Robert Joseph Beattie

Total Page:16

File Type:pdf, Size:1020Kb

Robert Joseph Beattie CURRICULUM VITAE Robert Joseph Beattie Personal Information Email: [email protected] Phone: +43 664 8832 6139 Address: IST Austria, Lab Building East, Am Campus 1, Klosterneuburg 3400, Austria Personal Website: http://beattiescience.com Educational Website: http://scopeseducation.org ORCID: 0000-0002-8483-8753 Education 2014 Ph.D., Biomedical Science, The University of Sheffield, Sheffield, UK 2009 B.Sc., Honors (Co-op), Microbiology, The University of Manitoba, Winnipeg, Canada Academic Experience Main Areas of Research Neurobiology, Neurogenetics, Gliogenesis, Developmental Biology 2015 – Present Postdoctoral fellow in the lab of Dr. Simon Hippenmeyer at IST Austria, Klosterneuburg, Austria, Laboratory of Genetic Dissection of Cerebral Cortex Development. Since 03.2017, supported by FWF Lise Meitner Fellowship. 2014 - 2015 (11 months) Postdoctoral researcher in the lab of Dr. Verdon Taylor at the University of Basel, Switzerland, Laboratory of Adult Neurogenesis and Cortical Development. 2009 – 2014 Ph.D. student in the lab of Dr. Verdon Taylor in the Department of Biomedical Science at The University of Sheffield, UK and Department of Biomedicine, University of Basel, Switzerland. Laboratory of Adult Neurogenesis and Cortical Development. Ph.D. thesis: The Role of Jagged1 as a Pivotal Regulator of Neural Stem Cell Differentiation in the Neurogenic Niche. 2008 - 2009 (12 months) Honours student in the lab of Dr. Steve Whyard in the department of Biological Sciences at the University of Manitoba, Canada. Laboratory of Molecular Basis of Development. 2008 (4 months) Undergraduate internship in the lab of Dr. Verdon Taylor at the Max-Planck Institute of Immunobiology and Epigenetics, Germany, Laboratory of Adult Neurogenesis. 2007 - 2008 (16 months) Undergraduate internship in the lab of Dr. Ute Stroeher in the Special Pathogens Unit at the National Microbiology Lab Public Health Agency of Canada, Canada, Laboratory of Ebola Vaccine Development. Grants and Fellowships 2017 FWF Lise Meitner Fellowship - Value: 160, 000 EUR (~$250, 000 CAD) 2012 Swiss Society for Neuroscience travel grant 2010 Career Development and Transferable Skills Training Grant 2008 Millennium Student Success Grant 2004 Undergraduate Student Scholarship Page | 1 Robert J. Beattie, Ph.D. Selected Honors, Academic Prizes and Awards 2019 Best Poster Award - Development and Stem Cells Meeting - Vienna, Austria 2017 Best Poster Award - AXON Meeting - Vienna, Austria 2013 Best Poster Award - University of Basel Department of Biomedicine - Basel, Switzerland 2010 International Student Ambassador Award - Max Planck Institute of Immunobiology and Epigenetics 2008 Honorary mention Canadian Co-op Student of the year award 2008 Manitoba Co-op Student of the year award 2004 Grade 12 Valedictorian Teaching Activities & Extracurricular 2020 Undergraduate Mentoring Program, University of Manitoba, Canada Mentor - Providing career advice for those considering internships and postgraduate studies. 2020 Introduction to Advanced Methods in Neuroscience, Postgraduate level course, IST Austria - 3 credit hours Course developer and lecturer (Fall semester) – I designed this course to introduce students to advanced techniques used in neuroscience. It highlighted the current strengths and limitations of each method, what questions it can be used to address, and the requirements for planning and running such experiments. 2020 Neuroscience Seminar Series Organizing Committee, IST Austria Seminar series organizer – Responsible for inviting and hosting Dr. Beth Stevens (Harvard University); Dr. Oscar Marin (King's College London) 2019 Undergraduate Mentoring Program, University of Manitoba, Canada Mentor - Providing career advice for those considering internships and postgraduate studies. 2019 Neuroscience Seminar Series Organizing Committee, IST Austria Seminar series organizer – Responsible for inviting and hosting Dr. Bosiljka Tasic (Allen Institute), Dr. Rafael Yuste (Columbia University) 2018 Undergraduate Mentoring Program, University of Manitoba, Canada Mentor - Providing career advice for those considering internships and postgraduate studies. 2018 Developmental Neurobiology and Brain Diseases, Postgraduate level course, IST Austria - 3 credit hours Lecturer - In addition to lecturing, this course used a series of research articles to stimulate discussion. 2016 Principles of Neuronal Circuit Assembly, Postgraduate level course, IST Austria - 3 credit hours Teaching Assistant - I led the laboratory portion of the course, which involved one-on-one training of basic neuroscience techniques and protocols in tissue preparation for confocal microscopy. 2016 Animal Handling and Manipulation Course, Postgraduate level course, IST Austria - 3 credit hours Instructor – Introductory course for scientists who handle animals at IST Austria. I taught advanced gene delivery methods such as in utero electroporation and helped students perform mouse surgeries. 2012 Biomedical Sciences Ph.D. Society, The University of Sheffield, Sheffield, UK Ph.D. Representative – Acted as a liaison between students and faculty. Designed workshops and lecture series, invited guest speakers, organized charity fundraisers and compiled final reports for funding bodies. A project I am proud of spearheading was the inaugural Ph.D. retreat, which continues annually to this day. Page | 2 Robert J. Beattie, Ph.D. Supervision of Laboratory Trainees and Graduate Students I have mentored and supervised nine junior trainees with different stages of experience. Mentoring involved teaching relevant subject matter, experimental techniques and directly supervising projects related to my research. 2020 Oct – Present Ishita Gupta Ph.D. rotation student in the Hippenmeyer lab 2020 Aug - Present Ines Aykara Undergraduate internship student in the Hippenmeyer lab 2020 (Winter) Florian Schmidt Ph.D. rotation student in the Hippenmeyer lab 2018 (Winter) Kasumi Kishi Ph.D. rotation student in the Hippenmeyer lab 2018 (Fall) Lena Schwarz Ph.D. rotation student in the Hippenmeyer lab 2018 (Summer) Jonáš Rybníček Undergraduate internship student in the Hippenmeyer lab 2017 (Fall) Julia Michalska Ph.D. rotation student in the Hippenmeyer lab 2016 (Summer) Laura Burnett Undergraduate internship student in the Hippenmeyer lab 2011-2013 Tanzila Muhktar Master's student in the Taylor lab Pedagogy and Leadership Courses 2019 (Fall) Teaching Didactics Workshop IST Austria, Klosterneuburg, Austria 2017 (Summer) Science Education Workshop IST Austria, Klosterneuburg, Austria 2017 (Spring) Project Management Workshop IST Austria, Klosterneuburg, Austria 2013 (Winter) Biotechnology Startup Course University of Basel, Basel, Switzerland 2011 (Fall) Biotechnology YES The University of Sheffield, Sheffield, England Science Outreach Activities 2021 Maker Faire Vienna Vienna, Austria Speaker 2020 Elementary School Visit Winnipeg, Canada Presenter 2020 Pop-up Science IST Austria Vienna, Austria Presenter 2020 MADM Brain Explorer Vienna, Austria Creator (Web App) 2019 Long Night of Museums Vienna, Austria Presenter 2019 Scopes Education Vienna, Austria Co-founder 2019 Maker Faire Vienna Vienna, Austria Presenter 2018 IST Austria Open Campus Klosterneuburg, Austria Instructor 2018 Long Night of Research Klosterneuburg, Austria Instructor 2017 IST Austria Summer Camp Klosterneuburg, Austria Instructor 2017 IST Austria Open Campus Klosterneuburg, Austria Instructor 2011 Elementary School Visit Sheffield, England Instructor Invited Talks 2021 Maker Faire Vienna – Vienna Austria (Rescheduled from 2020 due to COVID-19) SCOPES: Sparking Curiosity Through Open-Source Platforms in Education and Science. 2020 Glial Cells-Neuron Crosstalk in CNS Health and Disease - Turin, Italy Molecular Mechanisms Regulating Gliogenesis in the Neocortex. Chairperson for Glia-neuron crosstalk in CNS functions and memory session. 2020 IST Austria Life Science Retreat - Retz, Austria Imprinted Cdkn1c Genomic Locus Cell-Autonomously Promotes Cell Survival in Cerebral Cortex Development. Page | 3 Robert J. Beattie, Ph.D. 2019 ANA Meeting 2019 - Innsbruck, Austria Unexpected Role of Imprinted Cdkn1c Genomic Locus in Cortical Development. 2018 Development and Stem Cells Meeting 2018 - Vienna, Austria Unexpected Role of Imprinted Cdkn1c Genomic Locus in Cortical Development. 2017 IST Austria Life Science Retreat - Sopron, Hungary Mosaic Analysis with Double Markers Reveals Distinct Sequential Functions of Lgl1 in Neural Stem Cells. 2017 Cortical Development 2017 - Crete, Greece Mosaic Analysis with Double Markers Reveals Distinct Sequential Functions of Lgl1 in Neural Stem Cells. 2016 Vienna Neuroscience Network Meeting - Vienna, Austria Lgl1 Controls NSC Lineage Progression via Intrinsic and Cell-non-autonomous Mechanisms. 2014 The 8th Notch Meeting - Athens, Greece Jagged1 as a Pivotal Regulator of Neural Stem Cell Differentiation Towards an Oligodendrocytic Lineage in Cells Originating from the Neurogenic Forebrain Niche. 2014 University of Fribourg - Fribourg, Switzerland Jagged1 as a Pivotal Regulator of Neural Stem Cell Differentiation Towards an Oligodendrocytic Lineage in Cells Originating from the Neurogenic Forebrain Niche. Professional Training 2020 Successful Interview Technique Workshop by Sarah Blackford. IST Austria – Klosterneurburg, Austria 2020 Resilience & Well-Being in Academia Workshop. IST Austria - Klosterneuburg, Austria 2020 Research Integrity and Research Ethics Workshop. IST Austria - Klosterneuburg, Austria 2013 RNA-sequencing: From experiment
Recommended publications
  • UNDERSTANDING the BRAIN Tbook Collections
    FROM THE NEW YORK TIMES ARCHIVES UNDERSTANDING THE BRAIN TBook Collections Copyright © 2015 The New York Times Company. All rights reserved. Cover Photograph by Zach Wise for The New York Times This ebook was created using Vook. All of the articles in this work originally appeared in The New York Times. eISBN: 9781508000877 The New York Times Company New York, NY www.nytimes.com www.nytimes.com/tbooks Obama Seeking to Boost Study of Human Brain By JOHN MARKOFF FEB. 17, 2013 The Obama administration is planning a decade-long scientific effort to examine the workings of the human brain and build a comprehensive map of its activity, seeking to do for the brain what the Human Genome Project did for genetics. The project, which the administration has been looking to unveil as early as March, will include federal agencies, private foundations and teams of neuroscientists and nanoscientists in a concerted effort to advance the knowledge of the brain’s billions of neurons and gain greater insights into perception, actions and, ultimately, consciousness. Scientists with the highest hopes for the project also see it as a way to develop the technology essential to understanding diseases like Alzheimer’sand Parkinson’s, as well as to find new therapies for a variety of mental illnesses. Moreover, the project holds the potential of paving the way for advances in artificial intelligence. The project, which could ultimately cost billions of dollars, is expected to be part of the president’s budget proposal next month. And, four scientists and representatives of research institutions said they had participated in planning for what is being called the Brain Activity Map project.
    [Show full text]
  • From the Neuron Doctrine to Neural Networks
    LINK TO ORIGINAL ARTICLE LINK TO INITIAL CORRESPONDENCE other hand, one of my mentors, David Tank, argued that for a true understanding of a On testing neural network models neural circuit we should be able to actu- ally build it, which is a stricter definition Rafael Yuste of a successful theory (D. Tank, personal communication) Finally, as mentioned in In my recent Timeline article, I described existing neural network models have enough the Timeline article, one will also need to the emergence of neural network models predictive value to be considered valid or connect neural network models to theories as an important paradigm in neuroscience useful for explaining brain circuits.” (REF. 1)). and facts at the structural and biophysical research (From the neuron doctrine to neu- There are many exciting areas of progress levels of neural circuits and to those in cog- ral networks. Nat. Rev. Neurosci. 16, 487–497 in current neuroscience detailing phenom- nitive sciences as well, for proper ‘scientific (2015))1. In his correspondence (Neural enology that is consistent with some neural knowledge’ to occur in the Kantian sense. networks in the future of neuroscience network models, some of which I tried to research. Nat. Rev. Neurosci. http://dx.doi. summarize and illustrate, but at the same Rafael Yuste is at the Neurotechnology Center and org/10.1038/nrn4042 (2015))2, Rubinov time we are still far from a rigorous demon- Kavli Institute of Brain Sciences, Departments of provides some thoughtful comments about stration of any neural network model with Biological Sciences and Neuroscience, Columbia University, New York, New York 10027, USA.
    [Show full text]
  • Circuit Neuroscience: the Road Ahead
    CORE Metadata, citation and similar papers at core.ac.uk Provided byGR ColumbiaAND University CHALLE AcademicNGE Commons Circuit neuroscience: the road ahead Rafael Yuste HHMI, Department of Biological Sciences, Columbia University, USA Correspondence: [email protected] It is difficult to write about grand challenges in our field without pontificating or pre- tending to show a degree of certainty in assessing the field that I do not possess. I would rather comment on a few of the issues that particularly worry me. Therefore, this article is just a snapshot of our field now, as I see it, and encourage readers to read it as the opinion of just one of their colleagues. My comments are aimed at Circuit Neuroscience. What exactly is Circuit Neuroscience? Rafael Yuste studied Medicine at the Universidad As stated in the mission statement of Frontiers in Neural Circuits, I follow the definition Autonoma and the Fundacion of Circuit Neuroscience as the understanding of the computational function of neural cir- Jimenez Diaz Hospital in Madrid. After a brief period cuits, linking this function with the circuit micro-structure. Within this field, I will address in Sydney Brenner’s group three different types of challenges: scientific, methodological and sociological ones. at the LMB in Cambridge, he obtained his PhD with Larry Katz in Torsten Scientific problems: Wiesel’s laboratory, at I think that it is fair to say that we are profoundly ignorant about the structure and func- Rockefeller University tion of neural circuits. One could say that the goal of our field is to reverse-engineer in New York.
    [Show full text]
  • The Brain Activity Map Project and the Challenge of Functional Connectomics
    Neuron NeuroView The Brain Activity Map Project and the Challenge of Functional Connectomics A. Paul Alivisatos,1 Miyoung Chun,2 George M. Church,3 Ralph J. Greenspan,4 Michael L. Roukes,5 and Rafael Yuste6,* 1Materials Science Division, Lawrence Berkeley National Lab and Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA 2The Kavli Foundation, Oxnard, CA 93030, USA 3Department of Genetics and Wyss Institute, Harvard Medical School, Boston, MA 02115, USA 4Kavli Institute for Brain and Mind, UCSD, La Jolla, CA 92093, USA 5Kavli Nanoscience Institute and Departments of Physics, Applied Physics, and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA 6HHMI, Department Biological Sciences, Kavli Institute for Brain Science, Columbia University New York, NY 10027, USA *Correspondence: [email protected] DOI 10.1016/j.neuron.2012.06.006 The function of neural circuits is an emergent property that arises from the coordinated activity of large numbers of neurons. To capture this, we propose launching a large-scale, international public effort, the Brain Activity Map Project, aimed at reconstructing the full record of neural activity across complete neural circuits. This technological challenge could prove to be an invaluable step toward understanding fundamental and pathological brain processes. ‘‘The behavior of large and com- To explore these jungles, neuroscientists bles. Because of this, measuring emer- plex aggregates of elementary have traditionally relied on electrodes gent functional states, such as dynamical particles, it turns out, is not to be that sample brain activity only very attractors, could be more useful for char- understood in terms of a simple sparsely—from one to a few neurons acterizing the functional properties of a extrapolation of the properties of a within a given region.
    [Show full text]
  • Scientific Seminar on Computational Neuroscience
    Rafael Yuste (Columbia University, New York) Maria Neimark-Geffen (University of Pennsylvania, Programme https://blogs.cuit.columbia.edu/rmy5/ Philadelphia) Rafael Yuste is Professor of Biological Sciences and https://geffenlab.weebly.com/maria.html Neuroscience at Columbia University. He was born in Maria is interested in the way the brain encodes 16:30 – Welcome and Madrid, where he obtained his MD at the Universidad information about the world around us and how our Autónoma. After a brief period in Sydney Brenner's perception is shaped by our emotional state and El Ministerio de Economía, Industria presentation of Cajal Institute laboratory in Cambridge, UK, he performed Ph.D. studies experience. She combines computational and y Competitividad y la Agencia (Juan José Garrido, Cajal with Larry Katz in Torsten Wiesel’s laboratory at biological approaches to study the mechanisms Estatal de Investigación, en Rockefeller University and was a postdoctoral student of behind dynamic auditory perception, memory and Institute, CSIC, Spain) David Tank at Bell Labs. In 1996 he joined the learning. Maria first got interested in systems colaboración con National Department of Biological Sciences at Columbia University, neuroscience through her undergraduate thesis under Science Foundation (NSF) y where he is Full Professor. In 2005 he became HHMI mentorship of John Hopfield at Princeton University, in National Institutes of Health 16:45 – Rafael Yuste Investigator and co-director of the Kavli Institute for Brain which she explored the mechanics of whisking in rats. Circuits and in 2014 Director of the Neurotechnology She studied texture encoding in the somatosensory (NIH), se complacen en invitarles Center at Columbia.
    [Show full text]
  • Curriculum Vitae PERSONAL INFORMATION Name: Germán Sumbre Family Status: Married Plus Two Children Place of Birth: Buenos Aires, Argentina
    Curriculum Vitae PERSONAL INFORMATION Name: Germán Sumbre Family status: Married plus two children Place of birth: Buenos Aires, Argentina. ORCID number: 0000-0003-4436-6840 Telephone: +33 (0)1 44 32 23 67 E-mail: [email protected] Website: www.zebrain.biologie.ens.fr EDUCATION 2010 Habilitation à Diriger des Recherches (HDR). Diploma required to supervise PhD students Université Descartes - Paris V, France. Neurosciences. 1998-2004 Ph.D. Hebrew University of Jerusalem, Israel. Brain Sciences and Behavior. Topic: Motor control of the octopus arm movement. Advisor: Prof. Binyamin Hochner. 1995-1997 Army service 1991-1994 B.Sc. Hebrew University of Jerusalem, Israel. Biology. Topic: Wing-beat coupling among flying locusts. Advisor : Prof. Jeff Camhi. POSITIONS 2009- Director of Research class 2, INSERM. France. 2008- Group leader, Ecole Normale Supérieure, Paris. France. Avenir team. 2004-2008 Postdoctoral fellow. University of California Berkeley. USA. Topic: Neural basis of perceptual memory of time interval in zebrafish. Advisor : Prof. Mu-Ming Poo. JOURNAL PUBLICATIONS 1. Privat, M.; and Sumbre G. (2020) Naturalistic Behavior: The Zebrafish Larva Strikes Back.Current Biology. 30(1): R27-R29. 2. Privat, M., Romano, S. A., Pietri, T., Jouary, A., Boulanger-Weill, J., Elbaz, N., Duchemin, A., Soares, D., Sumbre G. (2019). Sensorimotor Transformations in the Zebrafish Auditory System. Current Biology. 29(23):4010-4023.e4. 3. Boulanger-Weill, J.; and Sumbre G. Functional integration of newborn neurons in the zebrafish optic tectum. Frontiers in Cell and Developmental Biology, 7: 57. 2019. 4. Ponce-Alvarez, A.; Jouary, A.; Privat, M.; Deco, G.; and Sumbre G. (2018) Whole-Brain Neuronal Activity Displays Crackling Noise Dynamics.
    [Show full text]
  • Neuroscience Thinks Big Bring Them Together in a Unified View
    PERSPECTIVES VIEWPOINT new computing technologies. Neuroscience is like the infant brain — it is flooded with data and theories but lacks the ability to Neuroscience thinks big bring them together in a unified view. We pin our hopes on more and more data with- (and collaboratively) out realizing that experiments can only give us a small fraction of what we need. The Eric R. Kandel, Henry Markram, Paul M. Matthews, Rafael Yuste and attempt to reconstruct the human brain as a computer model can provide a new focus Christof Koch for neuroscience and for clinical and tech- Abstract | Despite cash-strapped times for research, several ambitious collaborative nological research. It will help us to ‘clean neuroscience projects have attracted large amounts of funding and media up’ conflicting reports and teach us how to apply knowledge from animal studies to attention. In Europe, the Human Brain Project aims to develop a large-scale understanding the human brain. Ultimately, computer simulation of the brain, whereas in the United States, the Brain Activity it will allow us to discover the fundamental Map is working towards establishing a functional connectome of the entire brain, principles governing brain structure and and the Allen Institute for Brain Science has embarked upon a 10‑year project to function and to predictively reconstruct understand the mouse visual cortex (the MindScope project). US President Barack the brain from fragments of experimental data. Without this kind of understanding, Obama’s announcement of the BRAIN Initiative (Brain Research through Advancing we will continue to struggle to develop new Innovative Neurotechnologies Initiative) in April 2013 highlights the political treatments and brain-inspired computing commitment to neuroscience and is expected to further foster interdisciplinary technologies.
    [Show full text]
  • Four Ethical Priorities for Neurotechnologies and AI
    COMMENT HISTORY Two centuries of EXPLORATION On the trail of FUNDING African grant-giving OBITUARY Vladimir Voevodsky, distorting publication an ill-fated expedition to bodies need more data to pioneer in algebraic geometry metrics p.163 map the Arctic p.166 guide investments p.168 and computer proofs p.169 BSIP/UIG/GETTY A man with a spinal-cord injury (right) prepares for a virtual cycle race in which competitors steer avatars using brain signals. Four ethical priorities for neurotechnologies and AI Artificial intelligence and brain–computer interfaces must respect and preserve people’s privacy, identity, agency and equality, say Rafael Yuste, Sara Goering and colleagues. onsider the following scenario. feels frustrated with the experimental team. illustrates some of the challenges that society A paralysed man participates in a clin- Later, his robotic hand crushes a cup after might be heading towards. ical trial of a brain–computer interface taking it from one of the research assistants, Current BCI technology is mainly focused C(BCI). A computer connected to a chip in his and hurts the assistant. Apologizing for what on therapeutic outcomes, such as helping brain is trained to interpret the neural activ- he says must have been a malfunction of the people with spinal-cord injuries. It already ity resulting from his mental rehearsals of an device, he wonders whether his frustration enables users to perform relatively simple action. The computer generates commands with the team played a part. motor tasks — moving a computer cursor or that move a robotic arm. One day, the man This scenario is hypothetical.
    [Show full text]
  • A Community-Based Transcriptomics Classification and Nomenclature Of
    COMMENT | FOCUS comment | FOCUS A community-based transcriptomics classifcation and nomenclature of neocortical cell types To understand the function of cortical circuits, it is necessary to catalog their cellular diversity. Past attempts to do so using anatomical, physiological or molecular features of cortical cells have not resulted in a unifed taxonomy of neuronal or glial cell types, partly due to limited data. Single-cell transcriptomics is enabling, for the frst time, systematic high-throughput measurements of cortical cells and generation of datasets that hold the promise of being complete, accurate and permanent. Statistical analyses of these data reveal clusters that often correspond to cell types previously defned by morphological or physiological criteria and that appear conserved across cortical areas and species. To capitalize on these new methods, we propose the adoption of a transcriptome-based taxonomy of cell types for mammalian neocortex. This classifcation should be hierarchical and use a standardized nomenclature. It should be based on a probabilistic defnition of a cell type and incorporate data from diferent approaches, developmental stages and species. A community-based classifcation and data aggregation model, such as a knowledge graph, could provide a common foundation for the study of cortical circuits. This community-based classifcation, nomenclature and data aggregation could serve as an example for cell type atlases in other parts of the body. Rafael Yuste, Michael Hawrylycz, Nadia Aalling, Argel Aguilar-Valles, Detlev Arendt, Ruben Armananzas Arnedillo, Giorgio A. Ascoli, Concha Bielza, Vahid Bokharaie, Tobias Borgtoft Bergmann, Irina Bystron, Marco Capogna, Yoonjeung Chang, Ann Clemens, Christiaan P. J. de Kock, Javier DeFelipe, Sandra Esmeralda Dos Santos, Keagan Dunville, Dirk Feldmeyer, Richárd Fiáth, Gordon James Fishell, Angelica Foggetti, Xuefan Gao, Parviz Ghaderi, Natalia A.
    [Show full text]
  • Las Nuevas Neurotecnologías Y Su Impacto En La Ciencia, Medicina Y Sociedad // Rafael Yuste
    Las nuevas neurotecnologías y su impacto en la ciencia, medicina y sociedad // Rafael Yuste Vicerrectorado de Cultura y Proyección Social LECCIONESCAJAL LECCIONESCAJAL // 1 Las nuevas neurotecnologías y su impacto en la ciencia, medicina y sociedad // Rafael Yuste Vicerectorado de Cultura y Proyección Social Universidad de Zaragoza LECCIONESCAJAL // 1 19 de diciembre de 2019 La Lección Cajal es una conferencia anual dictada en la Universidad de Zaragoza por una figura académica relevante en su campo del saber, impul- sada por el Vicerrectorado de Cultura y Proyección Social para conmemorar el 150 aniversario de la entrada de Santiago Ramón y Cajal en esta universi- dad, su «venerada alma mater». UNIVERSIDAD DE ZARAGOZA Rector Magnífico José Antonio Mayoral Murillo Vicerrectora de Cultura y Proyección Social Yolanda Polo Redondo © Rafael Yuste Edita: Vicerrectorado de Cultura y Proyección Social Prensas de la Universidad de Zaragoza Diseño: Fernando Lasheras / M.A. Pérez Arteaga Compuesto con la tipografía «Carmen» de Andreu Balius Imprime: Servicio de Publicaciones. Universidad de Zaragoza Depósito legal: z 2137-2019 ISBN 978-84-1340-038-9 RAFael YusTE (Madrid, 1963) estudió Medicina en la Universidad Autónoma de Madrid y en la Fundación Jiménez Díaz. Trabajó con Sydney Brenner en Cambridge (Reino Unido) y realizó su doctorado con Larry Katz y Torsten Wiesel en la Rockefeller University de Nueva York. Se especializó en Biofísica en los Laboratorios Bell con David Tank y Winfried Denk. Desde 1996 es miembro del Departamento de Ciencias Biológicas de la Columbia University (Nueva York) donde dirige, desde 2014, el Centro de Neurotecnología. Sus investigaciones buscan desentrañar el funcionamiento la cor- teza cerebral y los daños que se producen en enfermedades como la epilepsia o el Alzheimer, con el fin de buscar una cura para estas.
    [Show full text]
  • Dmitriy Aronov, Ph.D. Curriculum Vitae
    Dmitriy Aronov, Ph.D. Curriculum Vitae Columbia University (212) 853-1096 Jerome L. Greene Science Center [email protected] 3227 Broadway, Room L4-031 www.aronovlab.com New York, NY 10027 Education Massachusetts Institute of Technology, Cambridge, MA 2005 – 2010 McGovern Institute for Brain Research Ph.D. in Systems Neuroscience and Computational Methods Columbia University, New York, NY 2001 – 2005 The Fu Foundation School of Engineering and Applied Science B.S. in Applied Mathematics Employment Columbia University Medical Center, New York, NY 2017 – present Assistant Professor of Neuroscience Department of Neuroscience Zuckerman Mind Brain Behavior Institute Princeton University, Princeton, NJ 2010 – 2016 Postdoctoral Research Fellow Princeton Neuroscience Institute Laboratory of David W. Tank Massachusetts Institute of Technology, Cambridge, MA 2005 – 2010 Graduate Student McGovern Institute for Brain Research Laboratory of Michale S. Fee Columbia University, New York, NY 2001 – 2005 Undergraduate Research Assistant Department of Biological Sciences Laboratory of Rafael Yuste Mediterranean Institute of Neurobiology, Marseilles, France 2004, 2005 Visiting Researcher Research group of Rosa Cossart Weill Cornell Medical College, New York, NY 1999 – 2001 Research Student Department of Neurology Laboratory of Jonathan D. Victor Publications [1] Danish, H., Aronov. D., and Fee, M.S. (2017) Rhythmic syllable-related activity in a songbird motor thalamic nucleus necessary for learned vocalizations. PLoS One 12(6): e0169568. [2] Aronov. D., Nevers, R., and Tank, D.W. (2017) Mapping of a non-spatial dimension by the hippocampal/entorhinal circuit. Nature 543(7647): 719-722. [3] Aronov. D. and Tank, D.W. (2014) Engagement of the neural circuits underlying 2D spatial navigation in a rodent virtual reality system.
    [Show full text]
  • Curriculum Vitae
    Hirase CV (August 2019) Name: Hajime Hirase, Ph.D. Date of Birth: 21 December 1972 Place of Birth: Hiroshima, Japan Nationality: Japan Contact information: Hajime Hirase, Ph.D. <[email protected]> Center for Translational Neuromedicine Univerersity of Copenhagen Bregdamsvej 3B (section 24.3) 2200 Copenhagen N, Denmark Current position: Main appointment: Professor, Center for Translational Neuromedicine, University of Copenhagen Other appointment: Team Leader, RIKEN Center for Brain Science (CBS) (until March 2020) Education: 1993-1996: Ph.D., Neuroscience, Department of Anatomy and Developmental Biology, University College London, (University of London, UK) (Ph.D. awarded in April 1997) 1990-1993: B.Sc. (1st Class Honours), Computer Science, University College London (University of London, UK) Work experience: 2019-present Professor, Center for Translational Neuromedicine, University of Copenhagen. 2018-2020 Team Leader, RIKEN Center for Brain Science, Japan 2011-2018 Team Leader, RIKEN Brain Science Institute, Japan 2009-2019 Affiliate Associate Professor, Brain and Body System Science Institute, Saitama University 2004-2011 Unit Leader, RIKEN Brain Science Institute, Japan 2001-2004 Research Assistant Professor, Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 2000-2001 Postdoctoral Fellow, Department of Biological Sciences, Columbia University, New York, NY (Mentor: Rafael Yuste) 1996-2002 Postdoctoral Fellow, Center of Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ (Mentor: György
    [Show full text]