Grid Issues for Electricity Production Based on Renewable Energy Sources in Spain, Portugal, Germany and United Kingdom, SOU

Total Page:16

File Type:pdf, Size:1020Kb

Grid Issues for Electricity Production Based on Renewable Energy Sources in Spain, Portugal, Germany and United Kingdom, SOU Grid Issues for Electricity Production Based on Renewable Energy Sources in Spain, Portugal, Germany, and United Kingdom Annex to Report of the Grid Connection Inquiry Stockholm 2008 SOU 2008:13 SOU och Ds kan köpas från Fritzes kundtjänst. För remissutsändningar av SOU och Ds svarar Fritzes Offentliga Publikationer på uppdrag av Regeringskansliets förvaltningsavdelning. Beställningsadress: Fritzes kundtjänst 106 47 Stockholm Orderfax: 08-690 91 91 Ordertel: 08-690 91 90 E-post: [email protected] Internet: www.fritzes.se Svara på remiss. Hur och varför. Statsrådsberedningen, 2003. – En liten broschyr som underlättar arbetet för den som skall svara på remiss. Broschyren är gratis och kan laddas ner eller beställas på http://www.regeringen.se/remiss Textbearbetning och layout har utförts av Regeringskansliet, FA/kommittéservice Tryckt av Edita Sverige AB Stockholm 2008 ISBN 978-91-38-22915-6 ISSN 0375-250X Preface This report is an underlying report to the Inquiry established by the Swedish Government on connection to the grid of electricity production based on renewable energy sources. The aim of this report is to give an insight on how different issues regarding connec- tion to the grid have been regulated in Spain, Portugal, Germany, and the United Kingdom. This report is based on interviews and legislation. The focus of this report relies on network issues but in order to give an overall insight on the circumstances in which renewable energies are deve- loped in the studied countries even a description of the economical promotion schemes is done. We would like to thank all those who have contributed to this report: • In Spain: Asociación Empresarial Eólica – AEE, Comisión Nacional de la energía – CNE, Ministerio de Industria, Turismo y Comercio – MITYC, Instituto para la Diversificación y Ahorro de la Energía – IDAE, Endesa, Iberdrola, and REE – Red Electrica de España. • In Portugal: REN – Rede Eléctrica Nacional, EDP – Energías de Portugal, APREN – Associação de energias renováveis, DGEG – Direcção Geral de Energia e Geologia, and Centro de Estudos em Economia da Energia, dos Transportes e do Ambiente – CEEETA. • In Germany: German Federal Ministry for the Environment (BMU), Federal Ministry of Economics and Technology (BMWi), Federal Network Agency (Bundesnetzagentur), German Wind Energy Association (BWE), RWE Transportnetz Strom GmbH, German Network Association (VDN), Enercon. • In the United Kingdom: Ofgem, Department of Trade and Industry (DTI), National Grid, Xero Energy, Garrad Hassan, British Wind Energy Association (BWEA), University of Strathclyde. Stockholm, November 2007 Eva Centeno López Thomas Ackermann Table of Contents List of Abbreviations .......................................................... 11 List of Figures ................................................................... 13 List of Tables .................................................................... 17 1 Spain........................................................................ 21 1.1 Introduction............................................................................. 21 1.1.1 Overview of the Transmission System........................ 23 1.1.2 Overview of the Distribution System ......................... 24 1.1.3 Relevant Legislation for Renewable Electricity Production .................................................................... 24 1.1.4 Regulatory Framework for Network Companies ...... 26 1.1.5 Development of the Wind Power Sector in Spain...... 27 1.1.6 Possible Barriers for the Future Development of the Wind Power Sector in Spain .................................. 32 1.2 Payment Scheme for Renewable Electricity Production....... 32 1.2.1 Development of payment schemes.............................. 42 1.2.2 Agents Opinions on different Payment Schemes for Renewable Electricity Production......................... 42 1.3 Application Procedure for Access and Connection to the Grid .................................................................................... 43 1.3.1 Definition of the Capacity of a Production Installation .................................................................... 46 1.3.2 Permitting Entities ....................................................... 47 1.4 Obligations of Grid Companies regarding Grid Access ....... 49 1.4.1 Available capacity ......................................................... 49 5 Table of Contents SOU 2008:13 1.4.2 Priority Access for Renewable Electricity Producers.......................................................................51 1.4.3 Reservation of Transmission Capacity ........................52 1.5 Costs Associated to the Connection to the Grid ..................52 1.5.1 Costs for the Connection Installations.......................53 1.5.2 Costs for Reinforcement of the Transmission Grid................................................................................55 1.5.3 Costs for Reinforcement of the Distribution Grid................................................................................56 1.6 Costs and Obligations related to measurement.....................57 1.6.1 Net-metering.................................................................57 1.6.2 Hourly measurement....................................................58 1.6.3 Measurement costs........................................................59 1.7 Grid tariffs ................................................................................60 1.8 Rights and Obligations regarding Real-Time Operation ......60 1.9 Conclusions Spain....................................................................62 2 Portugal.....................................................................67 2.1 Introduction .............................................................................67 2.1.1 Overview of the Transmission System........................68 2.1.2 Overview of the Distribution System .........................69 2.1.3 Relevant Legislation for Renewable Electricity Production.....................................................................70 2.1.4 Regulatory Framework for Network Companies ......70 2.1.5 Development of the Wind Power Sector in Portugal .........................................................................71 2.1.6 Possible Barriers for the Future Development of the Wind Power Sector in Portugal .............................74 2.2 Payment Scheme for Renewable Electricity Production.......74 2.2.1 Wind Power...................................................................76 2.2.2 Solar Power....................................................................78 2.2.3 Biomass..........................................................................79 2.2.4 Hydropower..................................................................80 2.3 Application Procedure for Access and Connection to the Grid and Evaluation on Environmental Impact...............81 2.3.1 Permitting Entities........................................................84 6 SOU 2008:13 Table of Contents 2.4 Obligations of Grid companies regarding Grid Access ........ 85 2.4.1 Available Capacity ........................................................ 85 2.4.2 Priority Access for Renewable Electricity Producers ...................................................................... 87 2.4.3 Reservation of Transmission Capacity........................ 88 2.5 Costs associated to the Connection to the Grid ................... 89 2.5.1 Costs for the Connection Installations ...................... 89 2.5.2 Costs for Reinforcement of the Transmission Grid................................................................................ 90 2.5.3 Costs for Reinforcement of the Distribution Grid................................................................................ 92 2.6 Costs and Obligations Related to Measurement................... 92 2.7 Grid tariffs................................................................................ 92 2.8 Rights and Obligations regarding Real-Time Operation ...... 92 2.9 Conclusions Portugal .............................................................. 93 3 Germany ................................................................... 97 3.1 Introduction............................................................................. 97 3.1.1 Overview of the Transmission System...................... 100 3.1.2 Overview of the Distribution Systems...................... 101 3.1.3 Relevant Legislations for Renewable Energy............ 102 3.1.4 Regulatory Framework for Network Companies .... 106 3.1.5 Development of the Wind Power Sector in Germany...................................................................... 107 3.1.6 Future Plans and Possible Barriers for the Further Development of Wind Power ...................... 110 3.2 Payment Scheme for Renewable Energy Sources ................ 113 3.3 Application Procedure for Access and Connection to the Grid .................................................................................. 119 3.3.1 Definition of the Capacity of a Production Installation .................................................................. 124 3.3.2 Permitting Entities ..................................................... 125 3.4 Obligations of a Grid Company Regarding Grid Access.... 125 3.4.1 Available Capacity ...................................................... 126 3.4.2 Reservation of Transmission Capacity...................... 127 7 Table of Contents SOU 2008:13 3.5 Costs Associated with the Connection to the Grid ............127 3.6 Costs
Recommended publications
  • International Conference on Renewable Energy and Power Quality
    INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY AND POWER QUALITY (ICREPQ’10) WELCOME TO ICREPQ’10 On behalf of the Steering Committee and the Local Organizing Committee we want to give you a very warm welcome to ICREPQ’10 and to Granada. Our International Programme Committee has selected a high quality 318 papers (among 534 proposals) from which 290 will be presented at the Conference, 40 at oral sessions and 130 at poster sessions (dialogue), along the three days of the ICREPQ’10. All of these papers are included in the final programme. Also four special papers will be presented in plenary sessions. ICREPQ’09 covers the whole range of problems and solutions especially concerning with renewable energies and power quality and all the papers have direct relation with these two fields of research and practical work. We would like to thank all the authors, session chairmen, participants without papers and the International Program Committee members who have made important contributions by reviewing the proposals. In addition to the technical sessions, a number of social events have been arranged. On Wednesday evening (15 th April, 19:00 H) we will hold a Civic Reception with aperitif in “Salón de Cristal. Ajuntament de Valencia” and on Thursday (16 th April, 20:30 H) the Conference Banquet at “Sorolla Palace” where we will deliver presents to those companies/institutions that collaborate with the organisation of the Conference and on Friday (17 th of April from 15:00 H to 19:00 H) we have arranged a Cultural Excursion in two Tourist Buses along Valencia and finally a visit to the City of Arts and Sciences.
    [Show full text]
  • Relatório & Contas Consolidado
    1 RELATÓRIO & CONTAS CONSOLIDADO CONSOLIDATED ANNUAL REPORT & ACCOUNTS ‘16 RELATÓRIO & CONTAS CONSOLIDADO 2016 CONSOLIDATED ANNUAL REPORT & ACCOUNTS 2 RELATÓRIO DO CONSELHO REPORT OF THE BOARD DE ADMINISTRAÇÃO 01 OF DIRECTORS ENQUADRAMENTO GERAL GENERAL OVERVIEW Regulamentar Regulatory Setorial e de Mercado Sector and Market ENQUADRAMENTO DA ATIVIDADE ACTIVITY OVERVIEW Alterações na Estrutura Societária Changes to Shareholder Structure Existência de Sucursais Branch Offices Negócios Entre as Sociedades Business Between the Companies e os Seus Gerentes ou Administradores and their Managers or Directors Organigrama Corporativo Organisational Chart Perímetro de Consolidação Consolidation Perimeter Unidades de Negócio Business Units Recursos Humanos Human Resources ANÁLISE DA ATIVIDADE ANALYSIS OF THE BUSINESS ACTIVITY Indicadores de Desempenho Performance Indicators Principais Ações Desenvolvidas Main Actions Análise Operacional e Financeira Operational and Financial Analysis FACTOS RELEVANTES RELEVANT EVENTS AFTER APÓS O TERMO DO EXERCÍCIO THE END OF THE FINANCIAL YEAR E PERSPETIVAS FUTURAS AND FUTURE PROSPECTS APLICAÇÃO DE RESULTADOS APPROPRIATION OF RESULTS DEMONSTRAÇÕES 02 FINANCIAL FINANCEIRAS E NOTAS STATEMENTS AND NOTES RELATÓRIO DE AUDITORIA 03 AUDIT REPORT RELATÓRIO & CONTAS CONSOLIDADO 2016 CONSOLIDATED ANNUAL REPORT & ACCOUNTS 3 01 RELATÓRIO DO CONSELHO DE ADMINISTRAÇÃO REPORT OF THE BOARD OF DIRECTORS RELATÓRIO & CONTAS CONSOLIDADO 2016 CONSOLIDATED ANNUAL REPORT & ACCOUNTS 4 ENQUADRAMENTO GERAL GENERAL OVERVIEW PARQUE EÓLICO DE SÃO MACÁRIO Exmos. Acionistas, Dear shareholders, Nos termos do Art.º 65º do Código das Sociedades Comerciais e dos Estatutos, submetemos Pursuant to Article 65 of the Portuguese Companies’ Code and the Articles of Association, a apreciação o Relatório de Gestão, Balanço e Contas Consolidadas referentes ao Exercício we hereby submit for your appraisal the Management Report, Balance Sheet and de 2016.
    [Show full text]
  • Letter from Navarre Minister Aldasoro
    NAVARRE: RENEWABLE ENERGIES Pamplona, 21 April 2009 Navarre is a small region of Spain with a population of 620,000 in an area the tenth of the state of Pennsylvania. It is well-known throughout the world for its development in renewable energies. The prestigious magazine, Nature, published an article about Navarre in June of 2007 entitled: “Energy-Go-Round: How did a little Spanish province become one of the world’s wind-energy giants?” After 20 years of development, 65% of the electrical energy we consume in Navarre originates from renewable energies. At this moment there are 993 MW of wind and almost 100 MW of photovoltaic power, among others, installed in Navarre. An article was published recently which has placed a doubt in renewable energy’s ability to create employment; it states that it destroys employment, and therefore, is a factor in the social impoverishment of a country. As I will demonstrate, this statement is completely untrue. In Navarre, the development of renewable energies, and above all wind energy, has created wealth, employment and technological development, and I can assert that this can be achieved in any other region or country. Our region’s GDP is among the three highest in Spain, participation by the industrial sector is 12 points higher than the entire country’s, and for many years Navarre has had unemployment rates inferior to Spain’s. Before the beginning of the current world crisis our region enjoyed full employment. Now, after the strong economic and employment crisis that affects Spain in particular, Navarre maintains itself as the Spanish region with the least unemployment.
    [Show full text]
  • By 2030, Wind Power in Spain Will Supply More Than 30% of Electricity with an Installed Capacity of 40 GW
    PRESS RELEASE PRESS RELEASE Spanish wind power industry´s proposal for an energy transition By 2030, wind power in Spain will supply more than 30% of electricity with an installed capacity of 40 GW Madrid, 16th of November 2017.- The Spanish Wind Energy Association (AEE) has developed the analysis "The necessary elements for an energy transition. Proposals for the electricity sector". This document has recently been sent to the Spanish Committee of Experts for Energy Transition. With it, AEE aims at making specific and realistic proposals on the contribution of wind power for 2020, 2030 and 2050. Energy transition brings with it the need for long term planning and many challenges for its achievement. AEE has taken as reference the European Commission´s scenario proposed by the PRIMES model in the horizon of 2030. This model states a very moderate growth in the electricity demand. In its own scenario, AEE has established more ambitious electrification and decarbonisation objectives in order to meet the Paris Agreement goal of achieving at least an 80-95% reduction of greenhouse gas emissions by 2050. Electrification must be the way to reduce emissions, thanks to competitive renewable technologies such as wind power. The electricity sector must move towards scenarios where new electricity demand is covered without jeopardizing emission reduction objectives. As a result of the analysis, the Spanish wind industry, represented by AEE, believes that wind power installed capacity will reach 28,000 MW by 2020 (taking into account the 2016 and 2017 tenders and the Canary Islands wind power quota). This means that wind power would increase by 1,700 MW per year on average between the end of 2017 and the beginning of 2020.
    [Show full text]
  • Design and Operation of Power Systems with Large Amounts. State
    ESPOO 2007 VTT WORKING PAPERS 82 Design and operation of power systems with large amounts of wind power State-of-the-art report Hannele Holttinen & Bettina Lemström, VTT, Finland Peter Meibom & Henrik Bindner, Risø National Laboratories Antje Orths, Energinet.dk, Denmark Frans van Hulle, EWEA Cornel Ensslin, ISET; Albrecht Tiedemann, DENA, Germany Lutz Hofmann & Wilhelm Winter, E.ON Netz, Germany Aidan Tuohy & Mark O’Malley, UCD; Paul Smith, Eirgrid, Ireland Jan Pierik, ECN, Netherlands John Olav Tande, SINTEF, Norway Ana Estanqueiro, INETI; João Ricardo, REN, Portugal Emilio Gomez, University Castilla La Mancha, Spain Lennart Söder, KTH, Sweden Goran Strbac & Anser Shakoor, DG&SEE, UK J. Charles Smith, UWIG, USA Brian Parsons, Michael Milligan & Yih-huei Wan, NREL, USA ISBN 978-951-38-6633-4 (URL: http://www.vtt.fi/publications/index.jsp) ISSN 1459-7683 (URL: http://www.vtt.fi/publications/index.jsp) Copyright © VTT 2007 JULKAISIJA – UTGIVARE – PUBLISHER VTT, Vuorimiehentie 3, PL 1000, 02044 VTT puh. vaihde 020 722 111, faksi 020 722 4374 VTT, Bergsmansvägen 3, PB 1000, 02044 VTT tel. växel 020 722 111, fax 020 722 4374 VTT Technical Research Centre of Finland, Vuorimiehentie 3, P.O. Box 1000, FI-02044 VTT, Finland phone internat. +358 20 722 111, fax + 358 20 722 4374 VTT, Biologinkuja 5, PL 1000, 02044 VTT puh. vaihde 020 722 111, faksi 020 722 7048 VTT, Biologgränden 5, PB 1000, 02044 VTT tel. växel 020 722 111, fax 020 722 7048 VTT Technical Research Centre of Finland, Biologinkuja 5, P.O. Box 1000, FI-02044 VTT, Finland phone internat. +358 20 722 111, fax +358 20 722 7048 The IEA WIND Task 25 also known as the “Design and Operation of Power Systems with Large Amounts of Wind Power”, Task 25 of IEA Implementing Agreement on Wind Energy, functions within a framework created by the International Energy Agency (IEA).
    [Show full text]
  • Gone with the Wind? Local Employment Impact of Wind Energy Investment∗
    Gone with the wind? Local employment impact of wind energy investment∗ H´eliaCosta Linda Veiga London School of Economics University of Minho LSE Cities and Grantham Inst. y Dep. Economics and NIPE z May 2016 Draft - Please do not cite Abstract Investment in wind power has grown remarkably in the past decades in the European Union, and in particular in Portugal. Although support for incentive policies is based on economic development arguments, lit- tle evidence exists as to their impact on overall job creation and local level effects. We assess the existence, distribution and duration of lo- cal level labor impacts of wind power investment using a panel of all 278 Portuguese mainland municipalities for the years 2001-2014. Our results show there are short term effects, mainly for low skilled labor, during the construction phase. We estimate a decrease of 0.37 percent- age points in total unemployment rate for each 100MW installed. We find positive spatial spillovers for municipalities that are 30km or less away. We find no evidence of sustained effects or impact during the operations and maintenance phase. These insights highlight the need to couple incentive policies with labor market and educational reforms that reduce the mismatch in necessary skills. JEL classification: C23, H70, Q50 Keywords: Wind power, employment effects, panel data ∗The authors thank Francois Cohen, Alexandra Gomes, Ralf Martin and participants of the Grantham Research Workshop at LSE for valuable comments. yPresenter. Address: London School of Economics, Houghton Street, London WC2A 2AE, United Kingdom. Email: [email protected] zAddress: University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
    [Show full text]
  • Gwec-2006 Final 01.Pdf
    TABLE OF CONTENTS Foreword. 1 Introduction: Booming wind markets put temporary strain on supply chains. 2 Global summary: The Status of the Global Wind Energy Markets . 7 Market forecast for 2007-2010. 12 COUNTRY REPORTS Europe . .16 European Union . 16 Germany. 20 Italy . 22 Poland. 24 Spain . 26 United Kingdom . 28 Americas . .30 United States . 30 Canada. 32 Brazil . 34 Mexico . 36 Asia . .38 India. 38 China. 40 Japan . 42 Korea. 44 Pacifi c. .46 Australia . 46 Africa. .48 Egypt. 48 Iran. 50 Morroco. 52 Conclusions: The need for solid political frameworks. 54 About GWEC . 56 Foreword 2006 was another booming year for the wind industry, The Global Wind Report 2006 is the second annual report with growth in annual installed capacity of 32 % globally, by GWEC on the status of global wind energy markets, and well ahead of our own projections. The market continued it clearly shows that wind energy today is a global business, to broaden, further establishing wind power as the leading with installations in over 70 countries. renewable energy technology – in the vanguard of the 21st century energy industry transformation. Globally, the value While Europe continues to lead the way, with 65 % of the of new generating plant installed in 2006 reached global market, the United States was the leader in new €18 billion, or US$24 billion. installed capacity for the second year running, bringing about 2,500 MW capacity of new plant on line in 2006. Against the backdrop of a growing acknowledgement of the twin crises of global climate change and energy security, The Asian market is also growing at a breathtaking rate, by wind power is the most effective means available now to 53 % in 2006.
    [Show full text]
  • Decarbonizing China's Power System with Wind Power
    January 2015 Decarbonizing China’s power system with wind power: the past and the future OIES PAPER: EL 11 Xin Li The contents of this paper are the author’s sole responsibility. They do not necessarily represent the views of the Oxford Institute for Energy Studies or any of its members. Copyright © 2015 Oxford Institute for Energy Studies (Registered Charity, No. 286084) This publication may be reproduced in part for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgment of the source is made. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the Oxford Institute for Energy Studies. ISBN 978-1-78467-019-1 i Abstract Wind power in China has experienced significant growth since the beginning of this century. Total installed capacity has increased almost 300 fold – from 346 MW in 2000 to 91,413 MW in 2013. This rapid development has had two major drivers: • First, the excellent wind power resource in China, especially in the north of the country, and the increasing competitiveness of wind generation worldwide. • Second, favourable government policies such as: mandatory targets for major power generators in relation to renewable energy; the decentralization of plant approval rights; and feed-in tariffs for wind generation. Along with the development of domestic wind turbine manufacturing capacity, these factors have stimulated the growth of wind power over the past 10 years or so. However, this rapid development has itself created new challenges. In particular, wind power has not been fully integrated into the electricity system as a whole, as the growth of wind generation capacity has not been matched by a corresponding growth in transmission capacity.
    [Show full text]
  • Relatorio ENG 2011.Indd
    Grupo ’Consolidated Annual Report11 & Accounts www.iberwind.pt Contents 02 Report of the Board of Directors 05 Chairman’s Statement 06 General Background 06 Macroeconomic 08 Regulatory 09 Sector and Market 16 Activity Background 16 Changes to Shareholder Structure 17 Branch Offices 17 Business Between the Companies and their Managers or Directors 17 Organisational Chart 18 Consolidation Perimeter 19 Business Units 23 Human Resources 24 Analysis of Business Activity 24 Performance Indicators 26 Main Actions 28 Operational and Financial Analysis 34 Relevant Events After the End of the Financial Year and Future Prospects 34 Application of Annual Results 36 Financial Statements and Notes 86 Audit Report Report of the Board of Directors 04 Report of the Board of Directors Chairman’s Statement General Background Activity Background Analysis of Business Activity 05 Chairman’s Statement In 2011 Iberwind developed its activity of producing electricity from wind sources maintaining a high performance level. Iberwind’s team of 64 professionals (operations, maintenance management and administration of operations) and portfolio of 31 wind farms totalling 684 MW, geographically distributed over the country’s best locations, produced 1.55 TWh, with an average wind generator availability of 97.4%. This production was generated from 2,281 equivalent hours of wind, calculated on the installed capacity, which represents a decline of 8.7% of the average resource availability in the previous two years. In fact, wind availability was below normal, especially in the last quarter, thus jeopardising production in the year. It should also be noted that Iberwind developed and completed the reconstruction of the Lagoa Funda Wind Farm in August 2011, as planned, carrying out its repowering and overpowering in accordance with Decree Law No.
    [Show full text]
  • Learning Curves for Renewables and Other Technologies
    Die approbierte Originalversion dieser Diplom-/ Masterarbeit ist in der Hauptbibliothek der Tech- nischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at Learning curves for renewables and other technologies: The approved original version of this diploma or master thesis is available at the main library of the Vienna University of Technology. an international analysis http://www.ub.tuwien.ac.at/eng MASTER THESIS For obtaining the academic degree Diplom-Ingenieur (Dipl.-Ing.) Vienna University of Technology Institute of Energy System and Electrical Drives Energy Economics Group Supervisor : Univ.Prof. Dipl.Ing. Dr. Reinhard Haas Assistant: Dipl.-Ing. Dr. Gustav Resch By Kenan Sütcü Cortigasse 12/26 1220 Vienna Vienna, November 2018 1 Table of Contents 1 Introduction ................................................................................................................................... 5 1.1 Motive .................................................................................................................................... 5 1.2 Objective ................................................................................................................................ 6 1.3 Method ................................................................................................................................... 6 1.4 The Experience Curve Formula ............................................................................................... 7 1.5 Perils of the Experience Curve ...............................................................................................
    [Show full text]
  • Wind Power a Victim of Policy and Politics
    NNoottee ddee ll’’IIffrrii Wind Power A Victim of Policy and Politics ______________________________________________________________________ Maïté Jauréguy-Naudin October 2010 . Gouvernance européenne et géopolitique de l’énergie The Institut français des relations internationales (Ifri) is a research center and a forum for debate on major international political and economic issues. Headed by Thierry de Montbrial since its founding in 1979, Ifri is a non- governmental and a non-profit organization. As an independent think tank, Ifri sets its own research agenda, publishing its findings regularly for a global audience. Using an interdisciplinary approach, Ifri brings together political and economic decision-makers, researchers and internationally renowned experts to animate its debate and research activities. With offices in Paris and Brussels, Ifri stands out as one of the rare French think tanks to have positioned itself at the very heart of European debate. The opinions expressed in this text are the responsibility of the author alone. ISBN: 978-2-86592-780-7 © All rights reserved, Ifri, 2010 IFRI IFRI-BRUXELLES 27, RUE DE LA PROCESSION RUE MARIE-THERESE, 21 75740 PARIS CEDEX 15 – FRANCE 1000 – BRUXELLES – BELGIQUE Tel: +33 (0)1 40 61 60 00 Tel: +32 (0)2 238 51 10 Fax: +33 (0)1 40 61 60 60 Fax: +32 (0)2 238 51 15 Email: [email protected] Email: [email protected] WEBSITE: Ifri.org Executive Summary In December 2008, as part of the fight against climate change, the European Union adopted the Energy and Climate package that endorsed three objectives toward 2020: a 20% increase in energy efficiency, a 20% reduction in GHG emissions (compared to 1990), and a 20% share of renewables in final energy consumption.
    [Show full text]
  • On 100% Renewable Energy by Willia
    Analysis of the Technical Feasibility of Powering the South-West Interconnected System (SWIS) on 100% Renewable Energy ________________________________________________________________ By William Daniel Gardiner BSc A dissertation submitted in partial requirement for the degree of Master of Science in Renewable Energy School of Energy & Engineering May 2013 Declaration I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which has been accepted for the award of any other degree or diploma of the University or other institute of higher learning, except where due acknowledgment has been made in the text. William Daniel Gardiner May 2013 Acknowledgements I would like to express my gratitude to the School of Energy & Engineering for giving me the opportunity to study renewable energy at Murdoch University. I would also like to thank the lecturers from this and my previous degree for passing on their knowledge. Thanks also to Dr Trevor Pryor, the coordinator of PEC 624, Renewable Energy Dissertation. His administrative assistance and motivational support has been appreciated. Special thanks are due to my supervisor, Dr Chris Creagh, for being so generous with her time, patience and valuable opinion. Not only has she offered technical advice during the writing of this dissertation, she has provided moral support during this and my previous undergraduate degree. As someone dealing with the pressures of full- ii time work, family and off-campus study, this has been invaluable and is very much appreciated. Finally, to my wife Dawn, and children Zayne and Lucas.
    [Show full text]