Boophone Disticha Bulb
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Summary of Offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019
Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 3841 Number of items in BX 301 thru BX 463 1815 Number of unique text strings used as taxa 990 Taxa offered as bulbs 1056 Taxa offered as seeds 308 Number of genera This does not include the SXs. Top 20 Most Oft Listed: BULBS Times listed SEEDS Times listed Oxalis obtusa 53 Zephyranthes primulina 20 Oxalis flava 36 Rhodophiala bifida 14 Oxalis hirta 25 Habranthus tubispathus 13 Oxalis bowiei 22 Moraea villosa 13 Ferraria crispa 20 Veltheimia bracteata 13 Oxalis sp. 20 Clivia miniata 12 Oxalis purpurea 18 Zephyranthes drummondii 12 Lachenalia mutabilis 17 Zephyranthes reginae 11 Moraea sp. 17 Amaryllis belladonna 10 Amaryllis belladonna 14 Calochortus venustus 10 Oxalis luteola 14 Zephyranthes fosteri 10 Albuca sp. 13 Calochortus luteus 9 Moraea villosa 13 Crinum bulbispermum 9 Oxalis caprina 13 Habranthus robustus 9 Oxalis imbricata 12 Haemanthus albiflos 9 Oxalis namaquana 12 Nerine bowdenii 9 Oxalis engleriana 11 Cyclamen graecum 8 Oxalis melanosticta 'Ken Aslet'11 Fritillaria affinis 8 Moraea ciliata 10 Habranthus brachyandrus 8 Oxalis commutata 10 Zephyranthes 'Pink Beauty' 8 Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 Most taxa specify to species level. 34 taxa were listed as Genus sp. for bulbs 23 taxa were listed as Genus sp. for seeds 141 taxa were listed with quoted 'Variety' Top 20 Most often listed Genera BULBS SEEDS Genus N items BXs Genus N items BXs Oxalis 450 64 Zephyranthes 202 35 Lachenalia 125 47 Calochortus 94 15 Moraea 99 31 Moraea -
Haemanthus Canaliculatus | Plantz Africa About:Reader?Url=
Haemanthus canaliculatus | Plantz Africa about:reader?url=http://pza.sanbi.org/haemanthus-canaliculatus pza.sanbi.org Haemanthus canaliculatus | Plantz Africa Introduction In late summer or early autumn, after fires have swept through some of the swampy areas near the sea in the Hangklip area, you may be lucky enough to see the red paintbrushes of Haemanthus canaliculatus glowing brightly amongst the blackened remains of the vegetation. Description Description The bulbs are made up of a number of thick, fleshy, cream-coloured, overlapping, truncated bulb scales, arranged like a fan, with perennial fleshy roots. There are usually 2 (sometimes 1, 3 or 4) narrow smooth fleshy leaves up to 600 mm long, curved along 1 of 5 2016/12/14 03:51 PM Haemanthus canaliculatus | Plantz Africa about:reader?url=http://pza.sanbi.org/haemanthus-canaliculatus their length to form a channel. They are 5-27 mm wide, shiny green with reddish barred markings towards the base, especially on the lower surface. The smooth, thick, flattened, upright or curved flower stalks can be up to 200 mm long, 4-10 mm wide and are reddishpink to deep red, sometimes with deeper red spots especially near the base; 5-7 pointed, leathery bracts, called spathes, surround the 15-45 flowers clustered at the top of the stalk. The spathes and flowers are usually red but very occasionally may be pink. The flowers are topped with yellow anthers. The reddish berries are round and about 20 mm in diameter. Under natural conditions the flowering time is from February to March and the leaves usually appear after the flowers from May to December. -
Boophone Disticha
Micropropagation and pharmacological evaluation of Boophone disticha Lee Cheesman Submitted in fulfilment of the academic requirements for the degree of Doctor of Philosophy Research Centre for Plant Growth and Development School of Life Sciences University of KwaZulu-Natal, Pietermaritzburg April 2013 COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCES DECLARATION 1 – PLAGIARISM I, LEE CHEESMAN Student Number: 203502173 declare that: 1. The research contained in this thesis, except where otherwise indicated, is my original research. 2. This thesis has not been submitted for any degree or examination at any other University. 3. This thesis does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons. 4. This thesis does not contain other persons’ writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a. Their words have been re-written but the general information attributed to them has been referenced. b. Where their exact words have been used, then their writing has been placed in italics and inside quotation marks, and referenced. 5. This thesis does not contain text, graphics or tables copied and pasted from the internet, unless specifically acknowledged, and the source being detailed in the thesis and in the reference section. Signed at………………………………....on the.....….. day of ……......……….2013 ______________________________ SIGNATURE i STUDENT DECLARATION Micropropagation and pharmacological evaluation of Boophone disticha I, LEE CHEESMAN Student Number: 203502173 declare that: 1. The research reported in this dissertation, except where otherwise indicated is the result of my own endeavours in the Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg. -
Protected Species Relocation Management Plan
i Protected Species Relocation Management Plan Farm Doorns no 131 Agricultural Development, Ritchie, Northern Cape Province October 2018 Compiled for: Compiled by: Rikus Lamprecht Ecological Specialist (Pr.Sci.Nat) EcoFocus Consulting 072 230 9598 [email protected] ii Table of Content 1. Introduction .................................................................................................................................... 1 2. Objectives of the Protected Species Relocation Management Plan ............................................ 2 3. Study Area ...................................................................................................................................... 3 3.1. Climate .................................................................................................................................... 5 3.2. Geology and Soils ................................................................................................................... 5 3.3. Vegetation and Conservation Status ..................................................................................... 5 4. Findings of the Ecological Assessment Report .............................................................................. 8 5. Removal, Relocation and Re-establishment Process .................................................................. 11 5.1. Removal ................................................................................................................................ 11 5.2. Relocation ............................................................................................................................ -
(Tribe Haemantheae) Inferred from Plastid and Nuclear Non-Coding DNA Sequences
Plant Syst. Evol. 244: 141–155 (2004) DOI 10.1007/s00606-003-0085-z Generic relationships among the baccate-fruited Amaryllidaceae (tribe Haemantheae) inferred from plastid and nuclear non-coding DNA sequences A. W. Meerow1, 2 and J. R. Clayton1 1 USDA-ARS-SHRS, National Germplasm Repository, Miami, Florida, USA 2 Fairchild Tropical Garden, Miami, Florida, USA Received October 22, 2002; accepted September 3, 2003 Published online: February 12, 2004 Ó Springer-Verlag 2004 Abstract. Using sequences from the plastid trnL-F Key words: Amaryllidaceae, Haemantheae, geo- region and nrDNA ITS, we investigated the phy- phytes, South Africa, monocotyledons, DNA, logeny of the fleshy-fruited African tribe Haeman- phylogenetics, systematics. theae of the Amaryllidaceae across 19 species representing all genera of the tribe. ITS and a Baccate fruits have evolved only once in the combined matrix produce the most resolute and Amaryllidaceae (Meerow et al. 1999), and well-supported tree with parsimony analysis. Two solely in Africa, but the genera possessing main clades are resolved, one comprising the them have not always been recognized as a monophyletic rhizomatous genera Clivia and Cryp- monophyletic group. Haemanthus L. and tostephanus, and a larger clade that unites Haemanthus and Scadoxus as sister genera to an Gethyllis L. were the first two genera of the Apodolirion/Gethyllis subclade. One of four group to be described (Linneaus 1753). Her- included Gethyllis species, G. lanuginosa, resolves bert (1837) placed Haemanthus (including as sister to Apodolirion with ITS. Relationships Scadoxus Raf.) and Clivia Lindl. in the tribe among the Clivia species are not in agreement with Amaryllidiformes, while Gethyllis was classi- a previous published phylogeny. -
Newsletter No. 4 Autumn 2005
The Southern African Bulb Group Newsletter No. 4 Autumn 2005 The Southern African Bulb Group was initiated by a group of enthusiasts on April 4th 2004. The objective of the group is to further the understanding of the cultivation of Southern African bulbs, where `bulbs' is used in the broad sense to encompass bulb-, corm- and tuber- possessing Southern African plants, including `dicots' such as Oxalis. In the first instance the group will be run on an informal basis, with an initial subscription of £5 invited from participants. Committee: Robin Attrill (Membership secretary and Newsletter editor), Margaret Corina (Treasurer), Stefan Rau and Terry Smale Editorial This issue of the newsletter contains a report of the meeting of the group held at Rupert Bowlby's Nursery on April 9th 2005, an article on Crinum moorei by David Corina, information on recent literature of interest to growers of Southern African bulbs, and an updated list of suppliers of seed and bulbs/corms of Southern African geophytes. In addition a balance sheet covering the first year of operation of the group is attached. With respect to the supplier list, please let me know if you are aware of other sources which should be included. As I have previously stated the group welcomes articles, and suggestions, for inclusion in future newsletters. Contributions (hand/typewritten and electronic are acceptable!) are urgently required and should be sent to the newsletter editor at 17 Waterhouse Moor, Harlow, Essex, CM18 6BA (Email [email protected] ) Publication of the next issue is scheduled for December 2005. Report on visit to Rupert Bowlby - Saturday 9 th April 2005 by David Corina About 20 members attended the event, and the Group would like to thank Rupert for his hospitality at the event and for opening his collection to the public gaze. -
Antrocom Journal of Anthropology ANTROCOM Journal Homepage
Antrocom Online Journal of Anthropology vol. 17. n. 1 (2021) 5-20 – ISSN 1973 – 2880 Antrocom Journal of Anthropology ANTROCOM journal homepage: http://www.antrocom.net Leshoma, the visionary plant of southern Africa Luca Pasquali 1Independent researcher e-mail <[email protected]>. keywords abstract Boophone disticha, The bulbaceous plant Boophone disticha – known mainly by the term leshoma given hallucinogens, lebollô, kia, by the Sotho ethnic group – is characterized by powerful hallucinogenic properties and is used Basotho, San, South Africa as initiatory and divinatory plant among many southern African ethnicities. Once known as the main compound of San arrow poisons, its psychoactive properties have been recognized by Western scholars only in the last 50 years, since its ritual use was strictly kept secret by its initiates. Through the analysis of the few ancient and modern ethnographic observations that have been able to bypass the wall of secrecy that envelop the use of this plant, the Sotho male initiation rite (lebollô la banna) and the use of the plant as divinatory “bioscope ” among the South African sangoma (healers) are described. As evidenced by archaeological findings, man’s relationship with this plant has lasted for at least 2000 years. The plant The plant of leshoma is botanically classified as Boophone disticha (L. f.) Herb., belonging to the Amaryllidaceae family 1. It is a bulbaceous plant, with the bulb partially protruding from the ground. Each year the leafless bulb produces a beautiful fan of leaves which often are wavy in their margins at maturity. Once the vegetative stage is over, the plant loses its leaves, and the flowering stage begin. -
Chemical Analysis of Medicinal and Poisonous
CHEMICAL ANALYSIS OF MEDICINAL AND POISONOUS PLANTS OF FORENSIC IMPORTANCE IN SOUTH AFRICA P. A. STEENKAMP Submitted in fulfilment of the requirements for the degree PHILOSOPHIAE DOCTOR in CHEMISTRY in the FACULTY OF SCIENCE at the UNIVERSITY OF JOHANNESBURG Promotor: PROF. F.R. VAN HEERDEN Co-promotor: PROF. B-E. VAN WYK MAY 2005 Created by Neevia Personal Converter trial version http://www.neevia.com Created by Neevia Personal Converter trial version ACKNOWLEDGEMENTS I wish to express my sincere appreciation to all whose assistance and advice contributed to the creation of this thesis, and in particular the following: Professor F.R. van Heerden , my promotor, for her continued interest, advice, invaluable guidance with the chemical aspects of the project and NMR data interpretation of chapters six, seven and eight. Professor B-E. van Wyk , my co-promotor, for his enthusiasm, editorial guidance and invaluable assistance with the botanical aspects of the project. The Department of Health for their financial support and the Forensic Chemistry Laboratory for the use of their infrastructure to complete this research. Doctor L.H. Steenkamp, my wife, for her love, patience, assistance and encouragement. My children, Anton and Andries, for their patience, support and understanding. My colleagues of the Forensic Toxicology Research Unit for their support. Miss Kim Lilley of the Waters Corporation (USA) for her technical support and advice on mass spectrometry. My mother for her unwavering support and encouragement. My friends and family for their interest and encouragement. Finally, but most important, I want to express my gratitude to GOD for His grace and provision, and for the ability and opportunity to study a small part of His wonderful creation. -
Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes
Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes Shichao Chen1., Dong-Kap Kim2., Mark W. Chase3, Joo-Hwan Kim4* 1 College of Life Science and Technology, Tongji University, Shanghai, China, 2 Division of Forest Resource Conservation, Korea National Arboretum, Pocheon, Gyeonggi- do, Korea, 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom, 4 Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea Abstract Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny. -
CREW Newsletter – 2021
Volume 17 • July 2021 Editorial 2020 By Suvarna Parbhoo-Mohan (CREW Programme manager) and Domitilla Raimondo (SANBI Threatened Species Programme manager) May there be peace in the heavenly virtual platforms that have marched, uninvited, into region and the atmosphere; may peace our homes and kept us connected with each other reign on the earth; let there be coolness and our network of volunteers. in the water; may the medicinal herbs be healing; the plants be peace-giving; may The Custodians of Rare and Endangered there be harmony in the celestial objects Wildflowers (CREW), is a programme that and perfection in eternal knowledge; may involves volunteers from the public in the everything in the universe be peaceful; let monitoring and conservation of South peace pervade everywhere. May peace abide Africa’s threatened plants. CREW aims to in me. May there be peace, peace, peace! capacitate a network of volunteers from a range of socio-economic backgrounds – Hymn of peace adopted to monitor and conserve South Africa’s from Yajur Veda 36:17 threatened plant species. The programme links volunteers with their local conservation e are all aware that our lives changed from the Wend of March 2020 with a range of emotions, agencies and particularly with local land from being anxious of not knowing what to expect, stewardship initiatives to ensure the to being distressed upon hearing about friends and conservation of key sites for threatened plant family being ill, and sometimes their passing. De- species. Funded jointly by the Botanical spite the incredible hardships, we have somehow Society of South Africa (BotSoc), the Mapula adapted to the so-called new normal of living during Trust and the South African National a pandemic and are grateful for the commitment of the CREW network to continue conserving and pro- Biodiversity Institute (SANBI), CREW is an tecting our plant taxa of conservation concern. -
African Herbal Medicines: Adverse Effects and Cytotoxic Potentials with Different Therapeutic Applications
International Journal of Environmental Research and Public Health Review African Herbal Medicines: Adverse Effects and Cytotoxic Potentials with Different Therapeutic Applications Kunle Okaiyeto and Oluwafemi O. Oguntibeju * Phytomedicine and Phytochemistry Group, Oxidative Stress Research Centre, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa; [email protected] * Correspondence: [email protected] Abstract: The African continent is naturally endowed with various plant species with nutritional and medicinal benefits. About 80% of the people in developing countries rely on folk medicines to treat different diseases because of indigenous knowledge, availability, and cost-effectiveness. Extensive research studies have been conducted on the medicinal uses of African plants, however, the therapeutic potentials of some of these plants has remained unexploited. Over the years, several studies have revealed that some of these African floras are promising candidates for the development of novel drugs. Despite the plethora of studies on medicinal plant research in Africa, there is still little scientific data supporting the folkloric claims of these plants. Besides, safety in the use of folk medicines has been a major public health concern over the year. Therefore, it has become mandatory that relevant authority should take measures in safeguarding the populace on the use of herbal mixtures. Thus, the present review extracted relevant information from different scientific databases and highlighted some problems associated with folk medicines, adverse effects on reproductive systems, issue about safety due to the toxicity of some plants and their toxicity effects with potential Citation: Okaiyeto, K.; Oguntibeju, therapeutic benefits are discussed. -
A Feast of African Monocots
Muelleria 37: 127–132 Published online in advance of the print edition, Wednesday 24 April Book Review A Feast of African Monocots Geoff W. Carr Ecology Australia, 88B Station Street, Fairfield, Victoria 3078, Australia; e-mail: [email protected] The Amaryllidaceae of Southern Africa Graham Duncan, Barbara Jeppe, Leigh Voigt (2016) Umdaus Press, Hatfield, Pretoria, South Africa ISBN: 978-1-919766-50-8, Hardback i-x + 1–709 pages; 27 x 21 cm; 2.9 kg weight. RRP AU $268.99 With the most recent ordinal and familial classification of the angiosperms, the Angiosperm Phylogeny Group (2016) (APG IV) places 14 families in the Asparagales; together they comprise c. 35,513 species of global distribution. Orchidaceae (26,460 species) dwarfs all other Asparagoid families and makes the order the far most speciose of all monocot orders. Amaryllidaceae (Christenhusz et al. 2017) is largely warm-temperate and tropical in distribution with representatives on all the habitable continents. The amaryllids, with c. 2,140 species constitute the fourth Figure 1. Cover art for The largest family in Asparagales after Orchidaceae (25,000 species), Amaryllidaceae of Southern Africa. Asparagaceae (3,220 species) and Iridaceae (2,244 species), followed by Asphodelaceae (1,200 species). All other families are considerably smaller (Christenhusz et al. 2017). Three subfamilies are recognised in Amaryllidaceae: Amaryllideae (c. 1,000 species), Allioideae (1,134 species) and Agapanthoideae (7 species). A major radiation of Amaryllideae has occurred in southern Africa, with c. 250 species (11.6% of global total of Amaryllideae). The greatest radiation of Amaryllidaceae is in the Neotropics with 375 species (17.5% of global total) with a lesser centre of distribution in the Mediterranean basin.