Current Status of Bio-Pesticides Development, Farmer's Acceptance

Total Page:16

File Type:pdf, Size:1020Kb

Current Status of Bio-Pesticides Development, Farmer's Acceptance CURRENT STATUS OF BIO-PESTICIDES DEVELOPMENT, FARMER’S ACCEPTANCE AND UTILIZATION, AND FUTURE PERSPECTIVE IN TAIWAN Suey-Sheng Kao Biopesticides Division Taiwan Agricultural Chemicals and Toxic Substances Research Institute Council of Agriculture, Wufeng, Taichung, 413 Taiwan ROC ABSTRACT Taiwan has made significant progress in the development and application of bio-pesticides and microbial pesticides in the past two decades. Sex pheromones of Cylas formicarius elegantulua, Eucosma notanthes, Spodoptera litura, and S. exgiua have been synthesized, formulated, and utilized in many ways with satisfactory results, including monitoring, mass trapping, and mating disruption. Nomurea riley was found to be pathogenic to Heliocoverpa armigera and Spodoptera exigua. It effectively controlled H. armigera during field applications. Metarhizium anisopliae was applied to control S. exigua, Brontispa longissima, Loadelphax striatellus. M. anisopliae was also used for destruxin production. Destruxins produced showed high virulence to S. exigua. Beauveria bassiana in soil was found to be lethal to Cylas formicarius. B. bassiana preparations were effective in controlling C. formicarius, Ostrinia furnacalis, and Riptorus lineasis. B. bassiana was also pathogenic to Lipaphis erysimi. The optimal growth and maximum sporulation condition of three isolates of Verticillium lecanii were investigated as well. V. lecanii was reported to be highly pathogenic to Myzus persicae, Macrosiphoniella sanborni, Toxoptera aurantii, Liaphis erysimi, Aphis gossypii, and Saissetia oleae. Many aspects relating to these fungi, e.g., characterization, breeding fungicide-resistant mutants, production process, recovery, formulation, factors affecting infectivity, and compatibility with pesticides, were also evaluated. Granulosis viruses of Plutella xylostella, Artogeia rapae, and nuclear polyhedrosis viruses of Spodoptera litura, and S. exigua were identified and field tested against their own hosts. Heliothis NPV introduced from the United States was effective in controlling H. armigera. Tests were also conducted to evaluate the effectiveness of various adjuvants additive and UV protectants. The host spectra of Autographa californica nucleopolyhedrosis virus were examined. Attempts were also made to genetically improve the activity of A. californica nucleopolyhedrosis virus. Construction of recombinant AcMNPV containing enhanced green fluorescence protein (EGFP) gene or red fluorescence protein (DsRed) gene as tracer for environmental risk assessment was also attempted. On the other hand, Bacillus thuringiensis (Bt) is so far the only microbial insecticide registered for insect control against P. xylostella, A. rapae. etc. Isolation and characterization of local Bt isolates achieved fruitful results and obtained many novel cry genes. Transgenic Bt-bacterium showed a good insecticidal effect against P. xylostella. The efficacy of Bt has been enhanced by adding feeding stimulants, adjuvants and UV protectants, or microencapsulation. Recently, the bioactivity of entomopathogenic- nematophilic bacterium and Photorhabdus luminescen- was evaluated. Results showed that it exhibited high insecticidal and antimicrobial activities against local insect pests and plant pathogens. The plantform technology for mass production of microbial fungicides was established with the use of serial plot-scade liquid fermentors. High yield of durable biomass for targeted microbial groups (Streptomyces spp., Bacillus subtilis, and Gliocladium virens) was achieved. Their effectiveness in disease control was satisfactory. Such positive results from the tested biopesticides pushed this study to recommend further studies on their effective use against agricultural pests. Key words: bio-pesticides, bio-insecticides, bio-fungicides, entomopathogenic fungi, Bacillus thuringiensis, baculoviruses, Photorhabdus luminescens pheromones 1 INTRODUCTION DEVELOPMENT AND APPLICATION OF BIO-INSECTICIDES Taiwan is located in tropic and subtropic areas with high temperatures and humidity, prone to Isolation and Characterization infestations by many pest insects. In the of Entomopathogenic Fungi 1970s, many evidences indicated that the overuse of chemical insecticides to control A total of 831 fungus-infested cadavers of insect pests caused many negative side effects. insects, spiders, and mites were collected from For this reason, during the 1980s and various habitats in different latitudinal zones. thereafter, the Council of Agriculture (COA) of From these specimens, 24 genera consisting of Taiwan has promoted the development of bio- 66 species were isolated and identified. Among pesticides. Since then, many active programs them, four new species were found, plus one on bio-pesticides have achieved good results. new combination and 37 newly recorded Microbial insecticides may include species from Taiwan (Tzean et al. 1997). A bacteria, fungi, protozoa or viruses. They may parasitic fungus, Neozygites cf. adjarica, was operate through mechanisms such as toxin obtained from the spotted spider mite (Shih production [e.g. Bacillus thuringiensis (Bt)] and Shune 1994). Another investigation was and invasion parasitism (e.g. baculoviruses) carried out by the Biopesticides Division, (Matten et al. 1993). Although microbial Taiwan Agricultural Chemicals and Toxic insecticides account for less than 1% of the Substances Research Institute (TACTRI). market, this form of pest control has become Results showed that Metarhizium, Beauveria, the focus of attention in recent years. This is Nomuraea, Paecilomyces, and Aschersonia because of the improved performance and cost were the most common species of competitiveness of microbials, the increasing entomopathogenic fungi in Taiwan. The survey resistance of arthropods to chemical also showed the occasional occurrence of other insecticides, and the lack of development of entomopathogenic fungi, Verticillium, Gibellula, new insecticides (Starnes et al. 1993). Hirsutella, and Cordyceps. Results of the API In Taiwan, the use of entomopathogenic ZYM test showed that all isolates have fungi to control insect pests has been seen to broadly similar reactions, but the test could be have great potential since the turn of the last used to distinguish different species. There are century (Yen 1997). Among different microbial differences in pathogenicity among isolates of control agents developed and tested, B. M. anisopliae, N. rileyi and B. bassiana to the thuringiensis, baculoviruses and entomo- larvae of Spodoptera exigua and Spodoptera pathogenic fungi are considered to be the most litura (Kao et al. 1998). promising candidates to control insect pests. Random amplified polymorphic DNA Photorhabdus luminenscens with multifunctional (RAPD) was used to differentiate a total of 38 activities against plant pests can also be strains of entomopathogenic fungi which were developed as bio-pesticide. isolated from 20 geographic regions of Taiwan So far, about 1,000 insect pheromones and mainland China. Fungal isolates were have been isolated, identified and synthesized. obtained from 15 insect species. Banding Of these, only a handful are used in Integrated patterns were generated from three selected Pest Management (IPM) programs in Taiwan primers (OPM 12, 18, and 20). Isolates were including sex pheromones of sweet potato grouped into 10 clusters according to similarity, weevil, carambola fruit borer, tobacco cutworm, following cluster analysis using Jeffrey’s and beet armyworm. coefficients. Three distinct genotypes were With the use of serial plot-sealed liquid observed among the 38 isolates tested. Based fermentors, technologies for the mass on the RAPD patterns, three species were production of long and stable biomass recognized, namely Beauveria, Metarhizium formulation of microbial fungicides were anisopliae var. anisopliae, and Nomuraea. established. The field trials exhibited Nomuraea exhibited a more conservative satisfactory results against soil-borne diseases. banding pattern than the other species. RAPD This paper reviews the recent progress markers may be useful as identification bio- on the development, application and future markers of specific bio-control strains in a prospects of bio-pesticides in Taiwan. limited geographical area (Kao et al. 2002). 2 The optimal temperature for mycelial as 40.46% carbofuran (EC) at 800-fold dilution growth of various Verticillium lecanii isolates in controlling H. armigera (Tang 1996, Tang was 24°C, but 20°C for isolate F168. V. lecanii and Hou 1998). The pathogenicity effect of N. isolates were sensitive to higher temperatures. rileyi to S. exigua was studied. The LC50 Most isolates could not grow at 32°C, but values for the 1st up to the 5th instars were they grew well in between 16-28°C. On water determined to be 1.34 x106, 1.47 x 105, 4.97 x agar, V. lecanii isolate F168 germinated 105, 3.56 x 104 and 3.1 x 105conidia/mL, significantly slower than other isolates with a respectively. Pupal mortality was 25% when the germination rate of 98% after 16 hours of 5th instar larvae were inoculated with a incubation at 24°C. There was a hundred-fold conidial suspension at 1 x 107conidia/mL. The difference in the amount of spore production highest mortality rate of the 4th instar larvae among tested isolates when they were infected with N. rileyi conidia was 70%, when incubated at 24°C for nine days. API ZYM test sprayed with inoculum from a distance of 2 m revealed that most isolates had alkaline away and exposed to a wind blow velocity of phosphatase,
Recommended publications
  • Old World Bollworm Management Program Puerto Rico Environmental Assessment, September 2015
    United States Department of Agriculture Old World Bollworm Marketing and Regulatory Management Program Programs Animal and Plant Health Inspection Service Puerto Rico Environmental Assessment September 2015 Old World Bollworm Managment Program Puerto Rico Environmental Assessment September 2015 Agency Contact: Eileen Smith Pest Detection and Emergency Programs Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Road, Unit 134 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. Additional information can be found online at http://www.ascr.usda.gov/complaint_filing_file.html. To File a Program Complaint If you wish to file a Civil Rights program complaint of discrimination, complete the USDA Program Discrimination Complaint Form (PDF), found online at http://www.ascr.usda.gov/complaint_filing_cust.html, or at any USDA office, or call (866) 632-9992 to request the form.
    [Show full text]
  • Insects & Spiders of Kanha Tiger Reserve
    Some Insects & Spiders of Kanha Tiger Reserve Some by Aniruddha Dhamorikar Insects & Spiders of Kanha Tiger Reserve Aniruddha Dhamorikar 1 2 Study of some Insect orders (Insecta) and Spiders (Arachnida: Araneae) of Kanha Tiger Reserve by The Corbett Foundation Project investigator Aniruddha Dhamorikar Expert advisors Kedar Gore Dr Amol Patwardhan Dr Ashish Tiple Declaration This report is submitted in the fulfillment of the project initiated by The Corbett Foundation under the permission received from the PCCF (Wildlife), Madhya Pradesh, Bhopal, communication code क्रम 車क/ तकनीकी-I / 386 dated January 20, 2014. Kanha Office Admin office Village Baherakhar, P.O. Nikkum 81-88, Atlanta, 8th Floor, 209, Dist Balaghat, Nariman Point, Mumbai, Madhya Pradesh 481116 Maharashtra 400021 Tel.: +91 7636290300 Tel.: +91 22 614666400 [email protected] www.corbettfoundation.org 3 Some Insects and Spiders of Kanha Tiger Reserve by Aniruddha Dhamorikar © The Corbett Foundation. 2015. All rights reserved. No part of this book may be used, reproduced, or transmitted in any form (electronic and in print) for commercial purposes. This book is meant for educational purposes only, and can be reproduced or transmitted electronically or in print with due credit to the author and the publisher. All images are © Aniruddha Dhamorikar unless otherwise mentioned. Image credits (used under Creative Commons): Amol Patwardhan: Mottled emigrant (plate 1.l) Dinesh Valke: Whirligig beetle (plate 10.h) Jeffrey W. Lotz: Kerria lacca (plate 14.o) Piotr Naskrecki, Bud bug (plate 17.e) Beatriz Moisset: Sweat bee (plate 26.h) Lindsay Condon: Mole cricket (plate 28.l) Ashish Tiple: Common hooktail (plate 29.d) Ashish Tiple: Common clubtail (plate 29.e) Aleksandr: Lacewing larva (plate 34.c) Jeff Holman: Flea (plate 35.j) Kosta Mumcuoglu: Louse (plate 35.m) Erturac: Flea (plate 35.n) Cover: Amyciaea forticeps preying on Oecophylla smargdina, with a kleptoparasitic Phorid fly sharing in the meal.
    [Show full text]
  • Campus Environment and Biodiversity Department of Zoology Department of Botany
    A report on Campus Environment and Biodiversity Department of Zoology Department of Botany Content Pg No. 1. Introduction 1 2. Methodology 2 3. Result 3.1 Water Analysis of campus Lake 3 3.2 Soil Analysis 4 3.3 Faunal Diversity 5 i. Spider diversity 5 ii. Orthopteran diversity 7 iii. Avian diversity 8 iv. Odonate diversity 10 v. Ant diversity 13 vi. Terrestrial Beetle diversity 14 vii. Butterfly diversity 15 viii. Soil arthropod diversity 17 ix. Plankton diversity 18 x. Aquatic insect diversity 20 xi. Cockroach diversity 21 xii. Amphibia diversity 21 xiii. Moth diversity 23 xiv. Reptile diversity 24 xv. Mammal diversity 26 3.4 Floral Diversity 28 1. Introduction In its effort towards creating an eco-friendly campus, the University encourages its Faculty and Students to engage in conserving the Campus environment, its flora and fauna, through activities that include individual and collaborative research, conservation practices, activities and initiatives of the EcoClub and the University as a whole. Since 2017, the School of Life Sciences has been on a constant endeavour to create a repository of information on the biodiversity of the Campus through documentation of indigenous flora and fauna in its three Campuses, particularly the Tapesia Campus, which harbours unique species of flora and fauna. The Tapesia Campus is home to 296 species of fauna and 38 species of flora. Among the animal species, of mention is the incredible arachnid Lyrognathus saltator, the common Tarantula, which is found nesting among our vast expanse of greens. These numbers reveal the rich biodiversity of the Campus which summon for both admiration as well as protection and conservation.
    [Show full text]
  • Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A
    Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research Julien Thézé, Carlos Lopez-Vaamonde, Jenny Cory, Elisabeth Herniou To cite this version: Julien Thézé, Carlos Lopez-Vaamonde, Jenny Cory, Elisabeth Herniou. Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research. Viruses, MDPI, 2018, 10 (7), pp.366. 10.3390/v10070366. hal-02140538 HAL Id: hal-02140538 https://hal.archives-ouvertes.fr/hal-02140538 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License viruses Article Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research Julien Thézé 1,2, Carlos Lopez-Vaamonde 1,3 ID , Jenny S. Cory 4 and Elisabeth A. Herniou 1,* ID 1 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, 37200 Tours, France; [email protected] (J.T.); [email protected]
    [Show full text]
  • Data Mining Cdnas Reveals Three New Single Stranded RNA Viruses in Nasonia (Hymenoptera: Pteromalidae)
    Insect Molecular Biology Insect Molecular Biology (2010), 19 (Suppl. 1), 99–107 doi: 10.1111/j.1365-2583.2009.00934.x Data mining cDNAs reveals three new single stranded RNA viruses in Nasonia (Hymenoptera: Pteromalidae) D. C. S. G. Oliveira*, W. B. Hunter†, J. Ng*, Small viruses with a positive-sense single-stranded C. A. Desjardins*, P. M. Dang‡ and J. H. Werren* RNA (ssRNA) genome, and no DNA stage, are known as *Department of Biology, University of Rochester, picornaviruses (infecting vertebrates) or picorna-like Rochester, NY, USA; †United States Department of viruses (infecting non-vertebrates). Recently, the order Agriculture, Agricultural Research Service, US Picornavirales was formally characterized to include most, Horticultural Research Laboratory, Fort Pierce, FL, USA; but not all, ssRNA viruses (Le Gall et al., 2008). Among and ‡United States Department of Agriculture, other typical characteristics – e.g. a small icosahedral Agricultural Research Service, NPRU, Dawson, GA, capsid with a pseudo-T = 3 symmetry and a 7–12 kb USA genome made of one or two RNA segments – the Picor- navirales genome encodes a polyprotein with a replication Abstractimb_934 99..108 module that includes a helicase, a protease, and an RNA- dependent RNA polymerase (RdRp), in this order (see Le We report three novel small RNA viruses uncovered Gall et al., 2008 for details). Pathogenicity of the infections from cDNA libraries from parasitoid wasps in the can vary broadly from devastating epidemics to appar- genus Nasonia. The genome of this kind of virus ently persistent commensal infections. Several human Ј is a positive-sense single-stranded RNA with a 3 diseases, from hepatitis A to the common cold (e.g.
    [Show full text]
  • Viruses 2015, 7, 456-479; Doi:10.3390/V7020456 OPEN ACCESS
    Viruses 2015, 7, 456-479; doi:10.3390/v7020456 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Article In Search of Pathogens: Transcriptome-Based Identification of Viral Sequences from the Pine Processionary Moth (Thaumetopoea pityocampa) Agata K. Jakubowska 1, Remziye Nalcacioglu 2, Anabel Millán-Leiva 3, Alejandro Sanz-Carbonell 1, Hacer Muratoglu 4, Salvador Herrero 1,* and Zihni Demirbag 2,* 1 Department of Genetics, Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain; E-Mails: [email protected] (A.K.J.); [email protected] (A.S.-C.) 2 Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey; E-Mail: [email protected] 3 Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental “La Mayora”, Algarrobo-Costa, 29750 Málaga, Spain; E-Mail: [email protected] 4 Department of Molecular Biology and Genetics, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mails: [email protected] (S.H.); [email protected] (Z.D.); Tel.: +34-96-354-3006 (S.H.); +90-462-377-3320 (Z.D.); Fax: +34-96-354-3029 (S.H.); +90-462-325-3195 (Z.D.). Academic Editors: John Burand and Madoka Nakai Received: 29 November 2014 / Accepted: 13 January 2015 / Published: 23 January 2015 Abstract: Thaumetopoea pityocampa (pine processionary moth) is one of the most important pine pests in the forests of Mediterranean countries, Central Europe, the Middle East and North Africa. Apart from causing significant damage to pinewoods, T.
    [Show full text]
  • Possesses a Strong Internal Translation Activity in Baculovirus-Infected Insect Cells
    FEBS Letters 581 (2007) 3120–3126 The 50 untranslated region of Perina nuda virus (PnV) possesses a strong internal translation activity in baculovirus-infected insect cells Tzong-Yuan Wua,b,1, Chih-Yu Wuc,1, Ying-Ju Chena, Chung-Yung Chena, Chung-Hsiung Wangc,* a Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung-Li, Taiwan b R&D Center for Membrane Technology, CYCU, Chung Yuan Christian University, Chung-Li, Taiwan c Department of Entomology, National Taiwan University, Taipei 106, Taiwan Received 5 February 2007; revised 23 May 2007; accepted 23 May 2007 Available online 4 June 2007 Edited by Shou-Wei Ding Dicistroviridae viruses is bicistronic, containing a 50UTR and Abstract A bicistronic baculovirus expression vector and fluo- rescent protein-based assays were used to identify the sequences an intergenic region (IGR) [3,4]. 0 that possess internal translation activity in baculovirus-infected Because there is an IRES element in the 5 UTR of all gen- insect cells. We demonstrated that the 50 untranslated region omes of the mammalian picornaviruses and dicistroviruses (50UTR; 473 nucleotides) of Perina nuda virus (PnV) and the [4–7], it might be expected that the 50UTRs of iflavirus gen- 50UTR (579 nucleotides) of Rhopalosiphum padi virus (RhPV), omes would also include an IRES that is used in protein syn- but not the IRES sequence of Cricket paralysis virus, have inter- thesis. This expectation is further supported by the fact that, nal translation activity in baculovirus-infected Sf21 cells. In like the picornaviruses and dicistroviruses, the iflaviruses also addition, we found that including the first 22 codons of the pre- have no 50 cap structure [3].
    [Show full text]
  • Perina Nuda F. (Lepidoptera: Lymantriidae): an Important Leaf Eating Caterpillar of Fig Trees
    International Journal of Agricultural Technology 2017 Vol. 13(4): 485-492 Available online http://www.ijat-aatsea.com ISSN 2630-0192 (Online) Perina nuda F. (Lepidoptera: Lymantriidae): An Important Leaf Eating Caterpillar of Fig Trees Cheanban, S.1*, Bumroongsook, S. 1 and Tigvattananont, S.2 1Department of Plant Production Technology, Faculty of Agricultural Technology, King Mongkut‘s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; 217 Ngamwongvan Rd., Thasai Subdistrict, Muang District, Nonthaburi, Thailand. Cheanban, S., Bumroongsook, S. and Tigvattananont, S. (2017). Perina nuda F. (Lepidoptera: Lymantriidae):an important leaf eating caterpillar of fig trees. International Journal of Agricultural Technology 13(4):485-492. Abstract Some biological studies of Perina nuda Fabricius was conducted under the laboratory conditions (33o C; 65 %RH). This moth species undergoes complete metamorphosis with four stages in its life cycle: egg. larva, pupa and adult. Mating copulation occurred at night and an female laid eggs in group averaged 46 eggs/group. The number of egg laid by each female of Banyan tussock moth was 168-387 eggs. The egg incubation period lasted for 5.50 days. The caterpillar hatched after that. They went through the growth and development processwith 7 larval instars and the developmental time for the 1st to the 7th larval instar was 2.28, 3.08, 3.02, 3.42 3.67, 3.34, and 6.10 days, respectively. The larvae have urticating hair and used as a defensive weapon. The hairy setae was carried on thought the pupa stage. Adult moths emerged after xxx -day long pupal stage. Life span was found difference between gender.
    [Show full text]
  • Journeyman Level Master Beekeepinjg Course
    JOURNEYMAN LEVEL MASTER BEEKEEPINJG COURSE April 7, 2014 Class No. Four HONEY BEE PESTS AND DISEASE TRACHEAL MITE (Acarapis Woodi) Mites that infest the tracheae (breathing tubes) of honey bees were found in the U.S. for the first time in July, 1984 on the U.S. – Mexican border. It is microscopic in size. Female tracheal mite is looking for a newly emerged bee about 3 days old or less, whose exoskeleton’s odor is different from an older bees. She will transfer to the host and go into the first thoracic trachea. If she cannot find a host, she will crawl off and die. Grease patties causes all the bees to smell or have the odor like that of an older bee, which the tracheal mite does not like. Chemical control of the tracheal mite is done with Mitathol which has menthol in it. If the temp is too great, it will run the bees out of the hive. The Mitathol needs to be put on the bottom, if the temp is too high, greater than 85 degrees. The adults pierce the trachea and suck blood (hemolymph) from the bee. They live 30 or 40 days. Hive Treatment--Apply grease patties, one in the fall of the year (early Oct) and one in the spring (early march). Two parts sugar; one part Crisco. Tracheal Mites Tracheal mites are microscope mites which reproduce in the trachea (airways) of the bee. A visual aid that would suspect tracheal mites would be a large number of bees walking about the outside of the hive.
    [Show full text]
  • 48 Thành Phần Loài Và Đặc Điểm Sinh Vật Học Cơ Bản Của Sâu Hại Cây Cảnh Thuộc Chi Ficus Tại Kh
    Qu¶n lý Tµi nguyªn rõng & M«i tr­êng THÀNH PHẦN LOÀI VÀ ĐẶC ĐIỂM SINH VẬT HỌC CƠ BẢN CỦA SÂU HẠI CÂY CẢNH THUỘC CHI FICUS TẠI KHU VỰC XUÂN MAI Nguyễn Thế Nhã1 TÓM TẮT Sâu hại cây thuộc chi Ficus bao gồm 13 loài thuộc 10 họ, 6 bộ côn trùng, trong đó đa số sâu hại thuộc bộ Cánh vẩy (5 họ, 7 loài). Có 3 hình thức hại chính là ăn lá, hút dịch lá và hại rễ trong đó nhóm ăn lá chiếm tỷ lệ lớn gồm 07 loài (53,85%), nhóm hút dịch gồm 4 loài (chiếm 30,77%). Các loài chính gây hại trên cây thuộc chi Ficus là 3 loài bọ trĩ (Gynaikothrips ficorum (Marchal), Gynaikothrips uzeli (Zimmerman 1900), Androthrips ramachandrai Karny), Rệp trắng (Singhiella simplex (Singh)), hai loài bướm đốm (Euploea amymone, E. mulciber), Ngài đốm đỏ (Phauda flammans Walker) và Ong gây mụn lá (Josephiella microcarpae). Quản lý tổng hợp (IPM) sâu hại cây thuộc chi Ficus bao gồm: Giám sát sâu hại dựa vào triệu chứng thể hiện trên lá bị hại và tập tính của sâu; Biện pháp thu bắt áp dụng cho tất cả các loài sâu hại, biện pháp vòng dính áp dụng cho ngài đốm đỏ; Cắt bỏ bộ phận bị hại, cắt tỉa cây, vệ sinh; Bảo vệ và sử dụng thiên địch hoặc thuốc sinh học; Khi mật độ sâu hại cao có thể sử dụng một số loại thuốc hóa học nhóm neonicotinoid, pyrethroid hoặc thuốc thảo mộc. Từ khóa: Bọ trĩ sanh, Bướm đốm, Euploea spp, Gynaikothrips spp, Ngài đốm đỏ, , Phauda Flammans, Sâu hại chi Ficus.
    [Show full text]
  • Characterization of a Multiple-Nucleocapsid Nucleopolyhedrovirus Isolated from Perina Nuda (Fabricius) (Lepidoptera: Lymantriidae) Larvae
    Appl. Entomol. Zool. 39 (2): 283–292 (2004) Characterization of a multiple-nucleocapsid nucleopolyhedrovirus isolated from Perina nuda (Fabricius) (Lepidoptera: Lymantriidae) larvae Chih-Yu WU,1 Chu-Fang LO2 and Chung-Hsiung WANG1,* 1 Department of Entomology, and 2 Department of Zoology, National Taiwan University; Taipei, Taiwan, R.O.C. (Received 18 September 2003; Accepted 13 January 2004) Abstract A multiple-nucleocapsid nucleopolyhedrovirus (MNPV), named Perina nuda MNPV (or PenuNPV), isolated from P. nuda (Fabricius) (Lepidoptera: Lymantriidae)—a major banyan pest—was studied in terms of its main morphological, biochemical, and biological properties. The pleiomorphic occlusion bodies were 1.7–5.4 mm in diameter with a mean size of 2.2Ϯ0.52 (mmϮSE), and their most prominent protein had an apparent molecular mass of 32 kDa. The DNA genome size was estimated to be 120.38Ϯ0.38 (kbpϮSE) based on restriction endonuclease fragment sizes. The me- dian lethal dose response (LD50) for this virus in 2nd to 5th instar P. nuda larvae were estimated at 154, 1,431, 14,458, and 169,137 occluded bodies per larva, respectively. In host range tests, other nine lepidopteran species from five fam- ilies were not susceptible to PenuNPV. The high pathogenicity and specificity of this newly described MNPV indicate that it is indeed a good candidate for the biological control of this moth. Key words: Perina nuda; PenuNPV; restriction profiles; histopathology; biological activity uloviruses. Currently, more than 500 different in- INTRODUCTION sect species infected by baculoviruses have been Members of the family Baculoviridae are arthro- reported in the literature (Friesen and Miller, pod-specific pathogens and have been isolated pri- 2001).
    [Show full text]
  • Macro Moths of Tinsukia District, Assam: a JEZS 2017; 5(6): 1612-1621 © 2017 JEZS Provisional Inventory Received: 10-09-2017 Accepted: 11-10-2017
    Journal of Entomology and Zoology Studies 2017; 5(6): 1612-1621 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Macro moths of Tinsukia district, Assam: A JEZS 2017; 5(6): 1612-1621 © 2017 JEZS provisional inventory Received: 10-09-2017 Accepted: 11-10-2017 Subhasish Arandhara Subhasish Arandhara, Suman Barman, Rubul Tanti and Abhijit Boruah Upor Ubon Village, Kakopather, Tinsukia, Assam, India Abstract Suman Barman This list reports 333 macro moth species for the Tinsukia district of Assam, India. The moths were Department of Wildlife Sciences, captured by light trapping as well as by opportunistic sighting across 37 sites in the district for a period of Gauhati University, Assam, three years from 2013-2016. Identification was based on material and visual examination of the samples India with relevant literature and online databases. The list includes the family, subfamily, tribes, scientific name, the author and year of publication of description for each identified species. 60 species in this Rubul Tanti inventory remain confirmed up to genus. Department of Wildlife Biology, A.V.C. College, Tamil Nadu, Keywords: Macro moths, inventory, Lepidoptera, Tinsukia, Assam India Introduction Abhijit Boruah Upor Ubon Village, Kakopather, The order Lepidoptera, a major group of plant-eating insects and thus, from the agricultural Tinsukia, Assam, India and forestry point of view they are of immense importance [1]. About 134 families comprising 157, 000 species of living Lepidoptera, including the butterflies has been documented globally [2], holding around 17% of the world's known insect fauna. Estimates, however, suggest more species in the order [3]. Naturalists for convenience categorised moths into two informal groups, the macro moths having larger physical size and recency in evolution and micro moths [4] that are smaller in size and primitive in origin .
    [Show full text]