From Mathematics in Logic to Logic in Mathematics: Boole and Frege

Total Page:16

File Type:pdf, Size:1020Kb

From Mathematics in Logic to Logic in Mathematics: Boole and Frege From Mathematics in Logic to Logic in Mathematics: Boole and Frege Aliou Tall Submitted for the degree of PhD University of York Department of Philosophy October 2002·· Abstract This project proceeds from the premise that the historical and logical value of Boole's logical calculus and its connection with Frege's logic remain to be recognised. It begins by discussing Gillies' application of Kuhn's concepts to the history oflogic and proposing the use of the concept of research programme as a methodological tool in the historiography oflogic. Then it analyses'the development of mathematical logic from Boole to Frege in terms of overlapping research programmes whilst discussing especially Boole's logical calculus. Two streams of development run through the project: 1. A discussion and appraisal of Boole's research programme in the context of logical debates and the emergence of symbolical algebra in Britain in the nineteenth century, including the improvements which Venn brings to logic as algebra, and the axiomatisation of 'Boolean algebras', which is due to Huntington and Sheffer. 2. An investigation of the particularity of the Fregean research programme, including an analysis ofthe extent to which certain elements of Begriffsschrift are new; and an account of Frege's discussion of Boole which focuses on the domain common to the two formal languages and shows the logical connection between Boole's logical calculus and Frege's. As a result, it is shown that the progress made in mathematical logic stemmed from two continuous and overlapping research programmes: Boole's introduction ofmathematics in logic and Frege's introduction oflogic in mathematics. In particular, Boole is regarded as the grandfather of metamathematics, and Lowenheim's theorem ofl915 is seen as a revival of his research programme. I Contents Page Part One: Setting The Scene 1. Introduction 2 1.1 Remarks on Gillies' 'The Fregean Revolution in Logic' 2 1.1.1 Gillies' General Thesis 3 1.1.2 Gillies on Peano's Research Programme 7 1.2 Outline of The project 11 Part Two: Boole: Mathematics in Logic 2. Background to Boole's Logical Calculus 15 2.1 A Resume of Aristotelian Logic 16 2.1.1 Categorical Propositions 16 2.1.2 Conversion and Syllogism 20 2.2 Logical Ambience in Britain Before Boole 28 2.2.1 Hamilton: The Quantification of The Predicate 29 2.2.2 Hamilton versus de Morgan 32 2.2.3 de Morgan: The Universe of Discourse 33 2.3 The Move towards Abstractness in Algebra 35 2.3.1 The Emergence of Symbolical Algebra in Britain 36 2.3.2 Boole's Contributions to Symbolical Algebra 40 3. Boole's Computational Procedure in Logic 47 3.1 Boole's Algebraic Notation 50 3.1.1 The System of Signs 51 3.1.2 The Laws of Boo le's Algebra of Logic 52 II 3.2 Boole's Procedures of Computation 56 3.2.1 Development of Logical Function 56 3.2.2 The Logical Interpretation 62 3.2.3 Elimination of Logical Symbols 66 3.3 Boole's 'Primary Propositions' 71 3.3.1 The Expression of 'Primary Propositions' 71 3.3.2 Reduction of System of Propositions 74 3.4 Systematisation and Generalisation of Aristotelian Logic 77 3.4.1 Boole's Laws of Conversion 78 3.4.2 Boole's Solution of Syllogism 83 3.5 Boole's 'Secondary Propositions' 90 3.5.1 Calculus of Hypothetical Propositions and 'Cases' 90 3.5.2 Propositional Calculus and 'Time' 99 3.6 Some Criticisms of Boole's Logical Calculus 105 3.6.1 Boole's Mathematicism 105 3.6.2 The Inconsistent Treatment of The Symbol 'v' 115 4. Some Further Developments of Boole's Logical Calculus 121 4.1 Venn: Diagrannnatic Representation of Boole's Logical Calculus 121 4.1.1 A Compartmental View 122 4.1.2 A Geometrical Illustration of Boole' s logical calculus 127 4.2 Modem Algebra of Logic 136 4.3 Axiomatic Methods for 'Boolean Algebras' 145 4.3.1 Huntington: Sets of Independent Postulates for Boolean Algebra 145 4.3.2 Sheffer: A Set of Five Independent Postulates for Boolean Algebras152 Part Three: Frege: Logic in Mathematics 5. An Account of the First Two Parts of Frege's Begriffsschrift 157 5.1 What is Logic about? 158 5.1.1 Logic as universal 158 III 5.1.2 Psychologism versus Logic 159 5.1.3 Boole and Frege on Logic 161 5.2 The Project of Begriffsschrift 164 5.2.1 An Ideal of Rigour in The Proof 165 5.2.2 Leibniz and the Concept of Formal Proof 166 5.3 A Formula-Language For Pure Thought 171 5.3.1 Frege's Symbolic Notation 171 5.3.2 Frege's New Theory of Judgement: Function I Argument 179 5.3.3 Frege's Theory of Quantification 190 5.4 A Formal System of Logic 203 5.4.1 A Euclidean Procedure 203 5.4.2 The Axiomatisation of Propositional Calculus 206 5.5 The Place of Begriffsschrift in the History of Logic 212 6. Boole-as-Frege-Discusses-Him 218 6.1 The Standard Account of The Discussion 220 6.2 Boole and Frege: The Same Subject-Matter 224 6.2.1 The Perspicuous Representation of Logical Relations 225 6.2.2 The Deductive Calculus of Reasoning 227 6.3 The Relation of Logic to Mathematics 231 6.3.1 Boole: Logic as an Auxiliary Part of Mathematics 231 6.3.2 Frege: Mathematics as a Branch of Logic 233 6.4 The Nodal Point ofFrege's Discussion of Boo le 237 6.4.1 Judgements as Prior to Concepts 238 6.4.2 Functional Analysis of Mathematical Judgments 244 6.4.3 Representation of Generality in Mathematics 246 6.5 A Picture ofBoole-as-Frege-Discusses-Him 250 Part Four: Conclusion 7. Metamathematics: A Return to Boole's Research Programme 253 IV 7.1 The Importance of Boole in The History of Logic 255 7.2 Boole's Anticipation of Metamathematics 264 7.2.1 Boole's Logic as Formalism 265 7.2.2 Boole's Logic as Semantics 270 7.3 Lowenheim's Revival of Boole's Research Programme 272 7.4 Back to Gillies' 'The Fregean Revolution in Logic' 277 7.5 An Overall Portrait of Boole and Frege 280 List of References 283 v Acknowledgement I would like to thank all the people in the Philosophy Department at the University of York for all the help and support that I have received during my happy and fruitful stay as a postgraduate student there. In particular, I would like to thank Dr. Marie McGinn, Dr. Joseph Melia, and Dr. Samir Okasha for their guidance and helpful comments. Most of all, I would like to thank warmly my supervisor, Professor Thomas Baldwin, whose wisdom, munificence, diligence and support guided and inspired my pleasant voyage of philosophical discovery, and without whom this project would not, and could not, have been possible at all. I would like to thank Anna Baldwin, Donald and Rarnzieh Munro for the emotional support and for the food which make my sojourn more bearable, and John S Robinson, Evgeni Dimitrov Vachkov, Olusegun Mayegun, Debbie Brooke and Marysia Koc for their help. I would like to thank Professor Ro bert Rasmussen for editing the project, and Dr Raymond Swaray, Joseph Akpokodje, Jorge Villacampa, Abass Bundu for their friendship. I would also like to extend my gratitude to those undergraduates who have been sources of fruitful discussion and practical guidance. Finally, I would like to thank Mr. Alan Furness, former British ambassador in Senegal, for the respect that he has shown for philosophy as a meritorious and genuine area of study; and to acknowledge the support of the British Foreign Connnonwealth Office and the British Council of Senegal and Manchester for the Chevening Scholarship which made my first two years of study possible. VI Dedication To my wife Sara, and my children Gabriel and Abraham: For unparalleled love and devotion and for bearing the greatest emotional burden of my absence throughout the course of my studies. To my mother and the memory of my father. VII Part One: Setting The Scene 1. Introduction o my Lord! Advance me in knowledge. Surah 20, Taha, verse 114 History, if viewed as a repository for more than anecdote or chronology, could produce a decisive transformation in the image of science by which we are now possessed. Thomas Kuhn 1.1 Remarks on Gillies' 'The Fregean Revolution in Logic' In the historiography of science concerned with the historical development of knowledge, there has been a fixation on empirical sciences for illustrations. For instance, although Kuhn himself acted as a commentator in a session in which the growth of mathematics was discussed in the light of his work at the fiftieth-anniversary meeting of the 'History of Science Society' held inl974 at Norwalk, he never wrote anything about non-empirical sciences. Therefore, the book, Revolutions in Mathematics edited by Donald Gillies is more than welcome. In particular, in the paper on 'The Fregean Revolution in Logic', Gillies espouses Kuhn's general analysis of revolutions in science in order to approach the Fregean revolution. Gillies holds that Frege (1848-1925) is a revolutionary in logic and that his revolution can be compared to 'the Copernican revolution in astronomy and physics' in which the Aristotelian-Ptolemaic paradigm was 'overthrown and irrevocably discarded' and replaced by the Newtonian paradigm. Thus Gillies appears to be reliant upon Kuhn's concept of 'paradigm', which has in his view just the right degree of precision for the analysis of revolutions in science and mathematics (Gillies 1992, p.
Recommended publications
  • Nominalism, Trivialism, Logicism
    Nominalism, Trivialism, Logicism Agustín Rayo∗ May 1, 2014 This paper is an effort to extract some of the main theses in the philosophy of mathematics from my book, The Construction of Logical Space. I show that there are important limits to the availability of nominalistic paraphrase-functions for mathematical languages, and sug- gest a way around the problem by developing a method for specifying nominalistic contents without corresponding nominalistic paraphrases. Although much of the material in this paper is drawn from the book—and from an earlier paper (Rayo 2008)—I hope the present discussion will earn its keep by motivating the ideas in a new way, and by suggesting further applications. 1 Nominalism Mathematical Nominalism is the view that there are no mathematical objets. A standard problem for nominalists is that it is not obvious that they can explain what the point of a mathematical assertion would be. For it is natural to think that mathematical sentences like ‘the number of the dinosaurs is zero’ or ‘1 + 1 = 2’ can only be true if mathematical objects exist. But if this is right, the nominalist is committed to the view that such sentences are untrue. And if the sentences are untrue, it not immediately obvious why they would be worth asserting. ∗For their many helpful comments, I am indebted to Vann McGee, Kevin Richardson, Bernhard Salow and two anonymous referees for Philosophia Mathematica. I would also like to thank audiences at Smith College, the Università Vita-Salute San Raffaele, and MIT’s Logic, Langauge, Metaphysics and Mind Reading Group. Most of all, I would like to thank Steve Yablo.
    [Show full text]
  • The Human Striving and the Categories of Science
    THE HUMAN STRIVLXG AND THE CATEGORIES OF SCIENCE' BY BENJAMIN GINZBURG CERTAIN school of philosophers have tried to persuade us A that the human striving, or the moral consciousness, and the principles of scientific reason have no relationship in common. It is but necessary to cast a glance at the history of pragmatism to appreciate the inadequacy of such an assertion. In the original arti- cle of C. S. Peirce on "How to Make Our Ideas Clear," - the argu- ment concerned the principles of scientific method. After review- ing the notions of Bacon and Descartes, as well as the attempts of lesser philosophers to legislate for science, the American mathemati- cian came to the conclusion that it was necessary to bring reason into the laboratory—much as Kepler had done when he painstak- ingly plotted every possible curve that could explain the movement of Mars. From a discussion of the logic of science, pragmatism w^as transformed into a philosophy of voluntaristic fideism. And even if Mr. Dewey has attempted to swing the movement away from some of the temperamental excesses of James, the fact remains that in the pragmatic philosophy logic and moral striving are still very closely united. To be sure, the realistic critics have used pragmatism as the hoi rible example of what happens when reasons of the heart are allowed to interfere with reasons of the intellect. And it certainly is true that pragmatism in many instances has weakened the authority of the intellect, and has opened the door to all manner of affective vagaries. The same charge is applicable to the Bergsonian phil- osophy of the intuition, which beginning as a critique of scientific orthodoxy has ended up as an apology for modernistic Catholicism.
    [Show full text]
  • Handbook Vatican 2014
    HANDBOOK OF THE WORLD CONGRESS ON THE SQUARE OF OPPOSITION IV Pontifical Lateran University, Vatican May 5-9, 2014 Edited by Jean-Yves Béziau and Katarzyna Gan-Krzywoszyńska www.square-of-opposition.org 1 2 Contents 1. Fourth World Congress on the Square of Opposition ..................................................... 7 1.1. The Square : a Central Object for Thought ..................................................................................7 1.2. Aim of the Congress.....................................................................................................................8 1.3. Scientific Committee ...................................................................................................................9 1.4. Organizing Committee .............................................................................................................. 10 2. Plenary Lectures ................................................................................................... 11 Gianfranco Basti "Scientia una contrariorum": Paraconsistency, Induction, and Formal Ontology ..... 11 Jean-Yves Béziau Square of Opposition: Past, Present and Future ....................................................... 12 Manuel Correia Machuca The Didactic and Theoretical Expositions of the Square of Opposition in Aristotelian logic ....................................................................................................................... 13 Rusty Jones Bivalence and Contradictory Pairs in Aristotle’s De Interpretatione ................................
    [Show full text]
  • Biography Paper – Georg Cantor
    Mike Garkie Math 4010 – History of Math UCD Denver 4/1/08 Biography Paper – Georg Cantor Few mathematicians are house-hold names; perhaps only Newton and Euclid would qualify. But there is a second tier of mathematicians, those whose names might not be familiar, but whose discoveries are part of everyday math. Examples here are Napier with logarithms, Cauchy with limits and Georg Cantor (1845 – 1918) with sets. In fact, those who superficially familier with Georg Cantor probably have two impressions of the man: First, as a consequence of thinking about sets, Cantor developed a theory of the actual infinite. And second, that Cantor was a troubled genius, crippled by Freudian conflict and mental illness. The first impression is fundamentally true. Cantor almost single-handedly overturned the Aristotle’s concept of the potential infinite by developing the concept of transfinite numbers. And, even though Bolzano and Frege made significant contributions, “Set theory … is the creation of one person, Georg Cantor.” [4] The second impression is mostly false. Cantor certainly did suffer from mental illness later in his life, but the other emotional baggage assigned to him is mostly due his early biographers, particularly the infamous E.T. Bell in Men Of Mathematics [7]. In the racially charged atmosphere of 1930’s Europe, the sensational story mathematician who turned the idea of infinity on its head and went crazy in the process, probably make for good reading. The drama of the controversy over Cantor’s ideas only added spice. 1 Fortunately, modern scholars have corrected the errors and biases in older biographies.
    [Show full text]
  • Galileo's Assayer
    University of Nevada, Reno Galileo's Assayer: Sense and Reason in the Epistemic Balance A thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts in History. by James A Smith Dr. Bruce Moran/Thesis Advisor May 2018 c by James A Smith 2018 All Rights Reserved THE GRADUATE SCHOOL We recommend that the thesis prepared under our supervision by JAMES A. SMITH entitled Galileo's Assayer: Sense and Reason in the Epistemic Balance be accepted in partial fulfillment of the requirements for the degree of MASTER OF ARTS Bruce Moran, Ph.D., Advisor Edward Schoolman, Ph.D., Committee Member Carlos Mariscal, Ph.D., Committee Member Stanislav Jabuka, Ph.D., Graduate School Representative David W. Zeh, Ph.D., Dean, Graduate School May, 2018 i Abstract Galileo's The Assayer, published in 1623, represents a turning point in Galileo's philo- sophical work. A highly polemical \scientific manifesto," The Assayer was written after his astronomical discoveries of the moons of Jupiter and sunspots on a rotating sun, but before his mature Copernican work on the chief world systems (Ptolemaic versus Copernican). The Assayer included major claims regarding the place of math- ematics in natural philosophy and how the objects of the world and their properties can be known. It's in The Assayer that Galileo wades into the discussion about the ultimate constituents of matter and light, namely, unobservable particles and atoms. Galileo stressed the equal roles that the senses and reason served in the discovery of knowledge, in contradistinction to Aristotelian authoritarian dogma that he found to hinder the processes of discovery and knowledge acquisition.
    [Show full text]
  • Centroids by Composite Areas.Pptx
    Centroids Method of Composite Areas A small boy swallowed some coins and was taken to a hospital. When his grandmother telephoned to ask how he was a nurse said 'No change yet'. Centroids ¢ Previously, we developed a general formulation for finding the centroid for a series of n areas n xA ∑ ii i=1 x = n A ∑ i i=1 2 Centroids by Composite Areas Monday, November 12, 2012 1 Centroids ¢ xi was the distance from the y-axis to the local centroid of the area Ai n xA ∑ ii i=1 x = n A ∑ i i=1 3 Centroids by Composite Areas Monday, November 12, 2012 Centroids ¢ If we can break up a shape into a series of smaller shapes that have predefined local centroid locations, we can use this formula to locate the centroid of the composite shape n xA ∑ ii i=1 x = n A ∑ i 4 Centroids by Composite Areas i=1 Monday, November 12, 2012 2 Centroid by Composite Bodies ¢ There is a table in the back cover of your book that gives you the location of local centroids for a select group of shapes ¢ The point labeled C is the location of the centroid of that shape. 5 Centroids by Composite Areas Monday, November 12, 2012 Centroid by Composite Bodies ¢ Please note that these are local centroids, they are given in reference to the x and y axes as shown in the table. 6 Centroids by Composite Areas Monday, November 12, 2012 3 Centroid by Composite Bodies ¢ For example, the centroid location of the semicircular area has the y-axis through the center of the area and the x-axis at the bottom of the area ¢ The x-centroid would be located at 0 and the y-centroid would be located
    [Show full text]
  • 7.1 Rules of Implication I
    Natural Deduction is a method for deriving the conclusion of valid arguments expressed in the symbolism of propositional logic. The method consists of using sets of Rules of Inference (valid argument forms) to derive either a conclusion or a series of intermediate conclusions that link the premises of an argument with the stated conclusion. The First Four Rules of Inference: ◦ Modus Ponens (MP): p q p q ◦ Modus Tollens (MT): p q ~q ~p ◦ Pure Hypothetical Syllogism (HS): p q q r p r ◦ Disjunctive Syllogism (DS): p v q ~p q Common strategies for constructing a proof involving the first four rules: ◦ Always begin by attempting to find the conclusion in the premises. If the conclusion is not present in its entirely in the premises, look at the main operator of the conclusion. This will provide a clue as to how the conclusion should be derived. ◦ If the conclusion contains a letter that appears in the consequent of a conditional statement in the premises, consider obtaining that letter via modus ponens. ◦ If the conclusion contains a negated letter and that letter appears in the antecedent of a conditional statement in the premises, consider obtaining the negated letter via modus tollens. ◦ If the conclusion is a conditional statement, consider obtaining it via pure hypothetical syllogism. ◦ If the conclusion contains a letter that appears in a disjunctive statement in the premises, consider obtaining that letter via disjunctive syllogism. Four Additional Rules of Inference: ◦ Constructive Dilemma (CD): (p q) • (r s) p v r q v s ◦ Simplification (Simp): p • q p ◦ Conjunction (Conj): p q p • q ◦ Addition (Add): p p v q Common Misapplications Common strategies involving the additional rules of inference: ◦ If the conclusion contains a letter that appears in a conjunctive statement in the premises, consider obtaining that letter via simplification.
    [Show full text]
  • Chapter 1 Logic and Set Theory
    Chapter 1 Logic and Set Theory To criticize mathematics for its abstraction is to miss the point entirely. Abstraction is what makes mathematics work. If you concentrate too closely on too limited an application of a mathematical idea, you rob the mathematician of his most important tools: analogy, generality, and simplicity. – Ian Stewart Does God play dice? The mathematics of chaos In mathematics, a proof is a demonstration that, assuming certain axioms, some statement is necessarily true. That is, a proof is a logical argument, not an empir- ical one. One must demonstrate that a proposition is true in all cases before it is considered a theorem of mathematics. An unproven proposition for which there is some sort of empirical evidence is known as a conjecture. Mathematical logic is the framework upon which rigorous proofs are built. It is the study of the principles and criteria of valid inference and demonstrations. Logicians have analyzed set theory in great details, formulating a collection of axioms that affords a broad enough and strong enough foundation to mathematical reasoning. The standard form of axiomatic set theory is denoted ZFC and it consists of the Zermelo-Fraenkel (ZF) axioms combined with the axiom of choice (C). Each of the axioms included in this theory expresses a property of sets that is widely accepted by mathematicians. It is unfortunately true that careless use of set theory can lead to contradictions. Avoiding such contradictions was one of the original motivations for the axiomatization of set theory. 1 2 CHAPTER 1. LOGIC AND SET THEORY A rigorous analysis of set theory belongs to the foundations of mathematics and mathematical logic.
    [Show full text]
  • John P. Burgess Department of Philosophy Princeton University Princeton, NJ 08544-1006, USA [email protected]
    John P. Burgess Department of Philosophy Princeton University Princeton, NJ 08544-1006, USA [email protected] LOGIC & PHILOSOPHICAL METHODOLOGY Introduction For present purposes “logic” will be understood to mean the subject whose development is described in Kneale & Kneale [1961] and of which a concise history is given in Scholz [1961]. As the terminological discussion at the beginning of the latter reference makes clear, this subject has at different times been known by different names, “analytics” and “organon” and “dialectic”, while inversely the name “logic” has at different times been applied much more broadly and loosely than it will be here. At certain times and in certain places — perhaps especially in Germany from the days of Kant through the days of Hegel — the label has come to be used so very broadly and loosely as to threaten to take in nearly the whole of metaphysics and epistemology. Logic in our sense has often been distinguished from “logic” in other, sometimes unmanageably broad and loose, senses by adding the adjectives “formal” or “deductive”. The scope of the art and science of logic, once one gets beyond elementary logic of the kind covered in introductory textbooks, is indicated by two other standard references, the Handbooks of mathematical and philosophical logic, Barwise [1977] and Gabbay & Guenthner [1983-89], though the latter includes also parts that are identified as applications of logic rather than logic proper. The term “philosophical logic” as currently used, for instance, in the Journal of Philosophical Logic, is a near-synonym for “nonclassical logic”. There is an older use of the term as a near-synonym for “philosophy of language”.
    [Show full text]
  • Our Conceptual Understanding of a Phenomenon, While the Logic of Induction Adds Quantitative Details to the Conceptual Knowledge
    DOCUMENT RESUME ED 376 173 TM 021 982 AUTHOR Ho, Yu Chong TITLE Abduction? Deduction? Induction? Is There a Logic of Exploratory Data Analysis? PUB DATE Apr 94 NOTE 28p.; Paper presented at the Annual Meeting of the American Educational Research Association (New Orleans, LA, April 4-8, 1994). PUB TYPE Reports Descriptive (141) Speeches/Conference Papers (150) EDRS PRICE MF01/PCO2 Plus Postage. DESCRIPTORS *Comprehension; *Deduction; Hypothesis Testing; *Induction; *Logic IDENTIFIERS *Abductive Reasoning; *Exploratory Data Analysis; Peirce (Charles S) ABSTRACT The philosophical notions introduced by Charles Sanders Peirce (1839-1914) are helpfu: for researchers in understanding the nature of knowledge and reality. In the Peircean logical system, the logic of abduction and deduction contribute to our conceptual understanding of a phenomenon, while the logic of induction adds quantitative details to the conceptual knowledge. Although Peirce justified the validity of induction as a self-corrective process, he asserted that neither induction nor deduction can help us to unveil the internal structure of meaning. As exploratory data analysis performs the function of a model builder for confirmatory data analysis, abduction plays the role of explorer of viable paths to further inquiry. Thus, the logic of abduction fits well into exploratory data analysis. At the stage of abduction, the goal is to explore the data, find out a pattern, and suggest a plausible hypothesis; deduction is to refine the hypothesis based upon other plausible premises; and induction is the empirical substantiation. (Contains 55 references.) (Author) *********************************************************************** Reproductions supplied by EDRS are the best that can be made from the original document. is *********************************************************************** Abduction? Deduction? Induction? Is there a Logic of Exploratory Data Analysis? Yu Chong Ho University of Oklahoma Internet: [email protected] April 4, 1994 U S.
    [Show full text]
  • Two Squares of Opposition: the Conceptual Square Underwrites the Alethic Square’S Validity
    1 TWO SQUARES OF OPPOSITION: THE CONCEPTUAL SQUARE UNDERWRITES THE ALETHIC SQUARE’S VALIDITY ABSTRACT I have made explicit an implicit conceptual logic that exists in the English lang- uage and others; its evaluation terms of propositions are coherent|incoherent. This con- trasts with the usual alethic true|false evaluations for statement logic. I call conceptual logic a basement logic; it’s more basic than statement logic. I demonstrate this by show- ing how the long-standard, ever-present Alethic Square of Opposition’s AEIO state- ments’ truth value and the validity of their immediate inferences rests on the Conceptual Square’s (a) coherent propositions and (b) coherent emplacements of substantives and tropes into, respectively, AEIOs’ subjects and predicates. ConceptFunctor operations bear the leutic [Enjoined] modal that governs the coherence of de dicto and de jure grounded propositions. The FactFunctor operation bears the [Allowed] modal that govern coherent emplacement of the world’s substantives and tropes into sentences’ subjects and predicates and, subsequent to that, the truth value of their allied statements. My strategy is (1) to construct a Conceptual Square of Opposition by rewriting the Aletic Square’s AEIO statements as conceptual propositions. (2) If the propositions are coherent by virtue of coherent emplacements of substantives and tropes into their subjects and predicates that turns them into conceptualized substantives and tropes, then, by the Coherence Account of Truth, they entail the truth of the Alethic Squares’ statements and the validity of its traditionally accepted inferences. (3) This is enough to prove conceptual logic is the basement ground for the traditional Alethic Square, and on which any alethic logic rests; and it supports the claims made in (2) above.1 KEY WORDS: Coherence, [Emplace], [Functor], ConceptFunctor, FactFunctor, [Any], collective, distributive, and singular (uses of [Any]), grammatical and semantic subjects and predicates, Concepttual and Alethic Square (of opposition), leutic modal- ities, [Enjoin], [Allow].
    [Show full text]
  • Archimedes and the Arbelos1 Bobby Hanson October 17, 2007
    Archimedes and the Arbelos1 Bobby Hanson October 17, 2007 The mathematician’s patterns, like the painter’s or the poet’s must be beautiful; the ideas like the colours or the words, must fit together in a harmonious way. Beauty is the first test: there is no permanent place in the world for ugly mathematics. — G.H. Hardy, A Mathematician’s Apology ACBr 1 − r Figure 1. The Arbelos Problem 1. We will warm up on an easy problem: Show that traveling from A to B along the big semicircle is the same distance as traveling from A to B by way of C along the two smaller semicircles. Proof. The arc from A to C has length πr/2. The arc from C to B has length π(1 − r)/2. The arc from A to B has length π/2. ˜ 1My notes are shamelessly stolen from notes by Tom Rike, of the Berkeley Math Circle available at http://mathcircle.berkeley.edu/BMC6/ps0506/ArbelosBMC.pdf . 1 2 If we draw the line tangent to the two smaller semicircles, it must be perpendicular to AB. (Why?) We will let D be the point where this line intersects the largest of the semicircles; X and Y will indicate the points of intersection with the line segments AD and BD with the two smaller semicircles respectively (see Figure 2). Finally, let P be the point where XY and CD intersect. D X P Y ACBr 1 − r Figure 2 Problem 2. Now show that XY and CD are the same length, and that they bisect each other.
    [Show full text]