Ecological Research on Offshore Wind Farms: International Exchange of Experiences

Total Page:16

File Type:pdf, Size:1020Kb

Ecological Research on Offshore Wind Farms: International Exchange of Experiences Catherine Zucco, Wolfgang Wende, Thomas Merck, Irene Köchling and Johann Köppel (eds.) Ecological Research on Offshore Wind Farms: International Exchange of Experiences PART B: Literature Review of Ecological Impacts BfN-Skripten 186 2006 Ecological Research on Offshore Wind Farms: International Exchange of Experiences (Project No.: 804 46 001) PART B: Literature Review of the Ecological Impacts of Offshore Wind Farms Editors: Catherine Zucco Wolfgang Wende Thomas Merck Irene Köchling Johann Köppel Cover Pictures (clockwise): Sea gull, research platform, benthic community (Krause & Hübner, BfN); Common Seal (Wollny-Goerke, Hamburg); windfarm Rønland (Steinhauer, TU Berlin); windfarm Nysted (background) (Krause & Hübner, BfN) Editors´ addresses: C. Zucco, T. Merck, I. Köchling Bundesamt für Naturschutz Federal Agency for Nature Conservation Außenstelle Vilm 18581 Putbus W. Wende, J. Köppel Technische Universität Berlin Berlin University of Technology Franklinstraße 28/29 10587 Berlin This publication is included in the literature database “DNL-online” /(www.dnl-online.de) BfN-Skripten are not available in book trade. Publisher: Bundesamt für Naturschutz (BfN) Federal Agency for Nature Conservation Konstantinstrasse 110 53179 Bonn, Germany Phone: +49 228/8491-0 Fax: +49 228/8491-200 URL: http://www.bfn.de All rights reserved by BfN The publisher takes no guarantee for correctness, details and completeness of statements and views in this report as well as no guarantee for respecting private rights of third parties. Views expressed in the papers published in this issue of BfN-Skripten are those of the authors and do not necessarily represent those if the publisher. No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information stor- age and retrieval system without written permission from the copyright owner. Printed by the printing office of the Federal Ministry of Environment, Nature Conservation and Nuclear Safety. Printed on 100% recycled paper. Bonn, Germany 2006 I TABLE OF CONTENTS 1 Literature Review of Offshore Wind Farms with Regard 1 to Benthic Communities and Habitats Karin Meißner & Holmer Sordyl 2 Literature Review of Offshore Wind Farms with Regard 47 to Fish Fauna Oliver Keller, Karin Lüdemann & Rudolf Kafemann 3 Literature Review of Offshore Wind Farms with Regard 131 to Seabirds Volker Dierschke & Stefan Garthe 4 Literature Review of Offshore Wind Farms with Regard 199 to Marine Mammals Klaus Lucke, Sandra Storch, Justin Cooke & Ursula Siebert Funded by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety through the Federal Agency for Nature Conservation II MEIßNER & SORDYL: Offshore Wind Farms and Benthic Communities and Habitats 1 Literature Review of Offshore Wind Farms with Regard to Benthic Communities and Habitats Karin Meißner & Holmer Sordyl Institut für Angewandte Ökologie Forschungsgesellschaft mbH Alte Dorfstraße 11 18184 Neu Broderstorf, Germany [email protected] Contents 1 Summary ................................................................................................................. 2 2 Zusammenfassung ................................................................................................. 3 3 Background and Objectives .................................................................................. 6 4 Sources of Information........................................................................................... 7 4.1 Experience and Data from Offshore Wind Farm Developments ................7 4.2 Practical Approaches.....................................................................................8 4.3 Theoretical Approaches.................................................................................8 5 State of Knowledge................................................................................................. 9 5.1 Noise and Vibration........................................................................................9 5.2 Temperature..................................................................................................10 5.3 Electromagnetic Fields ................................................................................14 5.4 Disturbance...................................................................................................17 5.4.1 Changes in Biotope Characteristics ................................................17 5.4.1.1 Current and Wave Regime .....................................................17 5.4.1.2 Disturbance of the Seabed .....................................................18 Direct Habitat Loss.................................................................. 18 Scour ..................................................................................... 18 Contamination ........................................................................ 20 5.4.1.3 Habitat Destruction.................................................................21 5.4.2 Physical Disturbance and Damage to Benthic Organisms ............22 5.4.3 Introduction of New Faunal Components and “Reef Effects” .......26 6 Conclusions and Recommendations.................................................................. 30 6.1 Effect Monitoring..........................................................................................31 6.1.1 Existing Concepts……………… ........................................................31 6.1.2 Proposal for a Monitoring Concept for the Operational Phase of Offshore Wind Farms in the German EEZ ...................................34 7 References ............................................................................................................ 39 1 2 MEIßNER & SORDYL: Offshore Wind Farms and Benthic Communities and Habitats 1 Summary A literature review of ecological research on offshore wind farms with regard to benthic habitats and communities is presented in this article. Information was gathered from reports compiled in the course of wind farm developments, research project reports (practical and theoretical approaches), and the scientific literature. Noise and vibration, heat emission, electromagnetic fields and disturbance have been identified as potential impact sources. Available information related to the different impact sources are reviewed in separate chapters. A summary of contents is given below. NOISE AND VIBRATION Various source levels of offshore wind farm related noise are available. Studies linking both noise and marine wildlife observations are scarce. Response to noise could be observed under experimental conditions. Under field conditions, avoidance might be the most common response to underwater noise. Colonization of wind turbines is taken as an indication that noise and vibration do not have detrimental effects on the attached fauna. Further studies are required to significantly add knowledge about the effects of noise and vibration on marine invertebrates. TEMPERATURE Temperature rise in the sediment is predicted based on different theoretical models. Results of such calculations are cited. Most studies predict the sediment temperature rise not to exceed 2 K at 20 cm sediment depth if the cable burial depth is 1 m. Models also predict much higher sediment temperatures in close vicinity to the cables. Heat emission is discussed in the context of changes in the physico-chemical conditions of sedimentary substrates, which could cause changes in the distribution of species. In the scientific literature, the change of benthic community composition is mainly discussed in connection with thermal discharges from power plants. Also, an assessment of likely effects of seawater warming for particular species is presented. ELECTROMAGNETIC FIELDS The cccurrence of electric and magnetic fields dependent on power cable type is explained. Data available on both anticipated and measured field strength are reviewed. In conclusion, none of the studies performed to date to assess the impact of undersea cables on migratory fish (e.g. salmon and eels) and all the relatively immobile fauna inhabiting the sea floor (e.g. molluscs), has found any substantial behavioural or biological impact. In regard to benthic marine invertebrates, such effects may only occur in close vicinity to the cables. DISTURBANCE Disturbance has been identified as one of the major impact factors in the course of offshore wind farm development. The term “disturbance” includes a number of different impact factors. It is necessary to distinguish between indirect and direct effects. Indirect effects primarily affect the marine environment, and thus secondarily affect the benthic community. Direct effects on organisms include physical disturbance, damage, displacement and removal. Effects on the marine environment include all changes in biotope characteristics. Such changes discussed include changes of current and wave regime, disturbance of the seabed, and habitat destruction. None of these changes is reported to affect the marine environment on a large scale. MEIßNER & SORDYL: Offshore Wind Farms and Benthic Communities and Habitats 3 Physical disturbance and damage to benthic organisms is widely discussed in the scientific literature. Contradictory results are presented regarding the effects on benthic communities due to disturbance, but based on the results of the majority of studies, changes in zoobenthic species composition, abundance or biomass are very likely
Recommended publications
  • The MEDITS Trawl Survey Specifications in an Ecosystem Approach to Fishery Management
    SCIENTIA MARINA 83S1 December 2019, S1-S13, Barcelona (Spain) ISSN-L: 0214-8358 The MEDITS trawl survey specifications in an ecosystem approach to fishery management Maria Teresa Spedicato, Enric Massutí, Bastien Mérigot, George Tserpes, Angélique Jadaud, Giulio Relini Supplementary material S2 • M.T. Spedicato et al. tom trawl survey in the Mediterranean. Sci. Mar. 66(Suppl. 2): List of the papers peer reviewed (with or without 169-182. impact factor) published between 2002 and 2017 https://doi.org/10.3989/scimar.2002.66s2169 and based on MEDITS data. Biagi F., Sartor P., Ardizzone G.D., et al. 2002. Analysis of demer- sal fish assemblages of the Tuscany and Latium coasts (north- Abella A., Fiorentino F., Mannini A., et al. 2008. Exploring rela- western Mediterranean). Sci. Mar. 66(Suppl. 2): 233-242. tionships between recruitment of European hake (Merluccius https://doi.org/10.3989/scimar.2002.66s2233 merluccius L. 1758) and environmental factors in the Ligurian Bitetto I., Facchini M.T., Spedicato M.T., et al. 2012. Spatial loca- Sea and the Strait of Sicily (Central Mediterranean). J. Mar. tion of giant red shrimp (Aristaeomorpha foliacea, Risso,1827) Syst. 71: 279-293. in the central-southern Tyrrhenian Sea. Biol. Mar. Mediterr. 19: https://doi.org/10.1016/j.jmarsys.2007.05.010 92-95. Abelló P., Abella A., Adamidou A., et al. 2002. Geographical pat- Bottari T., Busalacchi B., Jereb P., et al. 2004. Preliminary observa- terns in abundance and population structure of Nephrops nor- tion on the relationships between beak and body size in Eledone vegicus and Parapenaeus longirostris (Crustacea: Decapoda) cirrhosa (Lamark, 1798) from the southern Tyrrhenian Sea.
    [Show full text]
  • Final Report Implementing Capacity Building in the Mesoamerican Reef MPA Community NOAA Award Number: NA12NOS4820126
    Final Report Implementing Capacity Building in the Mesoamerican Reef MPA Community NOAA Award Number: NA12NOS4820126 October 1, 2012 to September 30, 2014 Submitted by: Robert Glazer, Emma Doyle (Project Manager) Gulf and Caribbean Fisheries Institute, Inc P.O. Box 21655 Charleston, SC 29413 NA12NOS4820126 GCFI Final Report Contents Executive Summary ............................................................................................................................................ 2 Regional Workshop on Alternative Livelihoods and Sustainable Tourism ........................................................ 3 Regional SocMon Workshop .............................................................................................................................. 7 Tasks ................................................................................................................................................................... 9 Port Honduras Marine Reserve.......................................................................................................................... 1 Project 1.Pay-to-Participate Monitoring ‘Ridge to Reef Expeditions’............................................................ 3 Project 2. Seaweed Farming .......................................................................................................................... 7 Project 3. Small Business Microgrants ........................................................................................................... 9 Half Moon Caye and Blue Hole
    [Show full text]
  • Sharks in Crisis: a Call to Action for the Mediterranean
    REPORT 2019 SHARKS IN CRISIS: A CALL TO ACTION FOR THE MEDITERRANEAN WWF Sharks in the Mediterranean 2019 | 1 fp SECTION 1 ACKNOWLEDGEMENTS Written and edited by WWF Mediterranean Marine Initiative / Evan Jeffries (www.swim2birds.co.uk), based on data contained in: Bartolí, A., Polti, S., Niedermüller, S.K. & García, R. 2018. Sharks in the Mediterranean: A review of the literature on the current state of scientific knowledge, conservation measures and management policies and instruments. Design by Catherine Perry (www.swim2birds.co.uk) Front cover photo: Blue shark (Prionace glauca) © Joost van Uffelen / WWF References and sources are available online at www.wwfmmi.org Published in July 2019 by WWF – World Wide Fund For Nature Any reproduction in full or in part must mention the title and credit the WWF Mediterranean Marine Initiative as the copyright owner. © Text 2019 WWF. All rights reserved. Our thanks go to the following people for their invaluable comments and contributions to this report: Fabrizio Serena, Monica Barone, Adi Barash (M.E.C.O.), Ioannis Giovos (iSea), Pamela Mason (SharkLab Malta), Ali Hood (Sharktrust), Matthieu Lapinksi (AILERONS association), Sandrine Polti, Alex Bartoli, Raul Garcia, Alessandro Buzzi, Giulia Prato, Jose Luis Garcia Varas, Ayse Oruc, Danijel Kanski, Antigoni Foutsi, Théa Jacob, Sofiane Mahjoub, Sarah Fagnani, Heike Zidowitz, Philipp Kanstinger, Andy Cornish and Marco Costantini. Special acknowledgements go to WWF-Spain for funding this report. KEY CONTACTS Giuseppe Di Carlo Director WWF Mediterranean Marine Initiative Email: [email protected] Simone Niedermueller Mediterranean Shark expert Email: [email protected] Stefania Campogianni Communications manager WWF Mediterranean Marine Initiative Email: [email protected] WWF is one of the world’s largest and most respected independent conservation organizations, with more than 5 million supporters and a global network active in over 100 countries.
    [Show full text]
  • Swepol Link Sets New Environmental Standard for HVDC Transmission
    00 ABB Review 4/2001 SwePol Link sets new environmental standard for HVDC transmission Leif Söderberg, Bernt Abrahamsson Six cable links – all of them HVDC (high-voltage direct current) – are currently in service between the power grids of continental Europe and the Nordic region, with another five planned. The latest to be brought on line is the SwePol Link, which connects the electricity networks of Poland and Sweden. It is unique in that, unlike previous installations that depend on electrode stations to transmit the return current under ground or under water, it uses 20-kV XLPE cable to carry this current. The high-voltage HVDC submarine cable used for the SwePol Link is designed for 600 MW at 450 kV. he reason for all these links is the technically feasible to reverse the entire onds to prevent grid failure if the voltage T vital need to secure power system 600 MW power throughput of the in southern Sweden drops below 380 kV. reliability in each of the participating SwePol Link in just 1.3 seconds, although With all previous links of this kind, countries. They make it easier to this is not a feature that will be used in electrode stations off the coast transmit optimize power generation in an area in practice. Nevertheless, a typical emer- the return current under the sea, and this which different countries use different gency power measure could call for a has worked perfectly well (Table 1). The means of power generation and have ∆P ramp-up of 300 MW within a few sec- first such cable link was laid in 1954 different power demand profiles over a 24-hour period.
    [Show full text]
  • D13 the Marine Environment Development Consent Order
    ENERGY WORKING FOR BRITAIN FOR WORKING ENERGY Wylfa Newydd Project 6.4.13 ES Volume D - WNDA Development D13 - The marine environment PINS Reference Number: EN010007 Application Reference Number: 6.4.13 June 2018 Revision 1.0 Regulation Number: 5(2)(a) Planning Act 2008 Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 Horizon Internal DCRM Number: WN0902-JAC-PAC-CHT-00045 [This page is intentionally blank] Contents 13 The marine environment .................................................................................. 1 13.1 Introduction ...................................................................................................... 1 13.2 Study area ....................................................................................................... 1 13.3 Wylfa Newydd Development Area baseline environment ................................ 2 Conservation designations .............................................................................. 3 Water quality .................................................................................................... 9 Sediment quality ............................................................................................ 13 Phytoplankton and zooplankton ..................................................................... 15 Marine benthic habitats and species .............................................................. 18 Marine fish ....................................................................................................
    [Show full text]
  • Skates and Rays Diversity, Exploration and Conservation – Case-Study of the Thornback Ray, Raja Clavata
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Doutoramento em Ciências do Mar 2010 UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Tese orientada por Professor Auxiliar com Agregação Leonel Serrano Gordo e Investigadora Auxiliar Ivone Figueiredo Doutoramento em Ciências do Mar 2010 The research reported in this thesis was carried out at the Instituto de Investigação das Pescas e do Mar (IPIMAR - INRB), Unidade de Recursos Marinhos e Sustentabilidade. This research was funded by Fundação para a Ciência e a Tecnologia (FCT) through a PhD grant (SFRH/BD/23777/2005) and the research project EU Data Collection/DCR (PNAB). Skates and rays diversity, exploration and conservation | Table of Contents Table of Contents List of Figures ............................................................................................................................. i List of Tables ............................................................................................................................. v List of Abbreviations ............................................................................................................. viii Agradecimentos ........................................................................................................................
    [Show full text]
  • Marine Midge Telmatogeton Japonicus Tokunaga (Diptera: Chironomidae) Exploiting Brackish Water in Finland
    Aquatic Invasions (2009) Volume 4, Issue 2: 405-408 DOI 10.3391/ai.2009.4.2.20 © 2009 The Author(s) Journal compilation © 2009 REABIC (http://www.reabic.net) This is an Open Access article Short communication Marine midge Telmatogeton japonicus Tokunaga (Diptera: Chironomidae) exploiting brackish water in Finland Janne Raunio1*, Lauri Paasivirta2 and Yngve Brodin3 1Janne Raunio, Water and Environment Association for the River Kymi, Tapiontie 2 C, FIN-45160 Kouvola, Finland E-mail: [email protected] 2Lauri Paasivirta, Ruuhikoskenkatu 17 B 5, FIN-24240 Salo, Finland E-mail: [email protected] 3Yngve Brodin, Swedish Museum of Natural History, P.O. Box 50007, SE-10405 Stockholm, Sweden E-mail: [email protected] *Corresponding author Received 20 March 2009; accepted in revised form 26 May 2009; published online 3 June 2009 Abstract Pupal exuviae of marine intertidal midge Telmatogeton japonicus Tokunaga (Diptera: Chironomidae) were found in September 2008 from the Gulf of Finland, Baltic Sea. Previous records of the species in the Baltic Sea were from Sweden, Denmark, Germany and Poland. Telmatogeton japonicus is an alien species introduced to Europe from the Pacific Ocean. It probably uses shipping as the vector, since in north-western Europe it has first been detected near large seaports. This was also the case in the Gulf of Finland. Our findings suggests that the species’ distribution extends further northeast in the Baltic Sea than understood before, and that the species is able to establish viable populations into fresh-brackish (salinity < 4 ‰) coastal habitats. Key words: Telmatogeton japonicus, Chironomidae, pupal exuviae, Gulf of Finland Benthic macroinvertabrate communities in the 2005; Raunio 2008) to assess chironomid littoral and sub-littoral zones in the Gulf of community composition in three areas in the Finland (Baltic Sea) are rather poorly known, as Gulf of Finland (Figure 1).
    [Show full text]
  • Salt-Marsh Restoration: Evaluating the Success of De-Embankments in North-West Europe
    BIOLOGICAL CONSERVATION Biological Conservation 123 (2005) 249–268 www.elsevier.com/locate/biocon Salt-marsh restoration: evaluating the success of de-embankments in north-west Europe Mineke Wolters a,b,*, Angus Garbutt b, Jan P. Bakker a a Community and Conservation Ecology Group, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands b Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon PE28 2LS, UK Received 30 March 2004 Abstract De-embankment of historically reclaimed salt marshes has become a widespread option for re-creating salt marshes, but to date little information exists on the success of de-embankments. One reason is the absence of pre-defined targets, impeding the measurement of success. In this review, success has been measured as a saturation index, where the presence of target plant species in a restoration site is expressed as a percentage of a regional target species pool. This review is intended to evaluate and compare success of many different sites on an idealistic concept where all regional target species have the potential to establish in a site, but may not actually do so because the site is unsuitable or inaccessible. Factors affecting suitability and accessibility and management options to increase regional species diversity are discussed. The results show that many sites contain less than 50% of the regional target species, especially when sites are smaller than 30 ha. Higher species diversity is observed for sites exceeding 100 ha and for sites with the largest elevational range within mean high water neap to mean high water spring tide.
    [Show full text]
  • 20 Jahre Elektrische Wiedervereinigung Deutschlands
    20 Jahre Elektrische Wiedervereinigung Deutschlands 20 Jahre Elektrische Wiedervereinigung Deutschlands VDE-Bezirksverein Kassel e.V., Universität Kassel am 21.01.2016 Walter Schossig, Gotha VDE Ausschuss Geschichte der Elektrotechnik [email protected] www.walter-schossig.de [email protected] www.walter-schossig.de Tel: 03621/701016 Folie 1 20 Jahre Elektrische Wiedervereinigung Deutschlands Chronologie Entstehung von Verbundnetzen Trennung des Deutschen Verbundnetzes Entwicklung in Ost- und Westeuropa Innerdeutscher Stromexport Elektrische Wiedervereinigung Deutschlands Erweiterung des Europäischen Verbundnetzes Ein Auszug der Vortragsfolien. Bei Interesse an Quellenangaben oder weiteren Informationen: [email protected] bzw. www.walter-schossig.de/Literatur [email protected] www.walter-schossig.de Tel: 03621/701016 Folie 2 20 Jahre Elektrische Wiedervereinigung Deutschlands Beginn der Stromversorgung 1866-1878 Technisch wirtschaftliche Versuche 1878-1884 Einzelanlagen 1884-1890 Blockanlagen 1890-1900 Ortszentralen 1900-1913 Überlandzentralen 1913-1915 Anfänge der Verbundwirtschaft [email protected] www.walter-schossig.de Tel: 03621/701016 Folie 3 20 Jahre Elektrische Wiedervereinigung Deutschlands < Einzelanlagen 1878-1884 > 1878 St.George Lane Fox (GB) u. Thomas Alva Edison (US) entwickeln erste Pläne zur kollektiven Verteilung des Stromes in ganze Stadtteile, die im Jahre 1881 in Godalming (GB) und ein Jahr später in New York (US) ihre erste Anwendung finden [email protected] www.walter-schossig.de
    [Show full text]
  • First Record of the Clingfish Apletodon Dentatus (Gobiesocidae) in The
    Bulletin of Fish Biology Volume 13 Nos. 1/2 30.11.2011 65-69 Short note/Kurze Mitteilung First record of the clingfi sh Apletodon dentatus (Gobiesocidae) in the Adriatic Sea and a description of a simple method to collect clingfi shes Erster Nachweis des Schildfi sches Apletodon dentatus (Gobiesocidae) in der Adria und eine Beschreibung einer simplen Fangmethode für Schildfi sche Simon Brandl1, Maximilian Wagner1, Robert Hofrichter2 & Robert A. Patzner2 1University of Innsbruck, Technikerstr. 15, 6020 Innsbruck, Austria; [email protected]; 2University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria. Zusammenfassung: Zwei Exemplare der Schildfi schart Apletodon dentatus (Facciola, 1887) wurden in der Bucht von Sv. Petar auf der Insel Krk (nördliche Adria, Kroatien) gefangen. Dies ist der erste Nachweis dieser Art in der Adria. Eine einfache und effektive Methode Schildfi sche zu fangen, besteht darin, Teller umgekehrt auf das Substrat zu legen.Diese werden von den Schildfi schen als Höhle angenommen. Clingfi shes (Gobiesocidae) are small crypto- with common methods like nets and baited benthic fi shes, characterized by a scaleless and traps, a simple but effective collecting method fl attened body, an adhesive sucking disc at the was developed. ventral body surface and the absence of a swim To examine the occurrence of clingfish bladder. There are currently eight species known species, the bay Sv. Petar at the island of Krk, in the Mediterranean Sea: Apletodon dentatus Croatia, (fi g. 1) was chosen as it provides many (Facciola, 1887), Apletodon incognitus (Hofrichter different habitats, including a sandy bottom, a & Patzner, 1997), Diplecogaster bimaculata (Bon- sea grass meadow (Cymodocea nodosa), a rocky naterre, 1788), Gouania wildenowi (Risso, 1810), slope with different kinds of brown algae and a Lepadogaster candollei (Risso, 1810), Lepadogaster rocky ground with pebbles and stones.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Appendix 13.2 Marine Ecology and Biodiversity Baseline Conditions
    THE LONDON RESORT PRELIMINARY ENVIRONMENTAL INFORMATION REPORT Appendix 13.2 Marine Ecology and Biodiversity Baseline Conditions WATER QUALITY 13.2.1. The principal water quality data sources that have been used to inform this study are: • Environment Agency (EA) WFD classification status and reporting (e.g. EA 2015); and • EA long-term water quality monitoring data for the tidal Thames. Environment Agency WFD Classification Status 13.2.2. The tidal River Thames is divided into three transitional water bodies as part of the Thames River Basin Management Plan (EA 2015) (Thames Upper [ID GB530603911403], Thames Middle [ID GB53060391140] and Thames Lower [ID GB530603911401]. Each of these waterbodies are classified as heavily modified waterbodies (HMWBs). The most recent EA assessment carried out in 2016, confirms that all three of these water bodies are classified as being at Moderate ecological potential (EA 2018). 13.2.3. The Thames Estuary at the London Resort Project Site is located within the Thames Middle Transitional water body, which is a heavily modified water body on account of the following designated uses (Cycle 2 2015-2021): • Coastal protection; • Flood protection; and • Navigation. 13.2.4. The downstream extent of the Thames Middle transitional water body is located approximately 12 km downstream of the Kent Project Site and 8 km downstream of the Essex Project Site near Lower Hope Point. Downstream of this location is the Thames Lower water body which extends to the outer Thames Estuary. 13.2.5. A summary of the current Thames Middle water body WFD status is presented in Table A13.2.1, together with those supporting elements that do not currently meet at least Good status and their associated objectives.
    [Show full text]