project was on the right track for completion and success.
Recommended publications
  • Liquid Biofuels: Substituting for Petroleum
    Prospectus 77440.003.01 Liquid Biofuels: Substituting for Petroleum Prospectus Liquid Biofuels: Substituting for Petroleum April 2006 44 South Broadway, White Plains, New York 10601, USA Tel: +1 914 609 0300 Fax: +1 914 609 0399 Contents Section Page 1 Abstract........................................................................................................................ 1 2 Scope............................................................................................................................. 10 3 Approach ..................................................................................................................... 12 4 Contact Information ................................................................................................... 13 5 Authorization Form.................................................................................................... 14 6 Qualifications............................................................................................................... 16 6.1 GENERAL........................................................................................................ 16 6.2 SPECIFIC SINGLE-CLIENT EXPERIENCE RELEVANT TO BIOFUELS PRODUCTION AND USE............................................................................... 18 Cover photos - Courtesy of NREL Liquid Biofuels: Substituting for Petroleum i Q206_00806.001 Section 1 Abstract Nexant, Inc. (“Nexant”) has recently performed a number of analyses of technology and market prospects for biofuels, including studies on
    [Show full text]
  • Catalytic Conversion of Syngas to Higher Alcohols Over Cu-Fe Based Catalysts
    Mississippi State University Scholars Junction Theses and Dissertations Theses and Dissertations 1-1-2014 Catalytic Conversion of Syngas to Higher Alcohols over Cu-Fe Based Catalysts Yongwu Lu Follow this and additional works at: https://scholarsjunction.msstate.edu/td Recommended Citation Lu, Yongwu, "Catalytic Conversion of Syngas to Higher Alcohols over Cu-Fe Based Catalysts" (2014). Theses and Dissertations. 970. https://scholarsjunction.msstate.edu/td/970 This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact [email protected]. Automated Template C: Created by James Nail 2013V2.1 Catalytic conversion of syngas to higher alcohols over Cu-Fe based catalysts By Yongwu Lu A Dissertation Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biological Engineering in the Department of Agricultural and Biological Engineering Mississippi State, Mississippi December 2014 Copyright by Yongwu Lu 2014 Catalytic conversion of syngas to higher alcohols over Cu-Fe based catalysts By Yongwu Lu Approved: ____________________________________ Fei Yu (Major Professor) ____________________________________ Janice DuBien (Minor Professor) ____________________________________ Todd E. Mlsna (Committee Member) ____________________________________
    [Show full text]
  • Biogasoline Options for Conventional Spark-Ignition Cars
    VTT WORKING PAPERS 187 Päivi Aakko-Saksa, Päivi Koponen, Johanna Kihlman, Matti Reinikainen, Eija Skyttä, Leena Rantanen-Kolehmainen & Ari Engman Biogasoline options for conventional spark-ignition cars ISBN 978-951-38-7529-9 (URL: http://www.vtt.fi/publications/index.jsp) ISSN 1459-7683 (URL: http://www.vtt.fi/publications/index.jsp) Copyright © VTT 2011 JULKAISIJA – UTGIVARE – PUBLISHER VTT, Vuorimiehentie 5, PL 1000, 02044 VTT puh. vaihde 020 722 111, faksi 020 722 4374 VTT, Bergsmansvägen 5, PB 1000, 02044 VTT tel. växel 020 722 111, fax 020 722 4374 VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O. Box 1000, FI-02044 VTT, Finland phone internat. +358 20 722 111, fax +358 20 722 4374 Series title, number and report code of publication VTT Working Papers 187 VTT-WORK-187 Author(s) Päivi Aakko-Saksa, Päivi Koponen, Johanna Kihlman, Matti Reinikainen, Eija Skyttä, Leena Rantanen-Kolehmainen & Ari Engman Title Biogasoline options for conventional spark-ignition cars Abstract The purpose of this study is to explore feasible gasoline biocomponents supplemen- tary to ethanol, and to assess their exhaust emissions performance. Although ethanol is the dominant liquid biofuel globally, technical restrictions limit its use in convention- al gasoline cars to 10–15 v/v% (bio-energy 7–10%). Since current conventional cars will continue to take the major share of gasoline car fleets for at least the next 10–20 years, it is necessary to establish and assess biocomponent options for them. Today, higher ethanol blending ratios are possible only with the use of flexible fuel vehicle (FFV) technology. The European Union requires renewable energy to have at least a 10% share of transport energy by 2020, and even higher shares are being attempted regionally.
    [Show full text]
  • Utilization of Renewable Oxygenates As Gasoline Blend Components
    Utilization of Renewable Oxygenates as Gasoline Blending Components Janet Yanowitz Ecoengineering, Inc. Earl Christensen and Robert L. McCormick Center for Transportation Technologies and Systems National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/TP-5400-50791 August 2011 Contract No. DE-AC36-08GO28308 Utilization of Renewable Oxygenates as Gasoline Blending Components Janet Yanowitz Ecoengineering, Inc. Earl Christensen and Robert L. McCormick Center for Transportation Technologies and Systems National Renewable Energy Laboratory Prepared under Task No. FC08.9451 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Technical Report 1617 Cole Boulevard NREL/TP-5400-50791 Golden, Colorado 80401 August 2011 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.
    [Show full text]
  • Public Booklet April 2014 (Final Version)
    Public Booklet April 2014 (final version) A European Project supported through the Seventh Framework Programme for Research and Technological Development 1 00 Contents 01 / Project concept and objectives ...................................................... 5 02 / EuroBioRef Value Chains ................................................................13 Value Chains 1 & 2 ................................................................................................. 14 Value Chain 3 ......................................................................................................... 24 Value Chain 5 ......................................................................................................... 32 Value Chain 6 ......................................................................................................... 37 03 / Summary of technologic & scientific results in the various involved fields ..................................................................................45 Sub-project 1 ......................................................................................................... 46 Sub-project 2 ......................................................................................................... 52 Sub-project 3 ......................................................................................................... 54 Sub-project 4 ......................................................................................................... 56 Sub-project 5 ........................................................................................................
    [Show full text]
  • Theme Part 1 – Synfuels & Redemption
    Mural by Eugene Savage in Dallas Hall of State; Photo by Paul Everitt Synfuels & Redemption The Fossil Fuel Industry has big plans for your future. You Should we have shared resources with the less fortunate? Did might want to know what they have in mind. we abuse the environment past the point of no return? How many other species did we drive to extinction by our actions? Does Over the last 200 years, and intensely for the last century, our culture deserve this fall from grace that we have caused by developed countries have created a lifestyle based on fossil fuels. our own disregard for the bounty we were given? This fossil-fuel lifestyle has created a culture and economy un- precedented in human history. One could infer nature’s answers to these troubling questions in high fuel costs, resource depletion, resource wars, and global Food can be imported from around the world. There are hun- warming. dreds of square miles of buildings, supplied with air conditioning, heating, and lighting, unprecedented not just in terms of space But not everyone believes the golden moment is over. While and comfort, but in terms of space per person. There are 19.2 many believe that we must move away from fossil fuels with all million miles of roads in the world providing support for over (1,2) haste, or even plan for a very different society with decimated levels 860 million vehicles. Communication with most countries of energy use, there is a niche of the energy industry planning in the world is now almost instantaneous, and it is often pos- the salvation of our high-resource lifestyle.
    [Show full text]
  • Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment”
    A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Equipment Design and Cost Subcontract Report NREL/SR-510-39947 Estimation for Small Modular May 2006 Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment Task 9: Mixed Alcohols From Syngas — State of Technology Nexant Inc. San Francisco, California NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Equipment Design and Cost Subcontract Report NREL/SR-510-39947 Estimation for Small Modular May 2006 Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment Task 9: Mixed Alcohols From Syngas — State of Technology Nexant Inc. San Francisco, California NREL Technical Monitor: Kelly Ibsen Prepared under Subcontract No. ACO-5-44027 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute • Battelle Contract No. DE-AC36-99-GO10337 This publication was reproduced from the best available copy Submitted by the subcontractor and received no editorial review at NREL NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • Xylanases, Nucleic Acids Encoding Them and Methods for Making and Using Them
    (19) TZZ _T (11) EP 2 548 954 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 23.01.2013 Bulletin 2013/04 C12N 9/24 (2006.01) (21) Application number: 12168120.9 (22) Date of filing: 14.02.2007 (84) Designated Contracting States: • Todaro, Thomas AT BE BG CH CY CZ DE DK EE ES FI FR GB GR San Diego, CA 92110 (US) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Hazlewood, Geoff SK TR Newbury, Berkshire RG14 2RS (GB) • Chang, Kristine (30) Priority: 14.02.2006 US 773122 P San Diego, CA 92122 (US) • Chang, Hwai (62) Document number(s) of the earlier application(s) in San Marcos, CA 92069 (US) accordance with Art. 76 EPC: • Desantis, Grace 07751203.6 / 1 989 302 San Diego, CA 92129 (US) (71) Applicant: Verenium Corporation (74) Representative: Wakerley, Helen Rachael San Diego, CA 92121 (US) Reddie & Grose LLP 16 Theobalds Road (72) Inventors: London WC1X 8PL (GB) • Weiner, David Del Mar, CA 92014 (US) Remarks: • Hansen, Connie Jo •Thecomplete document including Reference Tables San Diego, CA 92115 (US) and the Sequence Listing can be downloaded from • Hancock, Charles the EPO website San Marcos, CA 92078 (US) •This application was filed on 15-05-2012 as a • Woodward, Thomas divisional application to the application mentioned Scottsville, VA 24590 (US) under INID code 62. • Beaver, Scott W •Claims filed after the date of filing of the application/ San Diego, CA 92078 (US) after the date of receipt of the divisional application • Blum, David (Rule 68(4) EPC).
    [Show full text]
  • Xylanases, Nucleic Acids Encoding Them and Methods
    (19) TZZ Z_T (11) EP 2 205 744 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/52 (2006.01) C12N 15/09 (2006.01) 14.01.2015 Bulletin 2015/03 C12N 9/42 (2006.01) (21) Application number: 08797071.1 (86) International application number: PCT/US2008/072030 (22) Date of filing: 01.08.2008 (87) International publication number: WO 2009/045627 (09.04.2009 Gazette 2009/15) (54) XYLANASES, NUCLEIC ACIDS ENCODING THEM AND METHODS FOR MAKING AND USING THEM XYLENASEN, DAFÜR CODIERENDE NUKLEINSÄUREN UND VERFAHREN ZUR HERSTELLUNG UND VERWENDUNG DAVON XYLANASES, ACIDES NUCLÉIQUES CODANT POUR ELLES ET LEURS MÉTHODES D’OBTENTION ET D’UTILISATION (84) Designated Contracting States: (56) References cited: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR WO-A2-2007/095398 US-B1- 6 365 390 HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR • ARASE AKEMI ET AL: "Stabilization of xylanase by random mutagenesis" FEBS LETTERS, (30) Priority: 03.10.2007 US 977348 P ELSEVIER, AMSTERDAM, NL LNKD- DOI: 10.1016/0014-5793(93)81199-A, vol. 316, no. 2, 1 (43) Date of publication of application: January 1993 (1993-01-01), pages 123-127, 14.07.2010 Bulletin 2010/28 XP002196471 ISSN: 0014-5793 • ANDREWS SIMON R ET AL: "The use of forced (60) Divisional application: protein evolution to investigate and improve 13181497.2 / 2 708 602 stability of family 10 xylanases - The production of Ca2+-independent stable xylanases" (73) Proprietor: BP Corporation North America Inc.
    [Show full text]
  • Workshop and Report on Implications of Bio-Refineries for Energy and Trade in the APEC Region
    Workshop and Report on Implications of Bio-refineries for Energy and Trade in the APEC Region (EWG 05/2008A) APEC 21st Century Renewable Energy Development Initiative (Collaborative IX) November 2009 APEC Project No. EWG 05/2008A Produced by Nexant, Inc. and Industrial Technology Research Institute (ITRI) Nexant team led by Larry Song, General Manager Nexant China 44 South Broadway White Plains, NY 10601, USA ITRI team led by Seng-Rung Wu, Senior Researcher Energy and Environment Research Lab. Bldg. 64, 195, Sec. 4, Chung Hsing Rd., Chutung Hsinchu 31040, Chinese Taipei Produced for Asia-Pacific Economic Cooperation Secretariat 35 Heng Mui Keng Terrace, Singapore 119616 Tel:(65) 68919 600 Fax: (65) 68919 690 Email: [email protected] Website: www.apec.org ○c 2009 APEC Secretariat ISBN:978-981-08-4588-9 [APEC# 209-RE-01.7] This report has been prepared for APEC Secretariat. The views and opinions expressed herein do not necessarily reflect those of APEC, of Nexant or of ITRI. Except where specifically stated otherwise in the report, the information contained herein was prepared on the basis of information that is publicly available and has not been independently verified or otherwise examined to determine its accuracy, completeness or financial feasibility. Neither Nexant, ITRI nor any person acting on behalf of either assumes any liabilities with respect to the use of or for damages resulting from the use of any information contained in this report. Nexant or ITRI does not represent or warrant that any assumed conditions will come to pass. This report speaks only as of the date herein and Nexant and ITRI have no responsibility to update this report.
    [Show full text]
  • Study of Mos2 Catalytic Systems
    Synthesis Gas Conversion to Aliphatic Alcohols: Study of MoS2 catalytic systems BY Faisal Baksh B.S. Chemical Engineering, University of the Punjab, 2004 Submitted to the graduate degree program in Chemical Engineering and the Graduate Faculty of the University of Kansas School of Engineering in partial fulfillment of the requirements for the degree of Master of Science _____________________ Chairperson: Raghunath V. Chaudhari _____________________* Committee members* Bala Subramaniam _____________________* Susan Williams Date defended: 03/10/2010 The Thesis Committee for Faisal Baksh certifies that this is the approved version of the following thesis: Synthesis Gas Conversion to Aliphatic Alcohols: Study of MoS2 catalytic systems Committee: ______________________ Chairperson* Raghunath V. Chaudhari ______________________ Bala Subramaniam ______________________ Susan Williams Date approved: 04/13/2010 1 Dedicated to Those who ask questions and search for answers, and then they keep asking and they keep looking “The first step to knowledge is to know that we are ignorant” – Socrates 2 Acknowledgments I wish to offer my sincere gratitude to my advisor, Dr. R.V.Chaudhari, for his guidance, help and patience in many different aspects related to my research. I appreciate the stimulating discussions, the suggestions and directions, the availability for questions 24/7 and most of all, the encouragement to innovate and think out of the box. And in the end, the help in penning down this thesis on paper. I am also grateful to my committee members, Dr. Bala and Dr. Williams for their extremely helpful inputs and suggestions. Thanks to Dr. Fenghui Nui and Dr. Debdut Roy, without whom I wonder how I would have started my experiments.
    [Show full text]
  • Read Book « Fuel Additives ~ GYNZNZIFNQ7W
    O31GXDQTOYLH # PDF « Fuel additives Fuel additives Filesize: 4.98 MB Reviews This publication is definitely worth purchasing. Yes, it is actually engage in, nevertheless an amazing and interesting literature. You can expect to like just how the author write this publication. (Odie Dicki) DISCLAIMER | DMCA P9UP2LTEETJ2 / eBook » Fuel additives FUEL ADDITIVES To read Fuel additives PDF, you should follow the link under and download the file or have access to additional information that are relevant to FUEL ADDITIVES book. Reference Series Books LLC Jan 2012, 2012. Taschenbuch. Book Condition: Neu. 252x192x10 mm. This item is printed on demand - Print on Demand Neuware - Source: Wikipedia. Pages: 48. Chapters: Antiknock agents, Fuel antioxidants, Fuel dyes, Oxygenates, Ethanol, Methanol, Toluene, Ferrocene, Butylated hydroxytoluene, Tetraethyllead, Methyl tert-butyl ether, Acetone, Coumarin, Isopropyl alcohol, Nitromethane, Iron pentacarbonyl, Ethylenediamine, 1,2-Dichloroethane, MTBE controversy, Methylcyclopentadienyl manganese tricarbonyl, Tetranitromethane, Butyl rubber, Fuel Freedom International, 1,2-Dibromoethane, 2,2,4- Trimethylpentane, Tert-Butanol, Tricresyl phosphate, Sudan IV, Gasoline additive, 2,6-Di-tert-butylphenol, Solvent Yellow 124, Triacetin, Dimethyl methylphosphonate, Tert-Amyl methyl ether, Biobor, Dinonylnaphthylsulfonic acid, Diisopropyl ether, 2,4-Dimethyl-6-tert-butylphenol, Sudan Red 7B, Ecalene, Dry gas, Metal deactivator, Solvent Red 26, Solvent Red 164, Oil Blue 35. Excerpt: Ethanol, also called ethyl alcohol, pure alcohol, grain alcohol, or drinking alcohol, is a volatile, flammable, colorless liquid. It is a powerful psychoactive drug and one of the oldest recreational drugs. Best known as the type of alcohol found in alcoholic beverages, it is also used in thermometers, as a solvent, and as a fuel.
    [Show full text]