Investor Presentation

Total Page:16

File Type:pdf, Size:1020Kb

Investor Presentation Lithium extraction from mica Disruptive technology to revolutionize lithium production The most common lithium minerals (the lithium micas lepidolite and zinnwaldite) + sulphuric acid = high-purity lithium carbonate + potassium sulphate + aluminium hydroxide 1 August 2015 Copyright © 2015, Lithium Australia NL Lithium extraction from mica Disclaimer This presentation is for information purposes only. Neither capital expenditures, ore reserves and mineral resources COMPETENT PERSON’S STATEMENT this presentation nor the information contained in it and anticipated grades and recovery rates and are, or may constitutes an offer, invitation, solicitation or be, based on assumptions and estimates related to future The information in this report that relates to reporting of recommendation in relation to the purchase or sale of shares technical, economic, market, political, social and other Exploration Results is based on and fairly represents in any jurisdiction. conditions. information and supporting documentation prepared by Adrian Griffin, a member of the Australasian Institute of This presentation may not be distributed in any jurisdiction LIT disclaims any intent or obligation to update publicly any Mining and Metallurgy. Mr Griffin is a shareholder in, and except in accordance with the legal requirements applicable forward-looking statements, whether as a result of new managing director of, LIT and has sufficient experience in that jurisdiction. Recipients should inform themselves of information, future events or results or otherwise. The words relevant to the style of mineralisation and type of deposit the restrictions that apply in their own jurisdiction. A failure to ‘believe’, ‘expect’, ‘anticipate’, ‘indicate’, ‘contemplate’, under consideration. He is qualified as a Competent Person do so may result in a violation of securities laws in that ‘target’, ‘plan’, ‘intends’, ‘continue’, ‘budget’, ‘estimate’, ‘may’, as defined in the 2012 edition of the Australasian Code for jurisdiction. ‘will’, ‘schedule’ and other, similar expressions identify Reporting of Exploration Results, Mineral Resources and forward-looking statements. All forward-looking statements Ore Reserves. Mr Griffin consents to the inclusion in this This presentation does not constitute financial product made in this presentation are qualified by the foregoing report of the matters based on information in the form and advice and has been prepared without taking into account cautionary statements. Investors are cautioned that forward- context in which it appears. the recipients’ investment objectives, financial circumstances looking statements are not guarantees of future performance or particular needs, and the opinions and recommendations and, accordingly, investors are cautioned not to put undue The reporting of mineral species is generic in nature, and the in this presentation are not intended to represent reliance on forward-looking statements due to the inherent term ‘lepidolite’ – as it is applied to mineral species, and not recommendations to particular persons. Recipients should uncertainty therein. necessarily locality names – includes mineral species widely seek professional advice when deciding if an investment is considered to be part of the solid solution series of appropriate. All securities transactions involve risks, which Many known and unknown factors could cause actual events polylithionite/trilithionite, of which the Competent Person include, among others, the risk of adverse or unanticipated or results to differ materially from estimated or anticipated considers lepidolite to be approximately a median member. It market, financial or political developments. events or results reflected in such forward-looking is also acknowledged that material processed from statements. Such factors include, but are not limited to: Lepidolite Hill has bulk compositions tending towards Certain statements contained in this presentation, including competition; mineral prices; ability to meet additional funding trilithionite, although the rubidium concentration is outside information as to the future financial or operating requirements; exploration, development and operating risks; the range generally expected in such minerals. performance of Lithium Australia NL (‘LIT’ or ‘the Company’) uninsurable risks; uncertainties inherent in ore reserve and and its projects, are forward-looking statements. Such resource estimates; dependence on third-party smelting Similarly, the term ‘zinnwaldite’ has been applied to minerals forward-looking statements are necessarily based on a facilities; factors associated with foreign operations and approximating the accepted composition of zinnwaldite but number of estimates and assumptions that, while considered related regulatory risks; environmental regulation and with variations tending towards lepidolite. This terminology is reasonable by LIT, are inherently subject to significant liability; currency risks; effects of inflation on results of considered acceptable by the Competent Person, technical, business, economic, competitive, political and operations; factors relating to title to properties; native title particularly with respect to the Cinovec deposit, the social uncertainties and contingencies, involve known and and Aboriginal heritage issues; dependence on key mineralization of which includes the type locality of unknown risks and uncertainties that could cause actual personnel, and share-price volatility. They also include zinnwaldite, being Zinnwald, close to the border of Germany events or results to differ materially from estimated or unanticipated and unusual events, many of which it is and the Czech Republic. anticipated events or results reflected in such forward- beyond the Company’s ability to control or predict. looking statements, and may include, among other things, statements regarding targets, estimates and assumptions in Photographs in this presentation do not depict assets respect of commodity prices, operating costs and results, of the Company. 2 August 2015 Copyright © 2015, Lithium Australia NL Lithium extraction from mica Company snapshot LITHIUM AUSTRALIA (LIT) – A UNIQUE FOCUS ON LITHIUM BOARD OF DIRECTORS George Bauk (non-executive chairman) Expert in specialty metals, particularly rare earths – project management, marketing and financing. Adrian Griffin (managing director) Exploration, production, mine management. Bryan Dixon (non-executive director) Corporate, finance, mine development. ASX ticker: LIT ACN 126 129 413 134 M Ordinary Shares 50 M Partly Paid Shares 12 M Unlisted Options Market cap. $7 M [email protected] www.lithium-au.com 3 August 2015 Copyright © 2015, Lithium Australia NL Lithium extraction from mica Disruptive technology to fill supply gap CONTINUOUS PRODUCTION OF BATTERY-GRADE LITHIUM CARBONATE ABUNDANT FEED POTENTIAL ▸ lithium micas, a ‘forgotten resource’ ▸ advanced resource – world’s fourth-largest hard-rock deposit EXCLUSIVE TECHNOLOGY AGREEMENTS EXPANDING SUPPLY GAP 4 August 2015 Copyright © 2015, Lithium Australia NL Lithium extraction from mica Company strategy PRODUCE BATTERY-GRADE LITHIUM CARBONATE FROM LITHIUM MICAS ▸ Zero energy footprint ▸ Waste materials with no mining cost ▸ High feed grades ▸ Fast reaction time – low capital cost UTILIZE A FORGOTTEN RESOURCE ▸ Capitalize on availability of most abundant lithium minerals ▸ Utilize advantages of strategic partnerships ▸ Change operating cost profile ▸ Prosper from by-product credits RE-EVALUATE GLOBAL LITHIUM OCCURRENCES Turn geological curiosities into reserves DOMINATE GLOBAL LITHIUM INVENTORIES 5 August 2015 Copyright © 2015, Lithium Australia NL Lithium extraction from mica Continuous plant test – May 2015 Sulphur Sulphuric acid Mica feed Sulphuric acid leach Tailings Sulphuric acid plant pH modifier All process energy Impurity removal Steam requirements derived via Tailings harvesting waste heat from a Electricity sulphur-burning acid plant Electricity Carbonate feed Lithium carbonate precipitation Power co-generation Heat K2SO4 crystallization COMMERCIAL PRODUCTS 6 August 2015 Copyright © 2015, Lithium Australia NL Lithium extraction from mica Proof of concept THE CONCEPT BECOMES REALITY Cinovec lithium concentrate grade Li O K O CaO Al O FeO MgO S Rb Cs 2 2 2 3 % % % % % ppm ppm ppm ppm 1.81 7.41 1.57 19.3 6.91 367 740 6671 222 LepidoliteLepidolite – lithium - lithium mica mica K(Li,Al,Rb)3(Al,Si)4O10(F,OH)2 K(Li,Al,Rb)3 (Al,Si)4 O 10 (F,OH) 2 Cinovec lithium carbonate purity >99.6% ZinnwalditeZinnwaldite – lithium - lithium mica mica Li2O K2O CaO Al2O3 SiO2 FeO MgO S P As Co Rb Cs K(Li,Al,Fe)K(Li,Al,Fe)(Al,Si) O (Al,Si)(F,OH) O (F,OH) 3 43 10 42 10 2 2 2 2 2 19 2 3 13 2 37 2 % ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm 8 2 1 8 8 19 8 83 1 13 18 37 188 K 8 Li Al 1 Rb 18 Potassium 1 Lithium Rubidium 8 40.3 176 57 ND 87 ND 67 1581 162 ND ND 24 ND K 1 Li AlAluminium Rb 8 39.0983 6.941 26.9815388 85.4678 1 Potassium Lithium Aluminium Rubidium 1 40.3 128 75 ND 54 23 ND 1042 94 ND ND 8 ND 39.0983 6.941 26.8915388 85.4578 LIT has produced battery-grade lithium carbonate from Lepidolite Hill in Western Australia and Cinovec in the Czech Republic, has recovered lithium from two other European deposits and is examining further deposits at Ravensthorpe, Lake Seabrook and Pilgangoora in Battery-grade lithium carbonate Potassium sulphate Western Australia. Battery-grade lithium carbonate. Potassium sulphate. 7 August 2015 Copyright © 2015, Lithium Australia NL Lithium extraction from mica Company achievements
Recommended publications
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • Mica Deposits of the Southeastern Piedmont Part 2
    Mica Deposits of the Southeastern Piedmont Part 2. Amelia District, Virginia GEOLOGICAL SURVEY PROFESSIONAL PAPER 248-B Mica Deposits of the Southeastern Piedmont Part 2. Amelia District, Virginia By RICHARD W. LEMKE, RICHARD H. JAHNS, and WALLACE R.GRIFFITTS GEOLOGICAL SURVEY PROFESSIONAL PAPER 248-B Distribution and structure of pegmatite bodies in the area, their mineralogical characteristics, and the economic possibilities of the mica and other pegmatite minerals UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1952 UNITED STATES DEPARTMENT OF THE INTERIOR Oscar L. Chapman, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price 60 cents (paper cover) CONTENTS Page Page Abstract _________________________________________ 103 Description of deposits—Continued Introduction: Field work and acknowledgments._______ 103 Jefferson-Amelia area—Continued Geography of the district____________________________ 104 Jefferson prospects______-_--._-----_------ - 118 Geology of the district-______________________________ 105 McCraw No. 3 (Old Pinchbeck No. 1) mine__. 119 Rock formations,___________________________ 105 McCraw No. 2 (Old Pinchbeck No. 3) mine__ 119 Metamorphic rocks_ ________________________ 105 McCraw No. 1 (Pinchbeck No. 2) mine__---_ 119 Igneous rocks______________________________ 105 Line mine__---___________________________ 120 Structure. _________________________________ 106 Booker mine______________--_-----___----. 120
    [Show full text]
  • NMAM 9000: Asbestos, Chrysotile By
    ASBESTOS, CHRYSOTILE by XRD 9000 MW: ~283 CAS: 12001-29-5 RTECS: CI6478500 METHOD: 9000, Issue 3 EVALUATION: FULL Issue 1: 15 May 1989 Issue 3: 20 October 2015 EPA Standard (Bulk): 1% by weight PROPERTIES: Solid, fibrous mineral; conversion to forsterite at 580 °C; attacked by acids; loses water above 300 °C SYNONYMS: Chrysotile SAMPLING MEASUREMENT BULK TECHNIQUE: X-RAY POWDER DIFFRACTION SAMPLE: 1 g to 10 g ANALYTE: Chrysotile SHIPMENT: Seal securely to prevent escape of asbestos PREPARATION: Grind under liquid nitrogen; wet-sieve SAMPLE through 10 µm sieve STABILITY: Indefinitely DEPOSIT: 5 mg dust on 0.45 µm silver membrane BLANKS: None required filter ACCURACY XRD: Copper target X-ray tube; optimize for intensity; 1° slit; integrated intensity with RANGE STUDIED: 1% to 100% in talc [1] background subtraction BIAS: Negligible if standards and samples are CALIBRATION: Suspensions of asbestos in 2-propanol matched in particle size [1] RANGE: 1% to 100% asbestos OVERALL PRECISION ( ): Unknown; depends on matrix and ESTIMATED LOD: 0.2% asbestos in talc and calcite; 0.4% concentration asbestos in heavy X-ray absorbers such as ferric oxide ACCURACY: ±14% to ±25% PRECISION ( ): 0.07 (5% to 100% asbestos); 0.10 (@ 3% asbestos); 0.125 (@ 1% asbestos) APPLICABILITY: Analysis of percent chrysotile asbestos in bulk samples. INTERFERENCES: Antigorite (massive serpentine), chlorite, kaolinite, bementite, and brushite interfere. X-ray fluorescence and absorption is a problem with some elements; fluorescence can be circumvented with a diffracted beam monochromator, and absorption is corrected for in this method. OTHER METHODS: This is NIOSH method P&CAM 309 [2] applied to bulk samples only, since the sensitivity is not adequate for personal air samples.
    [Show full text]
  • A108-316 (10/10/16)
    American Industrial Hygiene Association Bulk Asbestos Proficiency Analytical Testing Program Results of Round A108-316 10/10/2016 John Herrock Laboratory ID Number Total Penalty Points 0 University of Louisiana, Monroe - Dept of 213022 Round Status P Toxicology Program Status P 700 University Ave. Monroe, LA 71209 UNITED STATES Lot Designation\Sample ID Numbers A) 1761 B) 2702 C) 1897 D) 4134 Analysis Results from Laboratory Number 213022 Asbestos (%) CHRY (3) ANTH(22) NONE CHRY (1) Other Fibrous Materials (%) FBGL (1) Nonfibrous Material (%) ACID (52) OTHR (55) ACID (60) OTHR (60) MICA (33) MICA (11) OTHR (38) ACID (29) Penalty Points Assessed 0 0 0 0 Analysis Results from Reference Laboratory One Asbestos (%) CHRY(5.8) ANTH (12) NONE CHRY (3.8) ACTN (0.1) Other Fibrous Materials (%) CELL (0.1) OTHR *1 (0.1) CELL (1) Nonfibrous Material (%) MICA (45) OTHR *2(87.9) OTHR *3 (35) PERL (20) CASO (49) OTHR *4 (65) OTHR *5 (20) OTHR *6 (55.2) Analysis Results from Reference Laboratory Two Asbestos (%) CHRY (2.5) ANTH (28) (0) CHRY(3.5%) TREM(trace) Other Fibrous Materials (%) FBGL (trace) Nonfibrous Material (%) OTHR *7 (60) OTHR *9 (24) OTHR *11 (80) OTHR *14 (20) OTHR *8(37.5) OTHR *10 (48) OTHR *12 (18) OTHR *15(76.5) OTHR *13 (2) Analysis Results from RTI International Asbestos (%) CHRY (4) ANTH (28) NONE CHRY (3) ACTN (Tra) Other Fibrous Materials (%) OTHR *16(Tra) POLY (Tra) CELL (1) OTHR *17(Tra) Nonfibrous Material (%) MICA (29) OTHR *18 (53) CACO (89) OTHR *22 (28) CASO (67) OTHR *19 (19) OTHR *20 (9) PERL (45) OTHR *21 (2) OTHR *23
    [Show full text]
  • Session 1 Sources and Availability of Materials for Lithium Batteries
    Session 1: Sources and Availability of Materials for Lithium Batteries Session 1 Sources and Availability of Materials for Lithium Batteries Adrian Griffin Managing Director, Lithium Australia NL ABSTRACT Lithium, as a feedstock for the battery industry, originates from two primary sources: hard-rock (generally spodumene and petalite), and brines. Brine processing results in the direct production of lithium chemicals, whereas the output from hard-rock production is tradeable mineral concentrates that require downstream processing prior to delivery, as refined chemicals, into the battery market. The processors of the concentrates, the 'converters', are the major constraint in a supply chain blessed with abundant mineral feed. The battery industry must overcome the constraints imposed by the converters, and this can be achieved through the application of the Sileach™ process, which produces lithium chemicals from concentrates direct, without the need for roasting. The cathode chemistries of the most efficient lithium batteries have a common thread – a high dependence on cobalt. Battery manufacturers consume around 40% of the current production of cobalt, a by-product of the nickel and copper industries. This means cobalt is at a tipping point – production will not keep up with demand. In the short term, the solution lies in developing alternative cathode compositions, while in the longer term recycling may be the answer. Lithium Australia NL is researching the application of its Sileach™ process to waste batteries to achieve a high-grade, low-cost source of battery materials and, in so doing, ease the supply constraints on cathode metals. To ensure that the battery industry is sustainable, better utilisation of mineral resources, more efficient processing technology, an active battery reprocessing capacity and less reliance on cobalt as a cathode material are all necessary.
    [Show full text]
  • 40 Common Minerals and Their Uses
    40 Common Minerals and Their Uses Aluminum Beryllium The most abundant metal element in Earth’s Used in the nuclear industry and to crust. Aluminum originates as an oxide called make light, very strong alloys used in the alumina. Bauxite ore is the main source aircraft industry. Beryllium salts are used of aluminum and must be imported from in fluorescent lamps, in X-ray tubes and as Jamaica, Guinea, Brazil, Guyana, etc. Used a deoxidizer in bronze metallurgy. Beryl is in transportation (automobiles), packaging, the gem stones emerald and aquamarine. It building/construction, electrical, machinery is used in computers, telecommunication and other uses. The U.S. was 100 percent products, aerospace and defense import reliant for its aluminum in 2012. applications, appliances and automotive and consumer electronics. Also used in medical Antimony equipment. The U.S. was 10 percent import A native element; antimony metal is reliant in 2012. extracted from stibnite ore and other minerals. Used as a hardening alloy for Chromite lead, especially storage batteries and cable The U.S. consumes about 6 percent of world sheaths; also used in bearing metal, type chromite ore production in various forms metal, solder, collapsible tubes and foil, sheet of imported materials, such as chromite ore, and pipes and semiconductor technology. chromite chemicals, chromium ferroalloys, Antimony is used as a flame retardant, in chromium metal and stainless steel. Used fireworks, and in antimony salts are used in as an alloy and in stainless and heat resisting the rubber, chemical and textile industries, steel products. Used in chemical and as well as medicine and glassmaking.
    [Show full text]
  • Clay Minerals Soils to Engineering Technology to Cat Litter
    Clay Minerals Soils to Engineering Technology to Cat Litter USC Mineralogy Geol 215a (Anderson) Clay Minerals Clay minerals likely are the most utilized minerals … not just as the soils that grow plants for foods and garment, but a great range of applications, including oil absorbants, iron casting, animal feeds, pottery, china, pharmaceuticals, drilling fluids, waste water treatment, food preparation, paint, and … yes, cat litter! Bentonite workings, WY Clay Minerals There are three main groups of clay minerals: Kaolinite - also includes dickite and nacrite; formed by the decomposition of orthoclase feldspar (e.g. in granite); kaolin is the principal constituent in china clay. Illite - also includes glauconite (a green clay sand) and are the commonest clay minerals; formed by the decomposition of some micas and feldspars; predominant in marine clays and shales. Smectites or montmorillonites - also includes bentonite and vermiculite; formed by the alteration of mafic igneous rocks rich in Ca and Mg; weak linkage by cations (e.g. Na+, Ca++) results in high swelling/shrinking potential Clay Minerals are Phyllosilicates All have layers of Si tetrahedra SEM view of clay and layers of Al, Fe, Mg octahedra, similar to gibbsite or brucite Clay Minerals The kaolinite clays are 1:1 phyllosilicates The montmorillonite and illite clays are 2:1 phyllosilicates 1:1 and 2:1 Clay Minerals Marine Clays Clays mostly form on land but are often transported to the oceans, covering vast regions. Kaolinite Al2Si2O5(OH)2 Kaolinite clays have long been used in the ceramic industry, especially in fine porcelains, because they can be easily molded, have a fine texture, and are white when fired.
    [Show full text]
  • Zinnwald Lithium Project
    Zinnwald Lithium Project Report on the Mineral Resource Prepared for Deutsche Lithium GmbH Am St. Niclas Schacht 13 09599 Freiberg Germany Effective date: 2018-09-30 Issue date: 2018-09-30 Zinnwald Lithium Project Report on the Mineral Resource Date and signature page According to NI 43-101 requirements the „Qualified Persons“ for this report are EurGeol. Dr. Wolf-Dietrich Bock and EurGeol. Kersten Kühn. The effective date of this report is 30 September 2018. ……………………………….. Signed on 30 September 2018 EurGeol. Dr. Wolf-Dietrich Bock Consulting Geologist ……………………………….. Signed on 30 September 2018 EurGeol. Kersten Kühn Mining Geologist Date: Page: 2018-09-30 2/219 Zinnwald Lithium Project Report on the Mineral Resource TABLE OF CONTENTS Page Date and signature page .............................................................................................................. 2 1 Summary .......................................................................................................................... 14 1.1 Property Description and Ownership ........................................................................ 14 1.2 Geology and mineralization ...................................................................................... 14 1.3 Exploration status .................................................................................................... 15 1.4 Resource estimates ................................................................................................. 16 1.5 Conclusions and Recommendations .......................................................................
    [Show full text]
  • Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: a Review
    resources Review Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review Laurence Kavanagh * , Jerome Keohane, Guiomar Garcia Cabellos, Andrew Lloyd and John Cleary EnviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny, Road, Co., R93-V960 Carlow, Ireland; [email protected] (J.K.); [email protected] (G.G.C.); [email protected] (A.L.); [email protected] (J.C.) * Correspondence: [email protected] Received: 28 July 2018; Accepted: 11 September 2018; Published: 17 September 2018 Abstract: Lithium is a key component in green energy storage technologies and is rapidly becoming a metal of crucial importance to the European Union. The different industrial uses of lithium are discussed in this review along with a compilation of the locations of the main geological sources of lithium. An emphasis is placed on lithium’s use in lithium ion batteries and their use in the electric vehicle industry. The electric vehicle market is driving new demand for lithium resources. The expected scale-up in this sector will put pressure on current lithium supplies. The European Union has a burgeoning demand for lithium and is the second largest consumer of lithium resources. Currently, only 1–2% of worldwide lithium is produced in the European Union (Portugal). There are several lithium mineralisations scattered across Europe, the majority of which are currently undergoing mining feasibility studies. The increasing cost of lithium is driving a new global mining boom and should see many of Europe’s mineralisation’s becoming economic. The information given in this paper is a source of contextual information that can be used to support the European Union’s drive towards a low carbon economy and to develop the field of research.
    [Show full text]
  • Lithium Recovery from Lithium-Containing Micas Using Sulfur Oxidizing Microorganisms ⇑ S
    Minerals Engineering 106 (2017) 18–21 Contents lists available at ScienceDirect Minerals Engineering journal homepage: www.elsevier.com/locate/mineng Lithium recovery from lithium-containing micas using sulfur oxidizing microorganisms ⇑ S. Reichel , T. Aubel, A. Patzig, E. Janneck, M. Martin G.E.O.S. Ingenieurgesellschaft, Schwarze Kiefern 2, 09633 Halsbrücke, Germany article info abstract Article history: There is about 60,000 t of lithium mica in the German part of the deposit in the Erzgebirge mountains. Received 27 July 2016 Lithium can be recovered by high pressure-high temperature leaching with sulfuric acid and further Revised 20 February 2017 hydrometallurgical processing. Another idea, developed in the EU-project FAME, was to use sulfur oxidiz- Accepted 25 February 2017 ing microbes to produce sulfuric acid and to extract lithium at moderate temperature and pressure con- Available online 3 March 2017 ditions. Experiments were carried out in 2 L and 4 L batch reactors at 30 °C. After microbial transformation of elemental sulfur to sulfuric acid, the milled (<45 mm) lithium mica was added at a pulp Keywords: density of 5%. Up to 26% of lithium was extracted biologically compared to 16% by chemical leaching. The Non-ferrous metallic ores bioleaching solution contained about 1 g/L aluminium, 0.8 g/L iron and 0.2 g/L lithium and could be Lithium Mica further processed hydrometallurgically. Silicate bioleaching Ó 2017 Published by Elsevier Ltd. Sulfur oxidizing bacteria Membrane filtration 1. Introduction separation, potentially complemented by froth flotation for the fine grained fractions (Kondas and Jandova, 2006; Jandova et al., 2009; Lithium has been recognized as a potentially critical raw Samkova, 2009).
    [Show full text]
  • A RARE-ALKALI BIOTITE from KINGS MOUNTAIN, NORTH CAROLINA1 Fnanr L
    A RARE-ALKALI BIOTITE FROM KINGS MOUNTAIN, NORTH CAROLINA1 FnaNr L. Hnss2 arqn Ror-r.rx E. SrrvrNs3 Severalyears ago, after Judge Harry E. Way of Custer, South Dakota, had spectroscopically detected the rare-alkali metals in a deep-brown mica from a pegmatite containing pollucite and lithium minerals, in Tin Mountain, 7 miles west of Custer, another brown mica was collected, which had developed notably in mica schist at its contact with a similar mass of pegmatite about one half mile east of Tin Mountai". J. J. Fahey of the United States GeolgoicalSurvey analyzed the mica, and it proved to contain the rare-alkali metalsaand to be considerably difierent from any mica theretofore described. Although the cesium-bearing minerals before known (pollucite, lepidolite, and beryl) had come from the zone of highest temperature in the pegmatite, the brown mica was from the zone of lowest temperature. The occurrence naturally suggestedthat where dark mica was found developed at the border of a pegmatite, especially one carrying lithium minerals, it should be examined for the rare-alkali metals. As had been found by Judge Way, spectroscopictests on the biotite from Tin Moun- tain gave strong lithium and rubidium lines, and faint cesium lines. Lithium lines were shown in a biotite from the border of the Morefield pegmatite, a mile south of Winterham, Virginia, but rubidium and cesium w'erenot detected. $imilarly placed dark micas from Newry and Hodgeon HiII, near Buckfield, Maine, gave negative results. They should be retested. Tests by Dr. Charles E. White on a shiny dark mica from the Chestnut FIat pegmatite near Spruce Pine, North Carolina, gave strong lithium and weaker cesium lines.
    [Show full text]
  • Mica Data Sheet
    108 MICA (NATURAL) (Data in metric tons unless otherwise noted) Domestic Production and Use: Scrap and flake mica production, excluding low-quality sericite, was estimated to be 38,000 tons valued at $4.6 million. Mica was mined in Georgia, North Carolina, and South Dakota. Scrap mica was recovered principally from mica and sericite schist and as a byproduct from feldspar, industrial sand beneficiation, and kaolin. Eight companies produced an estimated 63,000 tons of ground mica valued at about $22 million from domestic and imported scrap and flake mica. The majority of domestic production was processed into small-particle- size mica by either wet or dry grinding. Primary uses were joint compound, oil-well-drilling additives, paint, roofing, and rubber products. A minor amount of sheet mica was produced as incidental production from feldspar mining in North Carolina. Data was withheld to avoid disclosing company proprietary data. The domestic consuming industry was dependent on imports to meet demand for sheet mica. Most sheet mica was fabricated into parts for electrical and electronic equipment. Salient Statistics—United States: 2015 2016 2017 2018 2019e Scrap and flake: Production:1 Sold and used 32,600 28,000 40,000 44,000 38,000 Ground 65,800 59,500 69,700 65,300 63,000 Imports2 33,200 31,500 29,700 28,100 29,000 Exports3 7,440 6,340 6,790 6,000 5,900 Consumption, apparent4 58,400 53,200 62,900 66,100 61,000 Price, average, dollars per metric ton, reported: Scrap and flake 142 152 165 122 120 Ground: Dry 305 320 292 308 310 Wet 423 435 424 454 480 Employment, mine, number NA NA NA NA NA Net import reliance5 as a percentage of apparent consumption 44 47 36 33 37 Sheet: Sold and used W W W W W Imports6 2,390 2,120 1,850 1,860 2,500 Exports7 911 689 704 686 950 Consumption, apparent5 1,480 1,430 1,150 1,170 1,600 Price, average value, dollars per kilogram, muscovite and phlogopite mica, reported: Block W W W W W Splittings 1.61 1.61 1.66 1.65 1.65 Net import reliance5 as a percentage of apparent consumption 100 100 100 100 100 Recycling: None.
    [Show full text]