Forest Biorefining and Implications for Future Wood Energy Scenarios

Total Page:16

File Type:pdf, Size:1020Kb

Forest Biorefining and Implications for Future Wood Energy Scenarios Presentation 2.4: Forest biorefining and implications for future wood energy scenarios Jack N. Saddler Position: Professor & Dean Organization/Company: University of British Columbia, Faculty of Forestry E-mail: [email protected] Abstract The diversification of the forest products industry to include bioenergy may be characterized by evolution of a number of co products. The biorefinery concept, which considers energy, fuels, and chemical or material production within a single facility or cluster of facilities, may be the route forward for the forest industry that provides optimal revenues and environmental benefits. Forest- based biorefining platforms may use traditional or innovative platforms. A review of biorefineries in other sectors is followed by an examination of potential co products. A number of existing pilot or demonstration facilities exist around the world today, and many of these are described. The growth of biorefining in developed regions creates a technology transfer opportunity that could be facilitated through an FAO-led network similar to IEA Implementing Agreements or Tasks. 149 Forest biorefining and implications for future wood energy scenarios W.E. Mabee, J.N. Saddler Forest Products Biotechnology, Department of Wood Science Faculty of Forestry, University of British Columbia 4043-2424 Main Mall, Vancouver, BC, Canada V6T 1Z4 [email protected] International Seminar on Energy and the Forest Products Industry Rome, Italy: October 30 2006 Forest Products Biotechnology at UBC Outline 1. Defining biorefining in the global context 2. Forest-based biorefining platforms 3. Potential coproducts from the forest-based biorefinery 4. Examples of pilot and demonstration sites 5. Summary & Recommendations Forest Products Biotechnology at UBC 151 Definitions Lignocellulose-based biorefinery: Combination of bioenergy, 2nd-gen biofuel, bioproducts 1st-generation biofuels Commercial, based on food or foodstuff waste 2nd-generation biofuels Non-commercial, based on non-food (including forest biomass) Can be used in conventional infrastructure 3rd-generation biofuels Non-commercial, non-conventional Forest Products Biotechnology at UBC Agricultural biorefinery WET MILLINGCORN DRY MILLING Cleaning Cleaning Steeping Corn oil Germ Milling Milling Fibre Washing Gluten Gluten Sep. Starch Starch Syrup, Sweetner Hydrolysis Hydrolysis Fermentation Fermentation CO2 CO2 Yeast Recycle Yeast Distillation Distillation Ethanol recovery Centrifuge Distillers Wet Grains (DWG) Distillers Dried Syrup Grains (DDG) Forest Products Biotechnology at UBC 152 Bioethanol Production (000,000 litres/a) 40,000 35,000 30,000 25,000 20,000 World Bioethanol Production 15,000 10,000 Brazil 5,000 USA & Canada Asia 0 EU 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 Forest Products Biotechnology at UBC Sources: (1) FO Licht. 2005. (2) Fulton, L. 2004. International Energy Agency, Paris. Outline 1. Defining biorefining in the global context 2. Forest-based biorefining platforms 3. Potential coproducts from the forest-based biorefinery 4. Examples of pilot and demonstration sites 5. Summary & Recommendations Forest Products Biotechnology at UBC 153 Biorefining Platforms Fast separation Structured BIOMASS & reconstitution separation Traditional Biological Thermochemical Platforms Platforms Platforms BIOENERGY BIOPRODUCTS BIOFUELS Forest Products Biotechnology at UBC Pulp and paper ‘refinery’ CHEMI-MECHANICAL SULPHITE PULPING WOOD (BCTMP) PULPING KRAFT PULPING Sulphite Liquor Black Liquor Recovery Impregnation Recovery Impregnation Impregnation Cycle Pulping Cycle Pulping Refining Washing Washing Washing Spent Sulphite Pulp Energy Pulp Pulp Liquor 40-55% Yield 48-60% Yield 70-85% Yield Lignosulphonates Silvichemicals Bleaching Energy Drying Papermaking Paper Forest Products Biotechnology at UBC 154 Price of Purchased Power EUR/MWh 80 70 60 50 European average weighted on P&Pb capacity 40 30 20 10 0 USA Chile China Japan Brazil Russia Canada Indonesia Forest Products Biotechnology at UBC Paper production growth vs. power Relative to 1990 figures 1.6 1.4 1.2 1 0.8 0.6 Market pulp, paper, board production 0.4 Primary energy consumption Electricity consumption 0.2 0 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 Forest Products Biotechnology at UBC 155 Outline 1. Defining biorefining in the global context 2. Forest-based biorefining platforms 3. Potential coproducts from the forest-based biorefinery 4. Examples of pilot and demonstration sites 5. Summary & Recommendations Forest Products Biotechnology at UBC Brazil - Sugar SUGAR Pretreatment Fractionation Hexoses Fermentation Recovery Forest Products Biotechnology at UBC Sources: (1) FAOStat 2006; www.fao.org (2) Bolling, C. and Suarez, N.R. (2001). USDA/ERS – SSS-232. 156 Brazil - Sugar SUGAR Sugarcane production by product (million metric tonnes) 500 Pretreatment 400 Fractionation 300 Ethanol 200 Hexoses 100 Sugar Fermentation 0 Recovery 1975 1985 1995 2005 Forest Products Biotechnology at UBC Sources: (1) FAOStat 2006; www.fao.org (2) Bolling, C. and Suarez, N.R. (2001). USDA/ERS – SSS-232. United States - Starch SUGAR STARCH Pretreatment Fractionation Enzymatic Hydrolysis Hexoses Fermentation Recovery Forest Products Biotechnology at UBC 157 United States - Starch SUGAR STARCH Corn production by product (million metric tonnes) Pretreatment 300 Residual Fractionation 200 Ethanol Trade Enzymatic Hydrolysis 100 Food, Bioproducts Hexoses Fermentation Animal Feed 0 Recovery 1980 1990 2000 Forest Products Biotechnology at UBC Oil refinery Traditional oil refining: Oil Demand by Sector (million barrels per day) 25 ~68-70% transportation sector Electricity 20 Res'l/Comm'l (i.e. gasoline, diesel) 15 ~21% industrial processing Industrial ~5% ind. plastics, chemicals 10 (over 2,000 refinery products) 5 Transportation ~4% residential/ commercial 0 heating 1950 1960 1970 1980 1990 2000 <3% electricity generation Forest Products Biotechnology at UBC Source: (1) EIA. 2005. Annual Energy Review. US oil demand by end-use sector. http://www.eia.doe.gov/pub/oil_gas/petroleum/analysis_publications/oil_market_basics/Dem_image_US_cons_sector.htm 158 Biological platform LIGNOCELLULOSE Pretreatment Fractionation Lignin Cellulose Enzymatic Extractives Hydrolysis Hemicellulose Hexoses Pentoses Fermentation Recovery BIOFUELS BIOENERGY Forest Products Biotechnology at UBC BIOPRODUCTS Thermochemical biorefinery BIOMASS Fast pyrolysis Fast pyrolysis to Bio-oil Boiler Turbine Upgrade Gasify Reform Fractionation Synthesis Methanol, Fischer- Heat Electricity Bio-oil Tropsch, etc. Hydrogen Chemicals BIOENERGY BIOFUELS BIOPRODUCTS Forest Products Biotechnology at UBC 159 Bioproducts Company Bulk polymers: BIOLOGICAL NatureWorks, DuPont, Polylactide (PLA), 3-hydroxypropionic acid, 1,3- Cargill propanediol, etc. Nutraceuticals: Codexis, etc. xylitol, arabitol, etc. Platform chemicals: DuPont, etc. Glycerol, furfural, levulinic acid, succinic acid, etc. THERMOCHEMICAL Biofuels: Iogen, Abengoa, etc. ethanol, bio-hydrogen, etc. Biofuels: Choren, etc. bio-oil, methanol, ethanol, Fischer-Tropsch, BTL, etc. Bioenergy: Williams Lake electricity, steam, combined heat & power (cogen), Bioenergy Facility, etc. district heating, wood pellets, etc. Forest Products Biotechnology at UBC Outline 1. Defining biorefining in the global context 2. Forest-based biorefining platforms 3. Potential coproducts from the forest-based biorefinery 4. Examples of pilot and demonstration sites 5. Summary & Recommendations Forest Products Biotechnology at UBC 160 Iogen Corporation Bioconversion commercial development facility in Ottawa $29 million in collaboration with Royal Dutch Shell (2003) $30 million investment by Goldman Sachs (2006) 40 ton/day of straw, grasses and corn stalks Preparation for $300-400 million full-scale facilities Forest Products Biotechnology at UBC Lignol Innovations Organosolv pulping originally developed by G. E. and Repap ($200 million) Products include (1) unique, pure lignin with developed markets, (2) furfural, and (3) cellulose-to-ethanol Benefits of focus: – 3 key products can minimize risk – Resources devoted to primary goals – Further co-products will strengthen business later Forest Products Biotechnology at UBC 161 SunOpta Bioprocess Group Focus on steam-explosion pretreatment, including a continuous digestor Owns/operates 3 biomass conversion facilities producing dietary fibre Partnered with Abengoa Bioenergy in developing 2 pilot biomass-to-ethanol facilities (Spain, USA) Forest Products Biotechnology at UBC Tembec Chemical Group Part of Tembec’s sulphite pulp mill on the Ottawa River Mix of hardwood and softwood feedstocks for pulping Produces lignosulfonates, resins, and ethanol from spent sulphite liquor Produces about 17 million litres EtOH annually, sold primarily in the food sector Forest Products Biotechnology at UBC 162 Etek Etanolteknik AB (Sweden) Bioconversion pilot facility in Örnsköldsvik $15 million investment by four primary shareholders 500 l per 24 hours (equivalent to 2 tonnes input material) Research and development centre Forest Products Biotechnology at UBC Abengoa (Spain, USA) Castilla y Leon (start 2004) – 200 million litres/a EtOH; – 2.5% lignocellulosic-based – Co-products: Dried Distillers Grains, CO2 for food York, Nebraska 2 – Starch pilot plant (2004) – Biomass pilot plant (2005) (corn stover) – $36.1 million ($US) project with DOE Partnership with SunOpta Forest Products Biotechnology at UBC 163 NREL (USA) National Renewable
Recommended publications
  • Providing Incentives for Bio-Energy While Protecting Established Biomass-Based Industries1 2
    POTENTIAL IMPACTS OF CLIMATE AND ENERGY POLICY ON FOREST SECTOR INDUSTRIES: PROVIDING INCENTIVES FOR BIO-ENERGY 1 2 WHILE PROTECTING ESTABLISHED BIOMASS-BASED INDUSTRIES 3 DR. JIM BOWYER DOVETAIL PARTNERS, INC. JUNE 2011 1 The work upon which this publication is based was funded in whole or in part through a grant awarded by the Wood Education and Resource Center, Northeastern Area State and Private Forestry, U.S. Forest Service. 2 In accordance with Federal law and U.S. Department of Agriculture policy, this institution is prohibited from discriminating on the basis of race, color, national origin, sex, age or disability. To file a complaint of discrimination, write USDA Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue SW, Washington, DC 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. 3 Bowyer is Professor Emeritus, University of Minnesota Department of Bioproducts and Biosystems Engineering, and Director of the Responsible Materials Program within Dovetail Partners. Executive Summary Current and proposed climate and energy policy, and specifically incentives for the development of bioenergy have the potential to negatively impact established biomass- based industries through increased costs, competition for supplies, and perhaps other unidentified cause and effect relationships. This report assesses short and long-term impacts (both positive and negative) of state and federal climate and bioenergy policies and incentives on the domestic forestry/wood products sector, and in particular the logging, lumber, composite panels, and paper industries, and considers how incentive programs might be modified so as to achieve optimum results for bioenergy producers and established wood-based industries alike.
    [Show full text]
  • Biorefining National Program
    Biorefining National Program 5-Year Action Plan 2014-2019 1 How This Action Plan Was Developed The goal of the Agricultural Research Service (ARS) Biorefining National Program (NP 213) is to conduct research that enables new, commercially-viable technologies for the conversion of agricultural materials into fuels, value-added co-products, and biobased products. To achieve this goal, this Action Plan was designed to meet the following criteria: 1. Maximize the long-term economic impact of ARS biorefining research 2. Emphasize ARS’ unique capabilities and avoid overlap with research at other institutions 3. Maximize returns to agricultural stakeholders from ARS investment of public funds By developing commercially viable technologies for the production of biobased industrial products, ARS biorefining research increases the demand for agricultural products and therefore benefits both agricultural producers and rural communities. According to the U.S. Department of Energy’s (DOE’s) Energy Information Administration (EIA), U.S. demand for gasoline is forecasted to drop over the next 10 years; this drop will reduce demand for blendstock ethanol, which is roughly 10 percent of the gasoline demand (Figure 1). The 10 percent “blend wall” is a result of government regulations and limitations imposed by the Nation’s gasoline distribution infrastructure, and although demand for E85 and E15 will rise, those volumes are relatively low. As a consequence, industry production capacity is expected to exceed demand for fuel ethanol sometime in the 2013 2014 time frame. 2013-2014: E10 Blend Wall Billion Gallons Gallons Per Billion Year Figure 1. Forecasted demand for ethanol blendstock vs. RFS2 targets 1 Chart courtesy of Dr.
    [Show full text]
  • Short Rotation Intensive Culture of Willow, Spent Mushroom Substrate
    plants Article Short Rotation Intensive Culture of Willow, Spent Mushroom Substrate and Ramial Chipped Wood for Bioremediation of a Contaminated Site Used for Land Farming Activities of a Former Petrochemical Plant Maxime Fortin Faubert 1 , Mohamed Hijri 1,2 and Michel Labrecque 1,* 1 Institut de Recherche en biologie végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke East, Montréal, QC H1X 2B2, Canada; [email protected] (M.F.F.); [email protected] (M.H.) 2 African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco * Correspondence: [email protected]; Tel.: +1-514-978-1862 Abstract: The aim of this study was to investigate the bioremediation impacts of willows grown in short rotation intensive culture (SRIC) and supplemented or not with spent mushroom substrate (SMS) and ramial chipped wood (RCW). Results did not show that SMS significantly improved either biomass production or phytoremediation efficiency. After the three growing seasons, RCW- amended S. miyabeana accumulated significantly more Zn in the shoots, and greater increases of some PAHs were found in the soil of RCW-amended plots than in the soil of the two other ground Citation: Fortin Faubert, M.; Hijri, cover treatments’ plots. Significantly higher Cd concentrations were found in the shoots of cultivar M.; Labrecque, M. Short Rotation ‘SX61’. The results suggest that ‘SX61’ have reduced the natural attenuation of C10-C50 that occurred Intensive Culture of Willow, Spent in the unvegetated control plots. The presence of willows also tended to increase the total soil Mushroom Substrate and Ramial concentrations of PCBs.
    [Show full text]
  • Aertos Bio-Based Economy Forward-Looking Analysis
    AERTOs Bio-Based Economy Forward-Looking Analysis Jesse Fahnestock, SP Technical Research Institute of Sweden Henna Sundqvist-Andberg, VTT Technical Research Centre of Finland AERTOs Bio-Based Economy: Forward-Looking Analysis 1 Innehållsförteckning Executive Summary ............................................................................................................................. 3 Forward-Looking Analysis: Purpose and Approach ............................................................................. 4 The Scenario Framework ..................................................................................................................... 4 The Scenario Pathways ........................................................................................................................ 6 The World and Sustainability .......................................................................................................... 8 Europe and the Bioeconomy ......................................................................................................... 10 RTOs and the Industry ................................................................................................................... 13 Actors and Factors ............................................................................................................................. 15 Assessing the Boundaries: Quantitative Parameters of a Bio-Based Economy ................................ 17 Industrially available biomass ......................................................................................................
    [Show full text]
  • Bio-Based Chemicals That Sound, Socially Accepted, and Cost-Competitive Bioenergy on P.O
    Further Information IEA Bioenergy Task42 Website www.iea-bioenergy.task42-biorefineries.com IEA Bioenergy is an international collaboration set-up in 1978 by the International Energy Agency (IEA) to IEA Bioenergy Website improve international co-operation and information www.ieabioenergy.com exchange between national bioenergy RD&D programmes. This report, that was prepared IEA Bioenergy’s vision is to achieve a substantial Contact – IEA Bioenergy Task42 Secretariat on behalf of IEA Bioenergy – bioenergy contribution to future global energy demands Wageningen UR – Food and Bio-based Research Task42 Biorefinery, addresses the Bio-based by accelerating the production and use of environmentally Hilde Holleman – Secretary main bio-based chemicals that sound, socially accepted, and cost-competitive bioenergy on P.O. Box 17 potentially could be co-produced a sustainable basis, thus providing the increased security 6700 AA Wageningen of supply whilst reducing greenhouse gas emissions from The Netherlands with secondary energy carriers in energy use. Currently, IEA Bioenergy has 24 Members and Phone: +31 317 481165 integrated biorefinery facilities. Chemicals is operating on the basis of 12 Tasks covering all aspects of Email: [email protected] Biorefining, i.e. the sustainable the bioenergy chain, from resource to the supply of energy services to the consumer. processing of biomass into a Leader of Task42 spectrum of marketable Bio-based René van Ree Products (chemicals, materials) Wageningen UR – Food and Bio-based Research | Task 42 Biorefinery Phone: +31 317 611894 and Bioenergy (fuels, power, heat) Email: [email protected] generally is seen as the optimal IEA Bioenergy Task42 Biorefinery deals with knowledge strategy to sustainably convert building and exchange within the area of biorefining, i.e.
    [Show full text]
  • Integrated Strategies to Enable Lower-Cost Biofuels
    Integrated Strategies to Enable Lower-Cost Biofuels (This page intentionally left blank) ii Integrated Strategies to Enable Lower-Cost Biofuels Acknowledgments This report was prepared by Mary J. Biddy, Ryan Davis, Abhijit Dutta, Avantika Singh, Ling Tao, Eric C.D. Tan (National Renewable Energy Laboratory); Susanne B. Jones, James R. Collett, Lesley J. Snowden-Swan (Pacific Northwest National Laboratory); Erin Webb, Michael Kass, Matthew Langholtz (Oak Ridge National Laboratory); Jennifer Dunn, Cristina Negri, Shruti K. Mishra, John J. Quinn (Argonne National Laboratory); and David N. Thompson, Amber Hoover, Damon S. Hartley, Jaya Tumuluru, Jeffrey A. Lacey, Kevin L. Kenney, Leslie Ovard, Lloyd M. Griffel, Mohammad S. Roni, Neal A. Yancey, Rachel M. Emerson, Shyam K. Nair, William A. Smith, Allison Ray, Jason K. Hansen, Luke Williams, Magdalena Ramirez-Corredores, Patrick N. Bonebright, Quang A. Nguyen, Tyler Westover, Vicki S. Thompson, Lynn Wendt, and Patrick Lamers (Idaho National Laboratory). The authors would like to acknowledge Alicia Lindauer, Valerie Reed, Jonathan Male, Jim Spaeth, Kevin Craig, Michael Berube, and Zia Haq of the U.S. Department of Energy Bioenergy Technologies Office for their support, as well as Besiki Kazaishvili, Michael Deneen, and Kathy Cisar from the National Renewable Energy Laboratory Communications Office for their help in developing this report. iii Integrated Strategies to Enable Lower-Cost Biofuels List of Acronyms AD anaerobic digestion BETO Bioenergy Technologies Office BioSepCon Bioprocessing Separations
    [Show full text]
  • Use of Fire-Impacted Trees for Oriented Strandboards
    Use of fire-impacted trees for oriented strandboards Laura Moya✳ Jerrold E. Winandy✳ William T. Y. Tze✳ Shri Ramaswamy Abstract This study evaluates the potential use of currently unexploited burnt timber from prescribed burns and wildfires for oriented strandboard (OSB). The research was performed in two phases: in Phase I, the effect of thermal exposure of timber on OSB properties was evaluated. Jack pine (Pinus banksiana) trees variously damaged by a moderately intense prescribed burn in a northern Wisconsin forest were selected. Four fire-damage levels of wood were defined and processed into series of single-layer OSB. The flakes used in Phase I had all char removed. Mechanical and physical properties were evaluated in accordance with ASTM D 1037. Results showed that OSB engineering performance of all four fire-damage levels were similar, and their me­ chanical properties met the CSA 0437 requirements. In Phase II, we assessed OSB properties from fire-killed, fire-affected and virgin red pine (Pinus resinosa) trees from a central Wisconsin forest exposed to an intense wildfire. The effect of various thermal exposures and varying amounts of char on OSB performance were evaluated. Phase II findings indicate that fire-damage level and bark amount had significant effects on the board properties. Addition of 20 percent charred bark had an adverse effect on bending strength; however, OSB mechanical properties still met the CSA requirements for all fire levels. Conversely, bark addition up to 20 percent was found to improve dimension stability of boards. This study suggests that burnt timber is a promising alternative bio-feedstock for commercial OSB production.
    [Show full text]
  • Economic Evaluation of Large-Scale Biorefinery Deployment
    sustainability Article Economic Evaluation of Large-Scale Biorefinery Deployment: A Framework Integrating Dynamic Biomass Market and Techno-Economic Models Jonas Zetterholm 1,* , Elina Bryngemark 2 , Johan Ahlström 3 , Patrik Söderholm 2 , Simon Harvey 3 and Elisabeth Wetterlund 1,4 1 Department of Energy Engineering, Division of Energy Science, Luleå University of Technology, SE-971 87 Luleå, Sweden; [email protected] 2 Economics, Department of Business Administration, Technology and Social Sciences, Luleå University of Technology, SE-971 87 Luleå, Sweden; [email protected] (E.B.); [email protected] (P.S.) 3 Department of Space, Earth and Environment, Division of Energy Technology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; [email protected] (J.A.); [email protected] (S.H.) 4 International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria * Correspondence: [email protected] Received: 13 July 2020; Accepted: 28 August 2020; Published: 1 September 2020 Abstract: Biofuels and biochemicals play significant roles in the transition towards a fossil-free society. However, large-scale biorefineries are not yet cost-competitive with their fossil-fuel counterparts, and it is important to identify biorefinery concepts with high economic performance. For evaluating early-stage biorefinery concepts, one needs to consider not only the technical performance and process costs but also the economic performance of the full supply chain and the impacts on feedstock and product markets. This article presents and demonstrates a conceptual interdisciplinary framework that can constitute the basis for evaluations of the full supply-chain performance of biorefinery concepts. This framework considers the competition for biomass across sectors, assumes exogenous end-use product demand, and incorporates various geographical and technical constraints.
    [Show full text]
  • Introduction to Plants for Bioproducts
    Introduction to Plants for Bioproducts Plant Science 345 Winter 2009 Dr. Randall Weselake Crystal Snyder Outline • What are bioproducts? • Why is there interest in bioproducts ? – Economic, environmental, and social costs of fossil-fuel dependence • How can bioproducts help? • Issues surrounding the use of plants for bioproducts • What you will learn in this course. What are bioproducts? • Industrial and consumer goods manufactured wholly or in part from renewable biomass • Renewable biomass may be from agricultural crops, trees, marine plants, micro-organisms, and some animals • May include biochemicals, bioenergy, biofuels, biomaterials, and health or food products Classification of natural resources Bioresources are resources that are renewable within a short time span – thus, they are ideal for the production of bioproducts Bioproducts aren’t new... • Until about 200 years ago, humans relied almost exclusively on bioproducts to fulfill their food, material and energy needs • Since the industrial revolution, our societies have been increasingly dependent on fossil-fuel energy, for heat, electricity and transportation. • The advent of petroleum refining (ca. 1850) further expanded the applications for petroleum by-products in industrial and consumer goods. Fossil fuels – non renewable natural resources • Petroleum/Oil • Natural gas • Coal *petroleum is the most important to our society, since it is the basis for transportation, and few suitable substitutes are widely and cheaply available. The rise of petroleum • Today - petroleum provides >85% of the world’s energy • High energy density • Easily transportable • Highly amenable to manufacturing processes • For now... relatively abundant • Consumption is still increasing worldwide Introduction to petroleum refining • Crude oil is fractionated by distillation, then chemically processed to produce various products Uses of petroleum distillates • Liquid transportation fuels • Lubricants • Heating oil • Raw materials for the chemical synthesis industry, including plastics, polymers, solvents.
    [Show full text]
  • Bioproducts from Sustainably Harvested Forest Resources Bio World Congress 2018
    Bioproducts from Sustainably Harvested Forest Resources Bio World Congress 2018 Douglas Singbeil Philadelphia , July 18, 2018 FPInnovations in Brief . World’s largest not-for-profit forest research organization • $80M innovation activities Atlanta (GA) • 400 employees • 175 member companies • 90 years of history • 30 universities (research collaboration) Montreal (QC) • ISO laboratories + pilot facilities . Major innovation programs • Forest Operations • Wood Products – Advanced Building Systems Québec (QC) • Pulp, Paper, Packaging & Consumer Products • Bioproducts & Bioenergy Vancouver (BC) 2 © 2017 FPInnovations. All rights reserved. Copying and redistribution prohibited. ® FPInnovations, its marks and logos are trademarks of FPInnovations. Our vision: A world where products from sustainable forests contribute to every aspect of daily life Composites Aerospace Food & Beverage Energy Automotive Fiber Construction © 2017 FPInnovations. All rights reserved. Copying and redistribution prohibited. ® FPInnovations, its marks and logos are trademarks of FPInnovations. How much forest does Canada have? © 2017 FPInnovations. All rights reserved. Copying and redistribution prohibited. ® FPInnovations, its marks and logos are trademarks of FPInnovations. When will Canada harvest its last tree? Never. Canada harvests only 0.21% of the forest. © 2017 FPInnovations. All rights reserved. Copying and redistribution prohibited. ® FPInnovations, its marks and logos are trademarks of FPInnovations. Variability in attributes of forest biomass comes from the supply chain, not the wood . Chips • 10-15% moisture • Can be segregated by species • Uniform density, sorted for size • Free of contaminants . Forest residues • 50 to 70% moisture • Heterogeneous • Contaminated with soil, rocks and other debris 6 © 2017 FPInnovations. All rights reserved. Copying and redistribution prohibited. ® FPInnovations, its marks and logos are trademarks of FPInnovations. Biomass is bulky and expensive to transport.
    [Show full text]
  • A Review of Sustainable Pathways for Biorefinery Value Chains and Sustainability Assessment Methodologies
    View metadata,Downloaded citation and from similar orbit.dtu.dk papers on:at core.ac.uk Dec 20, 2017 brought to you by CORE provided by Online Research Database In Technology Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies Parajuli, Ranjan ; Dalgaard, Tommy; Jørgensen, Uffe; Adamsen, Anders Peter S. ; Knudsen, Marie Trydeman; Birkved, Morten; Gylling, Morten; Schjoerring, Jan Kofod Published in: Renewable & Sustainable Energy Reviews Link to article, DOI: 10.1016/j.rser.2014.11.041 Publication date: 2015 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Parajuli, R., Dalgaard, T., Jørgensen, U., Adamsen, A. P. S., Knudsen, M. T., Birkved, M., ... Schjoerring, J. K. (2015). Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies. Renewable & Sustainable Energy Reviews, 43, 244- 263. DOI: 10.1016/j.rser.2014.11.041 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Biochar Production, Economics and Policy Implications for the Forest Sector
    Biochar Production, Economics and Policy Implications for the Forest Sector Harvesting woody biomass in Idaho to fuel Tucker RNG biomass gasification system Chips and biochar produced from biomass cogeneration of heat and power. developed in partnership with USFS. harvested from White River National Forest. Nate Anderson, Research Forester USDA Forest Service, Rocky Mountain Research Station FCWG Knowledge Transfer: Biochar January 12, 2021 Photos: Anderson What’s ahead? • Background – Biochar systems – Bioproducts supply chains – Focus on forest biomass • Economics – Investment risk – De-risking biochar ventures • Policy connections • Take home messages • Discussion A commercial biochar operation co-located with a sawmill in Colorado. 2021 FCWG Knowledge Transfer: Biochar Photos: Anderson Acknowledgements • USDA National Institute of Food and Agriculture (NIFA) – RMRS-BRDI (2011-10006-30357) – BANR (2013-68005-21298) – UM-BRDI (2016-10008-25636) – MASBio (2020-68012-31881) • USDA Forest Service • University partners, faculty, staff, postdocs and graduate students • Industry and NGO partners 2021 FCWG Knowledge Transfer: Biochar Photos: Anderson; J.Field/BANR (center) Biochar Systems • Soil benefits • Waste management • Renewable energy • Carbon sequestration 2021 FCWG Knowledge Transfer: Biochar Figure: RMRS 2015 Biochar Systems Restoration Forests providing sustainable biomass for biochar Site rehab production and biochar providing rehabilitation Resilience and restoration benefits on National Forests. 2021 FCWG Knowledge Transfer: Biochar Photos: Anderson. Figure: RMRS 2015 The Bioproducts Supply Chain • Bioproducts supply chain – Production – Feedstock logistics – Conversion – Distribution logistics – End use • Flows of: – Material & carbon – Capital ($) – Information Anderson et al. 2017. Chapter 2 in Biochar: A Regional Supply Chain Approach in View of Climate 2021 FCWG Knowledge Transfer: Biochar Change Mitigation, Cambridge University Press.
    [Show full text]