Stochastic Modeling of Orb-Web Capture Mechanics Supports The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sexual Selection Research on Spiders: Progress and Biases
Biol. Rev. (2005), 80, pp. 363–385. f Cambridge Philosophical Society 363 doi:10.1017/S1464793104006700 Printed in the United Kingdom Sexual selection research on spiders: progress and biases Bernhard A. Huber* Zoological Research Institute and Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany (Received 7 June 2004; revised 25 November 2004; accepted 29 November 2004) ABSTRACT The renaissance of interest in sexual selection during the last decades has fuelled an extraordinary increase of scientific papers on the subject in spiders. Research has focused both on the process of sexual selection itself, for example on the signals and various modalities involved, and on the patterns, that is the outcome of mate choice and competition depending on certain parameters. Sexual selection has most clearly been demonstrated in cases involving visual and acoustical signals but most spiders are myopic and mute, relying rather on vibrations, chemical and tactile stimuli. This review argues that research has been biased towards modalities that are relatively easily accessible to the human observer. Circumstantial and comparative evidence indicates that sexual selection working via substrate-borne vibrations and tactile as well as chemical stimuli may be common and widespread in spiders. Pattern-oriented research has focused on several phenomena for which spiders offer excellent model objects, like sexual size dimorphism, nuptial feeding, sexual cannibalism, and sperm competition. The accumulating evidence argues for a highly complex set of explanations for seemingly uniform patterns like size dimorphism and sexual cannibalism. Sexual selection appears involved as well as natural selection and mechanisms that are adaptive in other contexts only. Sperm competition has resulted in a plethora of morpho- logical and behavioural adaptations, and simplistic models like those linking reproductive morphology with behaviour and sperm priority patterns in a straightforward way are being replaced by complex models involving an array of parameters. -
Diversity of Spiders from Zolambi Region of Chandoli National Park
IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) e-ISSN: 2278-3008, p-ISSN:2319-7676. Volume 10, Issue 2 Ver. 1 (Mar -Apr. 2015), PP 30-33 www.iosrjournals.org Diversity of Spiders from Zolambi Region of Chandoli National Park Dr. Suvarna More Dept. of Zoology P. V. P. Mahavidyalaya, Kavathe Mahankal, Dist. -Sangli. (MS), India 416405 Abstract: Diversity of spiders from Zolambi region of Chandoli National Park in Western Ghats is studied for the first time. A total of 90 species belonging to 55 genera and 19 families are recorded from the study area during 2011-2013 with a dominance of Araneid, Salticid and Lycosid spiders. Key words: Spider diversity, Western Ghats I. Introduction Spiders comprise one of the largest orders of animals. The spider fauna of India has never been studied in its entirety despite of contributions by many arachnologists since Stoliczka (1869). The pioneering contribution on the taxonomy of Indian spiders is that of European arachnologist Stoliczka (1869). Review of available literature reveals that the earliest contribution by Blackwall (1867); Karsch (1873); Simon (1887); Thorell (1895) and Pocock (1900) were the pioneer workers of Indian spiders. They described many species from India. Tikader (1980, 1982), Tikader, described spiders from India. Tikader (1980) compiled a book on Thomisidae spiders of India, comprising two subfamilies, 25 genera and 115 species. Pocock (1900) and Tikader (1980, 1987) made major contributions to the Indian Arachnology, have high lightened spider studies to the notice of other researcher. Tikader (1987) also published the first comprehensive list of Indian spiders, which included 1067 species belonging to 249 genera in 43 families. -
Checklist of the Spider Fauna of Bangladesh (Araneae : Arachnida)
Bangladesh J. Zool. 47(2): 185-227, 2019 ISSN: 0304-9027 (print) 2408-8455 (online) CHECKLIST OF THE SPIDER FAUNA OF BANGLADESH (ARANEAE : ARACHNIDA) Vivekanand Biswas* Department of Zoology, Khulna Government Womens’ College, Khulna-9000, Bangladesh Abstract: Spiders are one of the important predatory arthropods that comprise the largest order Araneae of the class Arachnida. In Bangladesh, very few contributions are available on the taxonomic study on these arachnids. The present paper contains an updated checklist of the spider fauna of Bangladesh based on the published records of different workers and the identified collections of the recent studies by the author. It includes a total of 334 species of spiders belong to the infraorders Mygalomorphae and Araneomorphae under 21 families and 100 genera. A brief diagnosis of different families and their domination together with the distribution throughout the country are provided herewith. Key words: Checklist, spiders, Araneae, Arachnida, Bangladesh INTRODUCTION Bangladesh is basically a riverine agricultural country. It lies between 20.35ºN and 26.75ºN latitude and 88.03ºE and 92.75ºE longitude, covering an area of 1,47,570 sq. km (55,126 sq. miles). The country as such offers varied climatic situations viz., temperature, rainfall, humidity, fogmist, dew and Haor- frost, winds etc. (Rashid 1977). With the vast agricultural lands, also there are different kinds of evergreen, deciduous and mangrove forests staying different areas of the country viz., the southern Sunderbans, northern Bhawal and Madhupur forests and eastern Chittagong and Chittagong Hill-Tracts forest. Along with the agricultural lands, each of the forest ecosystems is composed of numerous species of spider fauna of the country. -
Spontaneous Male Death During Copulation in an Orb-Weaving Spider
anecdotal accounts suggest that males of some species in the cannibalistic orb-weaving spider genus Argiope may die spontaneously during copulation, without female collabor- ation (Gerhardt 1933; Robinson & Robinson 1980). Sasaki & Iwahashi (1995) showed that in Argiope aemula, Spontaneous male death males do not try to escape from the female after mating and die soon (often within 1 day) even when females are during copulation in an prevented from eating them. Here, we demonstrate that males of the orb-weaving orb-weaving spider spider Argiope aurantia experience programmed sudden death after the onset of copulation. We show that all males 1,2* 2 Matthias W. Foellmer and Daphne J. Fairbairn exhibit the typical dead posture just after they insert their 1Department of Biology, Concordia University, 1455 Boulevard second pedipalp and before the female can bite them. Fur- de Maisonneuve W., Montreal, Quebec H3G 1M8, Canada thermore, we determine that this signals rapid cessation 2Department of Biology, University of California, Riverside, CA 92521, USA of heartbeat, and thus death, without female complicity. * Author for correspondence ( [email protected]). Recd 19.03.03; Accptd 02.05.03; Online 25.06.03 2. MATERIAL AND METHODS (a) The mating behaviour of A. aurantia Males of some cannibalistic species of spiders and In spiders, the pedipalps (the pair of extremities posterior to the fangs) are morphologically derived to function as copulatory organs insects appear to sacrifice themselves by allowing (Foelix 1996). Each palp inserts into one of the female’s paired geni- the female to eat them, and the adaptive significance tal openings, which lead to separate sperm storage organs. -
Causes and Consequences of External Female Genital Mutilation
Causes and consequences of external female genital mutilation I n a u g u r a l d i s s e r t a t i o n Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. Nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Greifswald Vorgelegt von Pierick Mouginot Greifswald, 14.12.2018 Dekan: Prof. Dr. Werner Weitschies 1. Gutachter: Prof. Dr. Gabriele Uhl 2. Gutachter: Prof. Dr. Klaus Reinhardt Datum der Promotion: 13.03.2019 Contents Abstract ................................................................................................................................................. 5 1. Introduction ................................................................................................................................... 6 1.1. Background ............................................................................................................................. 6 1.2. Aims of the presented work ................................................................................................ 14 2. References ................................................................................................................................... 16 3. Publications .................................................................................................................................. 22 3.1. Chapter 1: Securing paternity by mutilating female genitalia in spiders .......................... 23 3.2. Chapter 2: Evolution of external female genital mutilation: why do males harm their mates?.................................................................................................................................. -
An Orbweaver Spider Exploits an Antacacia Mutualism for Enemyfree
An orb-weaver spider exploits an ant–acacia mutualism for enemy-free space John D. Styrsky Department of Biology, Lynchburg College, Lynchburg, Virginia 24503 Keywords Abstract Acacia ant, ant-acacia, enemy-free space, exploitation, mutualism, orb-weaver spider, Exploiters of protection mutualisms are assumed to represent an important Panama. threat for the stability of those mutualisms, but empirical evidence for the com- monness or relevance of exploiters is limited. Here, I describe results from a Correspondence manipulative study showing that an orb-weaver spider, Eustala oblonga, inhabits John D. Styrsky, Department of Biology, an ant-acacia for protection from predators. This spider is unique in the orb- Lynchburg College, Lynchburg, VA 24503. weaver family in that it associates closely with both a specific host plant and Tel: 434-544-8362; Fax: 434-544-8646; ants. I tested the protective effect of acacia ants on E. oblonga by comparing E-mail: [email protected] spider abundance over time on acacias with ants and on acacias from which Funding Information entire ant colonies were experimentally removed. Both juvenile and adult spider Thomas F. Jeffress and Kate Miller Jeffress abundance significantly decreased over time on acacias without ants. Concomi- Memorial Trust, Virginia Foundation for tantly, the combined abundance of potential spider predators increased over Independent Colleges, Lynchburg College. time on acacias without ants. These results suggest that ant protection of the ant-acacia Acacia melanocerus also protects the spiders, thus supporting the Received: 7 November 2013; Accepted: 1 hypothesis that E. oblonga exploits the ant–acacia mutualism for enemy-free December 2013 space. -
Life Histories of Two Ichneumonid Parasitoids of Cyclosa Octotuberculata
Entomological Science (2007) 10, 267–278 doi:10.1111/j.1479-8298.2007.00223.x ORIGINAL ARTICLE Life histories of two ichneumonid parasitoids of Cyclosa octotuberculata (Araneae): Reclinervellus tuberculatus (Uchida) and its new sympatric congener (Hymenoptera: Ichneumonidae: Pimplinae) Rikio MATSUMOTO1 and Kazuhiko KONISHI2 1Osaka Museum of Natural History, Osaka and 2National Agricultural Research Center for Hokkaido Region, Sapporo, Hokkaido, Japan Abstract In Japan, two species of the genus Reclinervellus were found to attack a single host spider, Cyclosa octotuberculata (Araneae). One of these, Reclinervellus tuberculatus comb. nov., winters as a tender larva and has at least two generations a year. This species laid its egg on the anterior face of the host’s abdomen. Prior to laying an egg the female repeatedly rubbed her ovipositor over the dorsal and lateral surfaces of the host’s abdomen near the base for more than 25 min. The hatched larva fixed itself at the position where the egg was laid, and developed by consuming the host’s body fluids. The other species, R. masumotoi sp. nov., is closely related to R. tuberculatus but is easily distinguished from it by having a very weakly reclivous Cu vein in the hindwing, a less developed carina of the propodeum, a shorter ovipositor and more blackish coloration of the mesoscutum. Although this species is sympatric with R. tuberculatus and attacks the same host, the position of the egg and larva on the host’s body is quite different from that of R. tuberculatus. The egg of this species was laid on the posterior surface of the host’s abdomen and the larva matured 10–20 days earlier than those of R. -
HEADLINE DISCOVERIES Oct-Dec 2015; Issue 4
Special Report: Update on the Mars Rover Making Science Matter® HEADLINE DISCOVERIES Oct-Dec 2015; Issue 4 Introducing ChemAssist Pro! SEE BACK FOR DETAILS! HOW ROCKS DEFY GRAVITY CAN YOUR WASHING MACHINE STEAL COMPUTER FILES? WHAT DO CANDLES AND TV SCREENS HAVE IN COMMON? WHY YOU ALWAYS CHOOSE THE SLOWEST LINE Please visit www.fisheredu.com/subscribehd or scan this QR code to subscribe. 15-2065-Headline-Discoveries-4-LW.indd 1 9/28/2015 11:53:44 AM Supplier Index: Inside This Issue: A3B ........................................................................................................ 18 ASTRONOMY AND EARTH SCIENCE ..........................................................3, 17, 22 ALDON .................................................................................................. 16 CELESTRON ......................................................................................... 17 BIOTECHNOLOGY ..................................................................................................6-7 CONTROL ............................................................................................. 17 CHEMISTRY ....................................................................................................... 10, 24 CORNING ................................................................................................ 6 ELEMENTARY ........................................................................................................... 5 DIVERSIFIED WOODCRAFTS ............................................................... -
Spider Fauna of Meghalaya, India
Available online at www.worldscientificnews.com WSN 71 (2017) 78-104 EISSN 2392-2192 Spider Fauna of Meghalaya, India Tapan Kumar Roy1,a, Sumana Saha2,b and Dinendra Raychaudhuri1,c 1Department of Agricultural Biotechnology, IRDM Faculty Centre, Ramakrishna Mission Vivekananda University, Narendrapur, Kolkata - 700103, India 2Post Graduate Department of Zoology, Barasat Govt. College, Barasat, Kolkata – 700124, India a,b,cE-mails: [email protected] , [email protected] , [email protected] ABSTRACT The present study is on the spider fauna of Nongkhylem Wildlife Sanctuary (NWS), Sohra (Cherrapunji) [included within East Khasi Hill District], Umsning (Ri Bhoi District) and their surrounding tea estates (Anderson Tea Estate, Byrnihat Tea Estate and Meg Tea Estate) of Meghalaya, India. A total of 55 species belonging to 36 genera and 13 families are sampled. Newly recorded taxa include four genera and 11 species of Araneidae, six genera of Araneidae, each represented by single species. The species recorded under Tylorida Simon and Tetragnatha Latreille of Tetragnathidae and Camaricus Thorell and Thomisus Walckenaer of Thomisidae are found to be new from the state. Also, three oxyopids and one miagrammopid are new. So far, Linyphiidae, Pisauridae, Sparassidae and Theridiidae were unknown from the state. Out of 55 species, 13 are endemic to India and thus exhibiting a high endemicity (23.6%). A family key of the State Fauna is provided along with relevant images of the newly recorded species. Keywords: Spiders, New Records, Endemicity, Nongkhylem Wildlife Sanctuary, Sohra; Umsning, Tea Ecosystem, Meghalaya, Tylorida, Tetragnatha, Tetragnathidae, Camaricus, Thomisus, Thomisidae, Linyphiidae, Pisauridae, Sparassidae, Theridiidae, Araneidae ( Received 05 April 2017; Accepted 01 May 2017; Date of Publication 03 May 2017 ) World Scientific News 71 (2017) 78-104 1. -
Arachnides 88
ARACHNIDES BULLETIN DE TERRARIOPHILIE ET DE RECHERCHES DE L’A.P.C.I. (Association Pour la Connaissance des Invertébrés) 88 2019 Arachnides, 2019, 88 NOUVEAUX TAXA DE SCORPIONS POUR 2018 G. DUPRE Nouveaux genres et nouvelles espèces. BOTHRIURIDAE (5 espèces nouvelles) Brachistosternus gayi Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Chili) Brachistosternus philippii Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Chili) Brachistosternus misti Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) Brachistosternus contisuyu Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) Brachistosternus anandrovestigia Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) BUTHIDAE (2 genres nouveaux, 41 espèces nouvelles) Anomalobuthus krivotchatskyi Teruel, Kovarik & Fet, 2018 (Ouzbékistan, Kazakhstan) Anomalobuthus lowei Teruel, Kovarik & Fet, 2018 (Kazakhstan) Anomalobuthus pavlovskyi Teruel, Kovarik & Fet, 2018 (Turkmenistan, Kazakhstan) Ananteris kalina Ythier, 2018b (Guyane) Barbaracurus Kovarik, Lowe & St'ahlavsky, 2018a Barbaracurus winklerorum Kovarik, Lowe & St'ahlavsky, 2018a (Oman) Barbaracurus yemenensis Kovarik, Lowe & St'ahlavsky, 2018a (Yémen) Butheolus harrisoni Lowe, 2018 (Oman) Buthus boussaadi Lourenço, Chichi & Sadine, 2018 (Algérie) Compsobuthus air Lourenço & Rossi, 2018 (Niger) Compsobuthus maidensis Kovarik, 2018b (Somaliland) Gint childsi Kovarik, 2018c (Kénya) Gint amoudensis Kovarik, Lowe, Just, Awale, Elmi & St'ahlavsky, 2018 (Somaliland) Gint gubanensis Kovarik, Lowe, Just, Awale, Elmi & St'ahlavsky, -
Planarity and Size of Orb-Webs Built by Araneus Diadematus (Araneae: Araneidae) Under Natural and Experimental Conditions
EkolÛgia (Bratislava) Vol. 19, Supplement 3, 307-318, 2000 PLANARITY AND SIZE OF ORB-WEBS BUILT BY ARANEUS DIADEMATUS (ARANEAE: ARANEIDAE) UNDER NATURAL AND EXPERIMENTAL CONDITIONS SAMUEL ZSCHOKKE1,2,3, FRITZ VOLLRATH1,2,4 1 Department of Zoology, South Parks Road, Oxford OX1 3PS, United Kingdom. 2 Zoologisches Institut, Universit‰t Basel, Rheinsprung 9, CHñ4051 Basel, Switzerland. 3 Institut f¸r Natur-, Landschafts- und Umweltschutz, Universit‰t Basel, St. Johanns-Vorstadt 10, CH-4056 Basel, Switzerland. Fax: +41 61 267 08 32. E-mail: [email protected] 4 Department of Zoology, Universitetsparken B135, DKñ8000 Aarhus C, Denmark. 3 Address for correspondence Abstract ZSCHOKKE S., VOLLRATH F.: Planarity and size of orb-webs built by Araneus diadematus (Araneae: Araneidae) under natural and experimental conditions. In GAJDOä P., PEK¡R S. (eds): Proceedings of the 18th European Colloquium of Arachnology, Star· Lesn·, 1999. EkolÛgia (Bratislava), Vol. 19, Supplement 3/2000, p. 307-318. Orb-weaving spiders build more or less planar webs in a complex, three dimensional environ- ment. How do they achieve this? Do they explore all twigs and branches in their surroundings and store the information in some form of mental map? Or do they at first just build a cheap (i.e. few loops, possibly non-planar) web to test the site and ñ if this first web is successful (i.e. the web site is good) ñ later build subsequent improved and enlarged webs, by re-using some of the an- chor points and moving other anchor points? The second hypothesis is supported by the fact that the garden cross spider Araneus diadematus CLERCK (Araneidae) usually builds several webs at the same site, re-using structural parts of one web for subsequent webs. -
Phylogenetic Analysis of Cox I Gene in Identification of Spiders
Journal of Entomology and Zoology Studies 2019; 7(2): 895-897 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Phylogenetic analysis of cox i gene in JEZS 2019; 7(2): 895-897 © 2019 JEZS identification of spiders Received: 18-01-2019 Accepted: 20-02-2019 Jalajakshi S Jalajakshi S and Usha RN Assistant Professor, Genetics Department, Vijaya College, Abstract Basavanagudi, Karnataka, India Morphological diversity refers to diversity of species at the genetic or molecular level. In order to study Usha RN the diversity at the genetic level the taxonomic method DNA barcoding is used. The most commonly Assistant Professor, Biotech used barcode region for animals and some protists is found in mitochondrial DNA (Mt-DNA) i.e. a Department, Mother Teresa portion of the cytochrome oxidase I (Mt-Cox I) gene. The cox gene has a frequency of faster mutation Women’s University, rate and are highly conserved among the species hence Mt-Cox I sequence was used for the practical Kodaikanal, Tamil Nadu, India method of species identification. In the present study, the most dominant female spiders collected were Argiope aemula, Nesticodes rufipes, Oxyopes lineatype, Leucauge decorata, Nephila kuchli, and Nephila philipis. These spiders were preserved in 70% ethanol and DNA was extracted. The amplification of the gene and PCR analysis was done by treating forward and reverse primers. The Cox I gene was sequenced for BLAST sequence similarity search. The phylogenetic analysis revealed the relationship between molecular and morphological taxonomy. The six species with different families have raised from a common ancestor. At each branch point lies the most recent common ancestor of all the groups descended from that branch point.