The Drumming of Norwegian Stoneflies (Plecopi'era)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Monte L. Bean Life Science Museum Brigham Young University Provo, Utah 84602 PBRIA a Newsletter for Plecopterologists
No. 10 1990/1991 Monte L. Bean Life Science Museum Brigham Young University Provo, Utah 84602 PBRIA A Newsletter for Plecopterologists EDITORS: Richard W, Baumann Monte L. Bean Life Science Museum Brigham Young University Provo, Utah 84602 Peter Zwick Limnologische Flußstation Max-Planck-Institut für Limnologie, Postfach 260, D-6407, Schlitz, West Germany EDITORIAL ASSISTANT: Bonnie Snow REPORT 3rd N orth A merican Stonefly S ymposium Boris Kondratieff hosted an enthusiastic group of plecopterologists in Fort Collins, Colorado during May 17-19, 1991. More than 30 papers and posters were presented and much fruitful discussion occurred. An enjoyable field trip to the Colorado Rockies took place on Sunday, May 19th, and the weather was excellent. Boris was such a good host that it was difficult to leave, but many participants traveled to Santa Fe, New Mexico to attend the annual meetings of the North American Benthological Society. Bill Stark gave us a way to remember this meeting by producing a T-shirt with a unique “Spirit Fly” design. ANNOUNCEMENT 11th International Stonefly Symposium Stan Szczytko has planned and organized an excellent symposium that will be held at the Tree Haven Biological Station, University of Wisconsin in Tomahawk, Wisconsin, USA. The registration cost of $300 includes lodging, meals, field trip and a T- Shirt. This is a real bargain so hopefully many colleagues and friends will come and participate in the symposium August 17-20, 1992. Stan has promised good weather and good friends even though he will not guarantee that stonefly adults will be collected during the field trip. Printed August 1992 1 OBITUARIES RODNEY L. -
Impacts of Flow Regulation and Artificial Floods in An
i IMPACTS OF FLOW REGULATION AND ARTIFICIAL FLOODS IN AN UPLAND STREAM ECOSYSTEM Benjamin Robert Gillespie Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Geography November 2014 ii The candidate confirms that the work submitted is his own, except where work which has formed part of jointly authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. Chapter 3 Publication title: A critical analysis of regulated river ecosystem responses to environmental flows from reservoirs Authors: Gillespie, Ben; University of Leeds, School of Geography/ Water@Leeds DeSmet, Simon; University of Leeds, School of Geography/ Water@Leeds Kay, Paul; University of Leeds, School of Geography/ Water@Leeds Tillotson, Martin; University of Leeds, School of Geography/ Water@Leeds Brown, Lee; University of Leeds, School of Geography/ Water@Leeds Publication: Freshwater Biology [in press] Work attributable to Ben Gillespie: Data collection (shared approximately 3:1 (Gillespie:DeSmet)), data quality control and analysis; project management; manuscript production. Work attributable to other authors: Data collection (shared approximately 3:1 (Gillespie:DeSmet)), advice; suggestions of improvements; proof reading. Chapter 8 Publication title: Effects of impoundment on macroinvertebrate community assemblages in upland streams Authors: Gillespie, Ben; University of Leeds, School of Geography/ Water@Leeds Brown, Lee; University of Leeds, School of Geography/ Water@Leeds Kay, Paul; University of Leeds, School of Geography/ Water@Leeds Publication: River Research and Applications [in press] Work attributable to Ben Gillespie: Data collection, quality control and analysis; project management; manuscript production. -
Isoperla Bilineata (Group)
Steven R Beaty Biological Assessment Branch North Carolina Division of Water Resources [email protected] 2 DISCLAIMER: This manual is unpublished material. The information contained herein is provisional and is intended only to provide a starting point for the identification of Isoperla within North Carolina. While many of the species treated here can be found in other eastern and southeastern states, caution is advised when attempting to identify Isoperla outside of the study area. Revised and corrected versions are likely to follow. The user assumes all risk and responsibility of taxonomic determinations made in conjunction with this manual. Recommended Citation Beaty, S. R. 2015. A morass of Isoperla nymphs (Plecoptera: Perlodidae) in North Carolina: a photographic guide to their identification. Department of Environment and Natural Resources, Division of Water Resources, Biological Assessment Branch, Raleigh. Nymphs used in this study were reared and associated at the NCDENR Biological Assessment Branch lab (BAB) unless otherwise noted. All photographs in this manual were taken by the Eric Fleek (habitus photos) and Steve Beaty (lacinial photos) unless otherwise noted. They may be used with proper credit. 3 Keys and Literature for eastern Nearctic Isoperla Nymphs Frison, T. H. 1935. The Stoneflies, or Plecoptera, of Illinois. Illinois Natural History Bulletin 20(4): 281-471. • while not containing species of isoperlids that occur in NC, it does contain valuable habitus and mouthpart illustrations of species that are similar to those found in NC (I. bilineata, I richardsoni) Frison, T. H. 1942. Studies of North American Plecoptera with special reference to the fauna of Illinois. Illinois Natural History Bulletin 22(2): 235-355. -
New Records of Stoneflies (Plecoptera) with an Annotated Checklist of the Species for Pennsylvania
The Great Lakes Entomologist Volume 29 Number 3 - Fall 1996 Number 3 - Fall 1996 Article 2 October 1996 New Records of Stoneflies (Plecoptera) With an Annotated Checklist of the Species for Pennsylvania E. C. Masteller Behrend College Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Masteller, E. C. 1996. "New Records of Stoneflies (Plecoptera) With an Annotated Checklist of the Species for Pennsylvania," The Great Lakes Entomologist, vol 29 (3) Available at: https://scholar.valpo.edu/tgle/vol29/iss3/2 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Masteller: New Records of Stoneflies (Plecoptera) With an Annotated Checklis 1996 THE GREAT LAKES ENTOMOlOGIST 107 NEW RECORDS OF STONEFLIES IPLECOPTERA} WITH AN ANNOTATED CHECKLIST OF THE SPECIES FOR PENNSYLVANIA E.C. Masteller1 ABSTRACT Original collections now record 134 species in nine families and 42 gen era. Seventeen new state records include, Allocapnia wrayi, Alloperla cau data, Leuctra maria, Soyedina carolinensis, Tallaperla elisa, Perlesta decipi· ens, P. placida, Neoperla catharae, N. occipitalis, N. stewarti, Cult us decisus decisus, Isoperla francesca, 1. frisoni, 1. lata,1. nana, 1. slossonae, Malirekus hastatus. Five species are removed from the list ofspecies for Pennsylvania. Surdick and Kim (1976) originally recorded 90 species of stoneflies in nine families and 32 genera from Pennsylvania. Since that time, Stark et al. -
Assessing the Vulnerability of Aquatic Macroinvertebrates to Climate Warming in a Mountainous Watershed: Supplementing Presence-Only Data with Species Traits
water Article Assessing the Vulnerability of Aquatic Macroinvertebrates to Climate Warming in a Mountainous Watershed: Supplementing Presence-Only Data with Species Traits Anne-Laure Besacier Monbertrand 1, Pablo Timoner 2 , Kazi Rahman 2, Paolo Burlando 3, Simone Fatichi 3, Yves Gonseth 4, Frédéric Moser 2, Emmanuel Castella 1 and Anthony Lehmann 2,* 1 Aquatic Ecology Group, Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Institute for Environmental Sciences, 66 Boulevard Carl-Vogt, CH-1205 Geneva, Switzerland; [email protected] (A.-L.B.M.); [email protected] (E.C.) 2 enviroSPACE Group, Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Institute for Environmental Sciences, 66 Boulevard Carl-Vogt, CH-1205 Geneva, Switzerland; [email protected] (P.T.); [email protected] (K.R.); [email protected] (F.M.) 3 ETH Zürich, Institute of Environmental Engineering, HIL D 22.3, Stefano-Franscini-Platz 5, 8093 Zürich, Switzerland; [email protected] (P.B.); [email protected] (S.F.) 4 Swiss Biological records Center, Passage Max-Meuron 6, CH-2000 Neuchâtel, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +41-22-379-0021 Received: 17 November 2018; Accepted: 22 March 2019; Published: 27 March 2019 Abstract: Mountainous running water ecosystems are vulnerable to climate change with major changes coming from warming temperatures. Species distribution will be affected and some species are anticipated to be winners (increasing their range) or losers (at risk of extinction). Climate change vulnerability is seldom integrated when assessing threat status for lists of species at risk (Red Lists), even though this might appear an important addition in the current context. -
Annual Newsletter and Bibliography of the International Society of Plecopterologists PERLA NO. 37, 2019
PERLA Annual Newsletter and Bibliography of The International Society of Plecopterologists Nemoura cinerea (Retzius, 1783) (Nemouridae): Slovenia, near Planina, cave entrance to Ucina River, 15 June 2008. Photograph by Bill P. Stark PERLA NO. 37, 2019 Department of Bioagricultural Sciences and Pest Management Colorado State University Fort Collins, Colorado 80523 USA PERLA Annual Newsletter and Bibliography of the International Society of Plecopterologists Available on Request to the Managing Editor MANAGING EDITOR: Boris C. Kondratieff Department of Bioagricultural Sciences and Pest Management Colorado State University Fort Collins, Colorado 80523 USA E-mail: [email protected] EDITORIAL BOARD: Richard W. Baumann Department of Biology and Monte L. Bean Life Science Museum Brigham Young University Provo, Utah 84602 USA E-mail: [email protected] J. Manuel Tierno de Figueroa Dpto. de Zoología Facultad de Ciencias Universidad de Granada 18071 Granada, SPAIN E-mail: [email protected] Shigekazu Uchida Aichi Institute of Technology 1247 Yagusa Toyota 470-0392, JAPAN E-mail: [email protected] Peter Zwick Schwarzer Stock 9 D-36110 Schlitz, GERMANY E-mail: [email protected] 1 TABLE OF CONTENTS Subscription policy... ............................................................................................................ 3 The XVth International Conference on Ephemeroptera and XIXth International Symposium on Plecoptera ............................................................................................................................. -
The Leuctridae of Eastern Canada (Insecta; Plecoptera)
The Leuctridae of Eastern Canada (Insecta; P1ecoptera)l P. P. HARPER^ AND H. B. N. HYNES Department of Biology, University of Waterloo, Waterloo, Ontario Received December 14. 1970 HARPER,P. P., and H. B. N. HYNES.1971. The Leuctridae of Eastern Canada (Insecta: Plecoptera). Can. J. Zool. 49: 915-920. After a short discussion of the taxonomy of the adult Leuctridae of Eastern Canada, the nymphs of the eight most common species are described and a key for their identification is proposed. Aprks une courte discussion de la systematique des Leuctridae adultes de 1'Est %adien, on dkrit les larves des huit esp6ces les plus rkpandues et on propose une clef pour leur dktemation. Introduction sara (Claassen) (as L. occidentalis Banks). Two The Leuctridae have not reached, in North further species that occur in Eastern Canada America, the great development and the variety have since been described: L. maria Hanson they have attained in Europe; indeed, there are (male genitalia in Hanson (1941b) and female only 10 species at present recorded from Eastern genitalia in Ricker (1952)) and L. baddecka Canada. Of these, L. triloba Claassen has been Ricker (female genitalia in Ricker (1965); the collected only once in extreme Southern Quebec male is unknown). Keys to the males are pre- (Ricker et al. 1968), and L. baddecka is known sented by Needham and Claassen (1925) and only from the type locality on Cape Breton more recently by Hitchcock (1969). No key to Island (Ricker 1965). The other species are the females is presently available, but their fairly common and widespread. -
Life History and Production of Mayflies, Stoneflies, and Caddisflies (Ephemeroptera, Plecoptera, and Trichoptera) in a Spring-Fe
Color profile: Generic CMYK printer profile Composite Default screen 1083 Life history and production of mayflies, stoneflies, and caddisflies (Ephemeroptera, Plecoptera, and Trichoptera) in a spring-fed stream in Prince Edward Island, Canada: evidence for population asynchrony in spring habitats? Michelle Dobrin and Donna J. Giberson Abstract: We examined the life history and production of the Ephemeroptera, Plecoptera, and Trichoptera (EPT) commu- nity along a 500-m stretch of a hydrologically stable cold springbrook in Prince Edward Island during 1997 and 1998. Six mayfly species (Ephemeroptera), 6 stonefly species (Plecoptera), and 11 caddisfly species (Trichoptera) were collected from benthic and emergence samples from five sites in Balsam Hollow Brook. Eleven species were abundant enough for life-history and production analysis: Baetis tricaudatus, Cinygmula subaequalis, Epeorus (Iron) fragilis,andEpeorus (Iron) pleuralis (Ephemeroptera), Paracapnia angulata, Sweltsa naica, Leuctra ferruginea, Amphinemura nigritta,and Nemoura trispinosa (Plecoptera), and Parapsyche apicalis and Rhyacophila brunnea (Trichoptera). Life-cycle timing of EPT taxa in Balsam Hollow Brook was generally similar to other literature reports, but several species showed extended emergence periods when compared with other studies, suggesting a reduction in synchronization of life-cycle timing, pos- sibly as a result of the thermal patterns in the stream. Total EPT secondary production (June 1997 to May 1998) was 2.74–2.80 g·m–2·year–1 dry mass (size-frequency method). Mayflies were dominant, with a production rate of 2.2 g·m–2·year–1 dry mass, followed by caddisflies at 0.41 g·m–2·year–1 dry mass, and stoneflies at 0.19 g·m–2·year–1 dry mass. -
About the Book the Format Acknowledgments
About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization. -
In Baltic Amber 85
Overview and descriptions of fossil stoneflies (Plecoptera) in Baltic amber 85 Entomologie heute 22 (2010): 85-97 Overview and Descriptions of Fossil Stoneflies (Plecoptera) in Baltic Amber Übersicht und Beschreibungen von fossilen Steinfliegen (Plecoptera) im Baltischen Bernstein CELESTINE CARUSO & WILFRIED WICHARD Summary: Three new fossil species of stoneflies (Plecoptera: Nemouridae and Leuctridae) from Eocene Baltic amber are being described: Zealeuctra cornuta n. sp., Lednia zilli n. sp., and Podmosta attenuata n. sp.. Extant species of these three genera are found in Eastern Asia and in the Nearctic region. It is very probably that the genera must have been widely spread across the northern hemisphere in the Cretaceous period, before Europe was an archipelago in Eocene. The current state of knowledge about the seventeen Plecoptera species of Baltic amber is shortly presented. Due to discovered homonymies, the following nomenclatural corrections are proposed: Leuctra fusca Pictet, 1856 in Leuctra electrofusca Caruso & Wichard, 2010 and Nemoura affinis Berendt, 1856 in Nemoura electroaffinis Caruso & Wichard, 2010. Keywords: Fossil insects, fossil Plecoptera, Eocene, paleobiogeography Zusammenfassung: In dieser Arbeit werden drei neue fossile Steinfliegen-Arten (Plecoptera: Nemouridae und Leuctridae) des Baltischen Bernsteins beschrieben: Zealeuctra cornuta n. sp., Lednia zilli n. sp., Podmosta attenuata n. sp.. Rezente Arten der drei Gattungen sind in Ostasien und in der nearktischen Region nachgewiesen. Sehr wahrscheinlich breiteten sich die Gattungen in der Krei- dezeit über die nördliche Hemisphäre aus, noch bevor Europa im Eozän ein Archipel war. Der gegenwärtige Kenntnisstand über die siebzehn Plecoptera Arten des Baltischen Bernsteins wird kurz dargelegt. Wegen bestehender Homonymien werden folgende nomenklatorische Korrekturen vorgenommen: Leuctra fusca Pictet, 1856 in Leuctra electrofusca Caruso & Wichard, 2010 und Nemoura affinis Berendt, 1856 in Nemoura electroaffinis Caruso & Wichard, 2010. -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
Arthropod-Pathogenic Entomophthorales from Switzerland
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 2007 Band/Volume: 59 Autor(en)/Author(s): Keller Siegfried Artikel/Article: Arthropod-pathogenic Entomophthorales from Switzerland. III. First additions. 75-113 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Arthropod-pathogenic Entomophthorales from Switzerland. III. First additions Siegfried Keller Federal Research Station Agroscope Reckenholz-TaÈnikon ART, Reckenholzstrasse 191, CH-8046 Zurich, Switzerland Keller S. (2007) Arthropod-pathogenic Entomophthorales from Switzerland. III. First additions. ± Sydowia 59 (1): 75±113. Twenty-nine species of arthropod-pathogenic Entomophthorales new to Switzerland are described. Nine are described as new species, namely Batkoa hydrophila from Plecoptera, Conidiobolus caecilius from Psocoptera, Entomophaga antochae from Limoniidae (Diptera), E. thuricensis from Cicadellidae (Homo- ptera), Erynia fluvialis from midges (Diptera), E. tumefacta from Muscidae (Dip- tera), Eryniopsis rhagonidis from Rhagionidae (Diptera), Pandora longissima from Limoniidae (Diptera) and Strongwellsea pratensis from Muscidae (Diptera). Pan- dora americana, P. sciarae, Zoophthora aphrophorae and Z. rhagonycharum are new combinations. Eleven species are first records since the original description. The list of species recorded from Switzerland amounts to 90 species representing 38% of the world-wide known species of arthropod-pathogenic Entomophthorales. Part I of this monograph (Keller 1987) treated the genera Con- idiobolus, Entomophaga [including the species later transferred on to the new genus Batkoa Humber (1989)], and Entomophthora. Part II (Keller 1991) treated the genera Erynia sensu lato (now subdivided into the genera Erynia, Furia and Pandora), Eryniopsis, Neozygites, Zoophthora and Tarichium. So far 51 species including 8new ones have been listed.