Phylogenetic Analysis of Cox I Gene in Identification of Spiders

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Analysis of Cox I Gene in Identification of Spiders Journal of Entomology and Zoology Studies 2019; 7(2): 895-897 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Phylogenetic analysis of cox i gene in JEZS 2019; 7(2): 895-897 © 2019 JEZS identification of spiders Received: 18-01-2019 Accepted: 20-02-2019 Jalajakshi S Jalajakshi S and Usha RN Assistant Professor, Genetics Department, Vijaya College, Abstract Basavanagudi, Karnataka, India Morphological diversity refers to diversity of species at the genetic or molecular level. In order to study Usha RN the diversity at the genetic level the taxonomic method DNA barcoding is used. The most commonly Assistant Professor, Biotech used barcode region for animals and some protists is found in mitochondrial DNA (Mt-DNA) i.e. a Department, Mother Teresa portion of the cytochrome oxidase I (Mt-Cox I) gene. The cox gene has a frequency of faster mutation Women’s University, rate and are highly conserved among the species hence Mt-Cox I sequence was used for the practical Kodaikanal, Tamil Nadu, India method of species identification. In the present study, the most dominant female spiders collected were Argiope aemula, Nesticodes rufipes, Oxyopes lineatype, Leucauge decorata, Nephila kuchli, and Nephila philipis. These spiders were preserved in 70% ethanol and DNA was extracted. The amplification of the gene and PCR analysis was done by treating forward and reverse primers. The Cox I gene was sequenced for BLAST sequence similarity search. The phylogenetic analysis revealed the relationship between molecular and morphological taxonomy. The six species with different families have raised from a common ancestor. At each branch point lies the most recent common ancestor of all the groups descended from that branch point. The four descendents N. rufipes, N. kuchli, N. philipis and O. lineatype raised from one common ancestor, but O. lineatype emerged as an out group species from the others. Argiope aemula and Laucauge decorata raised from the other common ancestor, indicating the homology sharing. Keywords: Biodiversity, spider species Mt-Cox I, BLAST sequence, morphological taxonomy, phylogenetic analysis Introduction Spiders belonging to the order Araneae of class Arachnida are the most abundant and potential [6] generalist predator of insect pests . Most of them are terrestrial and few are aquatic also. The spiders are different from other insects in, presence of pedipalpi and the head is not differentiated in to different parts (seen in others). The legs of spiders have coxa, trochanter, a patella and a metatarsus. Spiders also have spinnerets and differences in their eyes. The spiders are the biological agents which capture and eats on many other insects like ants, bugs, mites etc. and thus helps in crop protection. As for as biodiversity of spiders are concerned there is a significant record of the wide variety of species in world, India and also in Karnataka. In the present life science world the word biodiversity is taking a various meanings. Basically it refers to varieties of life forms present on the earth. It is often defined as the totality of genes, species and ecosystem of a region. Biodiversity is not distributed evenly on earth and is richest in the tropics. Some of the traditional types of biological diversity methods used are taxonomic diversity, ecological diversity, morphological diversity and functional diversity. Morphological diversity refers to the diversity at the genetic or molecular level. In order to study the diversity at the genetic level the taxonomic method DNA barcoding is used. It uses a [4] designated portion of a specific gene or genes to identify an organism to species . The most commonly used barcode region for animals and some protists is found in mitochondrial DNA (Mt-DNA) i.e. a portion of the cytochrome oxidase I (Mt-COX I) gene. The DNA barcoding represents a promising approach to resolve the taxonomic impediment of difficulties in species identification [7]. The Mt-COXI gene sequence is more suitable for the DNA barcoding because of its faster mutation rate and the sequences are highly conserved among the species. Correspondence The present study aims at, recording the most dominant species from the study area. The Jalajakshi S female spiders were selected to study the morphological diversity, as they exhibit the sexual Assistant Professor, Genetics size dimorphism. The MT-Cox sequence from different families of spiders were used as the Department, Vijaya College, molecular source in order to draw the phylogenetic relationship among the selected species. Basavanagudi, Karnataka, India ~ 895 ~ Journal of Entomology and Zoology Studies Materials and Methods cTAB was vortexed vigorously and incubated at 60°C for Specimen Collection 1h.To the lysate, 0.5 ml of phenol - chloroform, Iso-amyl Spiders were collected from the surroundings of Turahalli alcohol was added and mixed for 2-3 minutes. It was forest 8km off from the Banashankari temple of South centrifuged at 10000 rpm for 15 min at 4oC. The upper Bangalore. The total area of the forest is 590 acres, with 888 aqueous layer was taken in a new tube, to which double the mt elevation. The coordinates are 12, 88168310 N, volume of cold 100% ethanol was added and 3M sodium 77.52498230 E. The forest is well protected by the Karnataka acetate was added and was incubated for1h minutes at 4⁰C, forest department. The flora and fauna of the area include figs Centrifuged at 10000 rpm for 15 min. The supernatant, was (Ficus tinctoria) neralemara (Syzygium cumini). The most removed and DNA pellet was washed in 70% ethanol and common herb is the Byttneria herbacea. Animals spotted centrifuged at 5000 rpm for 10 minutes. Again the supernatant were Hares Jackals, Lizards, Mongoose, etc. The forests bird was removed, the DNA pellet was air dried and was finally population includes great horned Owls, Mynas, Bablers, and dissolved in TE buffer. more. The variety of spider diversity was found in this region The PCR mixture (final volume of 20 µL) contained 2 µL of hence the area was selected. The collection was done by a DNA, 10 µL of Red Taq Master Mix 2x (Amplicon) and 1µM visual encounter method and hand collection method. Female of each complementary primer specific forward and reverse. spiders were collected, and preserved in 70% ethanol for The samples were denatured at 94oC for 5 minutes, and further usage. amplified using 40 cycles of 94oC for 30 seconds, 44oC for 30 seconds, and 72oC for 1 minute for followed by a final DNA extraction and PCR analysis elongation at 72oC for 10 minutes. The optimal numbers of 100mg of spider tissue was weighed and frozen in dry ice and cycles have been selected for amplification of the gene. the thugh was added with 200 μl of cTAB homogenize 0.5ml Table 1: Primers used for Cox gene Gene Primer pair Sequence details Tm Product size (bp) Lco1490FP GGTCAACAAATCATAAAGATATTGG 51.3 Cox 710 hco2198RP TAAACTTCAGGGTGACCAAAAAATCA 53.2 Purification of PCR products unincorporated terminators with an ethanol precipitation Removed unincorporated PCR primers and dNTPs from PCR protocol. The samples were re suspended in distilled water products by using Montage PCR Clean up kit (Millipore). and subjected to electrophoresis in an ABI 3730xl sequencer (Applied Bio systems). Sequencing Phylogenetic analysis: The PCR product was sequenced using the LCO F primers. Based on BLAST analysis the Mt-Cox sequence, of these Sequencing reactions were performed using a ABI PRISM® species has been matched, compared and phylogenetic tree Big Dye TM Terminator Cycle Sequencing Kits with Ampli was constructed. Taq® DNA polymerase (FS enzyme) (Applied Biosystems). The fluorescent-labeled fragments were purified from the Results and Discussion Fig 1: The Maximum Likelihood method of evolutionary relationship among spiders In the present study the most dominant female spiders descended from that branch point. The two species Laucauge collected from the study area were, Argiope aemula, decorata and Argiope aemula raised from one common Nesticodes rufipes, Oxyopes lineatypes, Laucauge decorata, branch point. Laucauge decorata belongs to tetragnathidae Nephila kuchli, and Nephila philipis. The Mt- COX I gene family is commonly called as long jawed orb weaver or was sequenced and was used for the practical method of decorative silver orb spider. The body shape and leg shape species identification. The statistical inference, maximum has silver black and yellow marking. Studies have revealed likelihood method revealed the relationship between that evolution of web building has been from irregular to molecular and morphological taxonomy. This method also more regular webs [1]. The web is slanted rather than vertical. involved in finding the evolutionary relationship which yields The Laucauge spider rests in the middle of the web with its the highest probability of evolving the observed data [3]. underside facing upwards. The phylogenetic analysis, was done based on maximum Argiope aemula belongs to Aranidae family exhibits sexual likelihood method. The maximum likelihood method revealed size dimorphism, where females are greatly larger than males. that, the six species with different families have raised from a It shows female gigantism or male dwarfism. Sexual Size common ancestor. The branch point or internal nodes Dimorphism, (SSD) and morphometric analysis of Argiope represent the most recent common ancestor. At each branch anasuja has revealed that the females are four times larger point lies the most recent common ancestor of all the groups than males in their total body length [5]. The web pattern of ~ 896 ~ Journal of Entomology and Zoology Studies these species are in Zig-Zag form resembling the letter, hence 7. Sudhikumar AV, Kashmeera NA. Preliminary Study on they are commonly called as signature spiders. The other four Identification of Spiders Using Mitochondrial DNA. descendants raised from one common ancestor, but O. 2015; 6(8):5741-5743. lineatype belongs to Oxyopidae family is commonly called as jumping spider, golden lynx spiders, emerged as an out group species from the others.
Recommended publications
  • Sexual Selection Research on Spiders: Progress and Biases
    Biol. Rev. (2005), 80, pp. 363–385. f Cambridge Philosophical Society 363 doi:10.1017/S1464793104006700 Printed in the United Kingdom Sexual selection research on spiders: progress and biases Bernhard A. Huber* Zoological Research Institute and Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany (Received 7 June 2004; revised 25 November 2004; accepted 29 November 2004) ABSTRACT The renaissance of interest in sexual selection during the last decades has fuelled an extraordinary increase of scientific papers on the subject in spiders. Research has focused both on the process of sexual selection itself, for example on the signals and various modalities involved, and on the patterns, that is the outcome of mate choice and competition depending on certain parameters. Sexual selection has most clearly been demonstrated in cases involving visual and acoustical signals but most spiders are myopic and mute, relying rather on vibrations, chemical and tactile stimuli. This review argues that research has been biased towards modalities that are relatively easily accessible to the human observer. Circumstantial and comparative evidence indicates that sexual selection working via substrate-borne vibrations and tactile as well as chemical stimuli may be common and widespread in spiders. Pattern-oriented research has focused on several phenomena for which spiders offer excellent model objects, like sexual size dimorphism, nuptial feeding, sexual cannibalism, and sperm competition. The accumulating evidence argues for a highly complex set of explanations for seemingly uniform patterns like size dimorphism and sexual cannibalism. Sexual selection appears involved as well as natural selection and mechanisms that are adaptive in other contexts only. Sperm competition has resulted in a plethora of morpho- logical and behavioural adaptations, and simplistic models like those linking reproductive morphology with behaviour and sperm priority patterns in a straightforward way are being replaced by complex models involving an array of parameters.
    [Show full text]
  • An International Peer Reviewed Open Access Journal for Rapid Publication
    VOLUME-12 NUMBER-4 (October-December 2019) Print ISSN: 0974-6455 Online ISSN: 2321-4007 CODEN: BBRCBA www.bbrc.in University Grants Commission (UGC) New Delhi, India Approved Journal An International Peer Reviewed Open Access Journal For Rapid Publication Published By: Society for Science & Nature (SSN) Bhopal India Indexed by Thomson Reuters, Now Clarivate Analytics USA ISI ESCI SJIF=4.186 Online Content Available: Every 3 Months at www.bbrc.in Registered with the Registrar of Newspapers for India under Reg. No. 498/2007 Bioscience Biotechnology Research Communications VOLUME-12 NUMBER-4 (Oct-Dec 2019) Characteristics of Peptone from the Mackerel, Scomber japonicus Head by-Product as Bacterial Growth Media 829-836 Dwi Setijawati, Abdul A. Jaziri, Hefti S. Yufidasari, Dian W. Wardani, Mohammad D. Pratomo, Dinda Ersyah and Nurul Huda Endomycorrhizae Enhances Reciprocal Resource Exchange Via Membrane Protein Induction 837-843 Faten Dhawi Does Prediabetic State Affects Dental Implant Health? A Systematic Review And Meta-Analysis 844-854 Khulud Abdulrahman Al-Aali An Updated Review on the Spiders of Order Araneae from the Districts of Western Ghats of India 855-864 Misal P. K, Bendre N. N, Pawar P. A, Bhoite S. H and Deshpande V. Y Synergetic Role of Endophytic Bacteria in Promoting Plant Growth and Exhibiting Antimicrobial 865-875 Mbarek Rahmoun and Bouri Amira Synergetic Role of Endophytic Bacteria in Promoting Plant Growth and Exhibiting 876-882 Antimicrobial Activities Bassam Oudh Al Johny Influence on Diabetic Pregnant Women with a Family History of Type 2 Diabetes 883-888 Sameera A. Al-Ghamdi Remediation of Cadmium Through Hyperaccumulator Plant, Solanum nigrum 889-893 Ihsan Ullah Biorefinery Sequential Extraction of Alginate by Conventional and Hydrothermal Fucoidan from the 894-903 Brown Alga, Sargassum cristaefolium Sugiono Sugiono and Doni Ferdiansyah Occupational Stress and Job Satisfaction in Prosthodontists working in Kingdom of Saudi Arabia 904-911 Nawaf Labban, Sulieman S.
    [Show full text]
  • Diversity of Spiders from Zolambi Region of Chandoli National Park
    IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) e-ISSN: 2278-3008, p-ISSN:2319-7676. Volume 10, Issue 2 Ver. 1 (Mar -Apr. 2015), PP 30-33 www.iosrjournals.org Diversity of Spiders from Zolambi Region of Chandoli National Park Dr. Suvarna More Dept. of Zoology P. V. P. Mahavidyalaya, Kavathe Mahankal, Dist. -Sangli. (MS), India 416405 Abstract: Diversity of spiders from Zolambi region of Chandoli National Park in Western Ghats is studied for the first time. A total of 90 species belonging to 55 genera and 19 families are recorded from the study area during 2011-2013 with a dominance of Araneid, Salticid and Lycosid spiders. Key words: Spider diversity, Western Ghats I. Introduction Spiders comprise one of the largest orders of animals. The spider fauna of India has never been studied in its entirety despite of contributions by many arachnologists since Stoliczka (1869). The pioneering contribution on the taxonomy of Indian spiders is that of European arachnologist Stoliczka (1869). Review of available literature reveals that the earliest contribution by Blackwall (1867); Karsch (1873); Simon (1887); Thorell (1895) and Pocock (1900) were the pioneer workers of Indian spiders. They described many species from India. Tikader (1980, 1982), Tikader, described spiders from India. Tikader (1980) compiled a book on Thomisidae spiders of India, comprising two subfamilies, 25 genera and 115 species. Pocock (1900) and Tikader (1980, 1987) made major contributions to the Indian Arachnology, have high lightened spider studies to the notice of other researcher. Tikader (1987) also published the first comprehensive list of Indian spiders, which included 1067 species belonging to 249 genera in 43 families.
    [Show full text]
  • Biodiversity and Community Structure of Spiders in Saran, Part of Indo-Gangetic Plain, India
    Asian Journal of Conservation Biology, December 2015. Vol. 4 No. 2, pp. 121-129 AJCB: FP0062 ISSN 2278-7666 ©TCRP 2015 Biodiversity and Community structure of spiders in Saran, part of Indo-Gangetic Plain, India N Priyadarshini1*, R Kumari1, R N Pathak1, A K Pandey2 1Department of Zoology, D. A. V. College, J. P. University, Chhapra, India 2School of Environmental Studies, Jawaharlal Nehru University, New Delhi, India (Accepted November 21, 2015) ABSTRACT Present study was conducted to reveals the community structure and diversity of spider species in different habitat types (gardens, crop fields and houses) of Saran; a part of Indo – Gangetic Plain, India. This area has very rich diversity of flora and fauna due to its climatic conditions, high soil fer- tility and plenty of water availability. The spiders were sampled using two semi-quantitative methods and pitfall traps. A total of 1400 individual adult spiders belonging to 50 species, 29 genera and 15 families were recorded during 1st December 2013 to 28th February 2014. Spider species of houses were distinctive from other habitats it showed low spider species richness. The dominant spider fami- lies were also differs with habitat types. Araneidae, Pholcidae and Salticidae were the dominant spi- der families in gardens, houses and crop fields respectively. Comparison of beta diversity showed higher dissimilarity in spider communities of gardens and houses and higher similarity between spi- der communities of crop fields and gardens. We find that spiders are likely to be more abundant and species rich in gardens than in other habitat types. Habitat structural component had great impact on spider species richness and abundance in studied habitats.
    [Show full text]
  • Keanekaragaman Laba – Laba Pada Hutan Gaharu Di Kawasan Pusuk, Lombok Barat
    KEANEKARAGAMAN LABA – LABA PADA HUTAN GAHARU DI KAWASAN PUSUK, LOMBOK BARAT DIVERSITY OF SPIDERS IN AGARWOOD FOREST IN PUSUK REGION, WEST LOMBOK LALU ARYA KASMARA G1A013020 Program Studi Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Mataram, Jalan Majapahit No. 62, Mataram 83125 ABSTRAK Laba-laba tergolong dalam Filum Arthropoda, kelas Arachnida, dan Ordo Araneae. Hewan ini merupakan kelompok terbesar dan memiliki keanekaragaman yang sangat tinggi dalam Filum Arthropoda. Jumlah spesies laba-laba yang telah dideskripsikan pada saat ini sekitar 44.906 spesies, digolongkan dalam 114 famili dan 3.935 genus. Laba-laba memiliki peran pada tanaman pertanian, perkebunan, dan perumahan sebagai predator serangga hama. Penelitian ini bertujuan untuk mengetahui keanekaragaman laba-laba pada hutan gaharu di kawasan Pusuk, Lombok Barat. Penelitian ini telah dilaksanakan pada bulan April-Juli 2018. Sampel laba-laba di koleksi secara acak (random sampling) pada 30 plot yang masing-masing berukuran 9 x 9m. Metode pengambilan sampel menggunakan perangkap jebak (pitfall trap), jaring ayun (sweep net) dan aspirator. Identifikasi sampel laba-laba berdasarkan karakter morfologinya. Analisis data dilakukan dengan menghitung Indeks Keanekaragaman Shannon-Wiener (H’) dan Indeks dominansi. Hasil penelitian menemukan 10 famili laba-laba yang terdiri dari 60 spesies dan 292 individu. Dari ketiga metode koleksi laba-laba menunjukkan hasil berbeda, metode jaring ayun mengoleksi 36 spesies laba-laba, metode aspirator mengoleksi 27 spesies dan metode pitfall trap hanya ditemukan 5 spesies. Berdasakan hasil perhitungan diperoleh indeks keanekaragaman spesies laba-laba di hutan gaharu di kawasan Pusuk adalah 1,367 sedangkan indeks dominansi adalah 0,111. Indeks keanekaragaman spesies termasuk ke dalam kategori sedang.
    [Show full text]
  • Checklist of the Spider Fauna of Bangladesh (Araneae : Arachnida)
    Bangladesh J. Zool. 47(2): 185-227, 2019 ISSN: 0304-9027 (print) 2408-8455 (online) CHECKLIST OF THE SPIDER FAUNA OF BANGLADESH (ARANEAE : ARACHNIDA) Vivekanand Biswas* Department of Zoology, Khulna Government Womens’ College, Khulna-9000, Bangladesh Abstract: Spiders are one of the important predatory arthropods that comprise the largest order Araneae of the class Arachnida. In Bangladesh, very few contributions are available on the taxonomic study on these arachnids. The present paper contains an updated checklist of the spider fauna of Bangladesh based on the published records of different workers and the identified collections of the recent studies by the author. It includes a total of 334 species of spiders belong to the infraorders Mygalomorphae and Araneomorphae under 21 families and 100 genera. A brief diagnosis of different families and their domination together with the distribution throughout the country are provided herewith. Key words: Checklist, spiders, Araneae, Arachnida, Bangladesh INTRODUCTION Bangladesh is basically a riverine agricultural country. It lies between 20.35ºN and 26.75ºN latitude and 88.03ºE and 92.75ºE longitude, covering an area of 1,47,570 sq. km (55,126 sq. miles). The country as such offers varied climatic situations viz., temperature, rainfall, humidity, fogmist, dew and Haor- frost, winds etc. (Rashid 1977). With the vast agricultural lands, also there are different kinds of evergreen, deciduous and mangrove forests staying different areas of the country viz., the southern Sunderbans, northern Bhawal and Madhupur forests and eastern Chittagong and Chittagong Hill-Tracts forest. Along with the agricultural lands, each of the forest ecosystems is composed of numerous species of spider fauna of the country.
    [Show full text]
  • Spontaneous Male Death During Copulation in an Orb-Weaving Spider
    anecdotal accounts suggest that males of some species in the cannibalistic orb-weaving spider genus Argiope may die spontaneously during copulation, without female collabor- ation (Gerhardt 1933; Robinson & Robinson 1980). Sasaki & Iwahashi (1995) showed that in Argiope aemula, Spontaneous male death males do not try to escape from the female after mating and die soon (often within 1 day) even when females are during copulation in an prevented from eating them. Here, we demonstrate that males of the orb-weaving orb-weaving spider spider Argiope aurantia experience programmed sudden death after the onset of copulation. We show that all males 1,2* 2 Matthias W. Foellmer and Daphne J. Fairbairn exhibit the typical dead posture just after they insert their 1Department of Biology, Concordia University, 1455 Boulevard second pedipalp and before the female can bite them. Fur- de Maisonneuve W., Montreal, Quebec H3G 1M8, Canada thermore, we determine that this signals rapid cessation 2Department of Biology, University of California, Riverside, CA 92521, USA of heartbeat, and thus death, without female complicity. * Author for correspondence ( [email protected]). Recd 19.03.03; Accptd 02.05.03; Online 25.06.03 2. MATERIAL AND METHODS (a) The mating behaviour of A. aurantia Males of some cannibalistic species of spiders and In spiders, the pedipalps (the pair of extremities posterior to the fangs) are morphologically derived to function as copulatory organs insects appear to sacrifice themselves by allowing (Foelix 1996). Each palp inserts into one of the female’s paired geni- the female to eat them, and the adaptive significance tal openings, which lead to separate sperm storage organs.
    [Show full text]
  • SA Spider Checklist
    REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region.
    [Show full text]
  • Pictorial Checklist of Agrobiont Spiders of Navsari Agricultural University, Navsari, Gujarat, India
    Int.J.Curr.Microbiol.App.Sci (2018) 7(7): 409-420 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 07 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.707.050 Pictorial Checklist of Agrobiont Spiders of Navsari Agricultural University, Navsari, Gujarat, India J.N. Prajapati*, S.R. Patel and P.M. Surani 1Department of Agricultural Entomology, N.M.C.A, NAU, Navsari, India *Corresponding author ABSTRACT K e yw or ds A study on biodi versity of agrobiont spiders was carried out at N. M. College of Pictorial checklist, Agriculture, Navsari Agricultural University (NAU) campus Navsari, Gujarat, India. A Agrobiont spiders, total 48 species of agrobiont spiders were recorded belonging to 34 genera and 12 families Navsari , from different ecosystems i.e., paddy, sugarcane, maize, mango and banana. Among them biodiversity 33.33 per cent species belongs to family Araneidae, 29.17 per cent from Salticidae, 8.33 per cent species belongs to family Oxyopidae, 6.25 per cent species belongs to family Article Info Clubionidae, 4.17 per cent species belongs to Tetragnathidae, Sparassidae as well as Accepted: Theridiidae of each, whereas remaining 2.08 per cent species from Thomisidae, 04 June 2018 Uloboridae, Lycosidae, Hersiliidae, and Scytodidae of each and prepared the pictorial Available Online: checklist of 48 species of agrobiont spiders. 10 July 2018 Introduction considered to be of economic value to farmers as they play valuable role in pest management Spiders are one of the most fascinating and by consuming large number of prey in the diverse group of invertebrate animals on the agriculture fields without any damage to earth.
    [Show full text]
  • How to Improve 'Passion Photography' of Spiders
    © 2016. Indian Journal of Arachnology 5 (1-2): 113-123 ISSN 2278-1587 (Online) HOW TO IMPROVE ‘PASSION PHOTOGRAPHY’ OF SPIDERS Marashetty Seenappa 82 Second Cross-24th Main, JP Nagar 2nd Phase, Bangalore 560 078 [email protected] (All photographs by the author) ABSTRACT Colour and patterns on spiders are highly variable depending on their adaptation to the habitats and ecological niches they live in. Polymorphic patterns and colour variations often within the same species of spider create more challenges in spider taxonomy. A spider, therefore, cannot be identified and authenticated based on a photograph only. Taxonomic identification and recognition of species in most cases are based on the structural diagnostic differentiation of sex organs. However, photography, especially macrophotography can be very useful in recognition of spider families as this recognition is based on the spatial arrangement and relative size and direction of their four pairs of eyes. Further, photography will form an excellent record of the external morphology including primary or secondary sexual organs, their shape and structure. Such diagnostic differences often form the basis to distinguish between sexes and also in the recognition of few genera and species. Photography aided with graduated scales is very useful in visually portraying the length of the body of spider and its appendages. Relational depiction of size based on using thumbnail can often reflect relative size differences among spiders. Photography in a series of sequence shots, time-lapse photography and video clips are of immense use in capturing important biological phenomena such as hunting behaviour, web-spinning, moulting and mating. Keywords: Spiders, passion photography, macrophotography, polymorphism INTRODUCTION Spiders are good subjects for photo-enthusiasts.
    [Show full text]
  • Spider Fauna of Meghalaya, India
    Available online at www.worldscientificnews.com WSN 71 (2017) 78-104 EISSN 2392-2192 Spider Fauna of Meghalaya, India Tapan Kumar Roy1,a, Sumana Saha2,b and Dinendra Raychaudhuri1,c 1Department of Agricultural Biotechnology, IRDM Faculty Centre, Ramakrishna Mission Vivekananda University, Narendrapur, Kolkata - 700103, India 2Post Graduate Department of Zoology, Barasat Govt. College, Barasat, Kolkata – 700124, India a,b,cE-mails: [email protected] , [email protected] , [email protected] ABSTRACT The present study is on the spider fauna of Nongkhylem Wildlife Sanctuary (NWS), Sohra (Cherrapunji) [included within East Khasi Hill District], Umsning (Ri Bhoi District) and their surrounding tea estates (Anderson Tea Estate, Byrnihat Tea Estate and Meg Tea Estate) of Meghalaya, India. A total of 55 species belonging to 36 genera and 13 families are sampled. Newly recorded taxa include four genera and 11 species of Araneidae, six genera of Araneidae, each represented by single species. The species recorded under Tylorida Simon and Tetragnatha Latreille of Tetragnathidae and Camaricus Thorell and Thomisus Walckenaer of Thomisidae are found to be new from the state. Also, three oxyopids and one miagrammopid are new. So far, Linyphiidae, Pisauridae, Sparassidae and Theridiidae were unknown from the state. Out of 55 species, 13 are endemic to India and thus exhibiting a high endemicity (23.6%). A family key of the State Fauna is provided along with relevant images of the newly recorded species. Keywords: Spiders, New Records, Endemicity, Nongkhylem Wildlife Sanctuary, Sohra; Umsning, Tea Ecosystem, Meghalaya, Tylorida, Tetragnatha, Tetragnathidae, Camaricus, Thomisus, Thomisidae, Linyphiidae, Pisauridae, Sparassidae, Theridiidae, Araneidae ( Received 05 April 2017; Accepted 01 May 2017; Date of Publication 03 May 2017 ) World Scientific News 71 (2017) 78-104 1.
    [Show full text]
  • Arachnides 88
    ARACHNIDES BULLETIN DE TERRARIOPHILIE ET DE RECHERCHES DE L’A.P.C.I. (Association Pour la Connaissance des Invertébrés) 88 2019 Arachnides, 2019, 88 NOUVEAUX TAXA DE SCORPIONS POUR 2018 G. DUPRE Nouveaux genres et nouvelles espèces. BOTHRIURIDAE (5 espèces nouvelles) Brachistosternus gayi Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Chili) Brachistosternus philippii Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Chili) Brachistosternus misti Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) Brachistosternus contisuyu Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) Brachistosternus anandrovestigia Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) BUTHIDAE (2 genres nouveaux, 41 espèces nouvelles) Anomalobuthus krivotchatskyi Teruel, Kovarik & Fet, 2018 (Ouzbékistan, Kazakhstan) Anomalobuthus lowei Teruel, Kovarik & Fet, 2018 (Kazakhstan) Anomalobuthus pavlovskyi Teruel, Kovarik & Fet, 2018 (Turkmenistan, Kazakhstan) Ananteris kalina Ythier, 2018b (Guyane) Barbaracurus Kovarik, Lowe & St'ahlavsky, 2018a Barbaracurus winklerorum Kovarik, Lowe & St'ahlavsky, 2018a (Oman) Barbaracurus yemenensis Kovarik, Lowe & St'ahlavsky, 2018a (Yémen) Butheolus harrisoni Lowe, 2018 (Oman) Buthus boussaadi Lourenço, Chichi & Sadine, 2018 (Algérie) Compsobuthus air Lourenço & Rossi, 2018 (Niger) Compsobuthus maidensis Kovarik, 2018b (Somaliland) Gint childsi Kovarik, 2018c (Kénya) Gint amoudensis Kovarik, Lowe, Just, Awale, Elmi & St'ahlavsky, 2018 (Somaliland) Gint gubanensis Kovarik, Lowe, Just, Awale, Elmi & St'ahlavsky,
    [Show full text]