Abstract Book

Total Page:16

File Type:pdf, Size:1020Kb

Abstract Book ABSTRACT BOOK Canterbury, New Zealand 10–15 February 2019 21st International Congress of Arachnology ORGANISING COMMITTEE MAIN ORGANISERS Cor Vink Peter Michalik Curator of Natural History Curator of the Zoological Museum Canterbury Museum University of Greifswald Rolleston Avenue, Christchurch Loitzer Str 26, Greifswald New Zealand Germany LOCAL ORGANISING COMMITTEE Ximena Nelson (University of Canterbury) Adrian Paterson (Lincoln University) Simon Pollard (University of Canterbury) Phil Sirvid (Museum of New Zealand, Te Papa Tongarewa) Victoria Smith (Canterbury Museum) SCIENTIFIC COMMITTEE Anita Aisenberg (IICBE, Uruguay) Miquel Arnedo (University of Barcelona, Spain) Mark Harvey (Western Australian Museum, Australia) Mariella Herberstein (Macquarie University, Australia) Greg Holwell (University of Auckland, New Zealand) Marco Isaia (University of Torino, Italy) Lizzy Lowe (Macquarie University, Australia) Anne Wignall (Massey University, New Zealand) Jonas Wolff (Macquarie University, Australia) 21st International Congress of Arachnology 1 INVITED SPEAKERS Plenary talk, day 1 Sensory systems, learning, and communication – insights from amblypygids to humans Eileen Hebets University of Nebraska-Lincoln, Nebraska, USA E-mail: [email protected] Arachnids encompass tremendous diversity with respect to their morphologies, their sensory systems, their lifestyles, their habitats, their mating rituals, and their interactions with both conspecifics and heterospecifics. As such, this group of often-enigmatic arthropods offers unlimited and sometimes unparalleled opportunities to address fundamental questions in ecology, evolution, physiology, neurobiology, and behaviour (among others). Amblypygids (Order Amblypygi), for example, possess distinctly elongated walking legs covered with sensory hairs capable of detecting both airborne and substrate-borne chemical stimuli, as well as mechanoreceptive information. Simultaneously, they display an extraordinary central nervous system with distinctly large and convoluted higher order processing centres called mushroom bodies. With respect to these under-explored, yet intriguing, animals, I will highlight how studies focused on basic behaviour, natural history, and neuroanatomy can lend insight into fundamental and generalizable scientific understanding. I will do this by discussing my research, conducted in collaboration with colleagues, which pertains to the link between the amblyypygid’s unique sensory morphology, nervous system, and complex behaviour, including learned behaviour. Additionally, I will use my research on the North American wolf spider genus Schizocosa, and potentially the fishing spider genera Dolomedes and Pisaurina, to demonstrate how spider reproductive behaviour can help scientists understand basic processes and mechanisms underlying divergence in reproductive tactics and ultimately speciation. Finally, I will show how the wonders of arachnid biology, combined with creative visual aids and active educational techniques, can inspire not only arachnid conservation, but also the next generation of science professionals; including arachnologists. Young Arachnologist: Oral presentation, day 1 The evolution of diverse animal weapons Chrissie J. Painting¹; Glauco Machado2, Gonzalo Giribet3, Kate Sheridan3, Erin Powell1, Gregory I. Holwell1 ¹Univeristy of Auckland, Auckland, New Zealand; ²Universidade de São Paulo, São Paulo, Brazil, ³Harvard University, Cambridge, USA E-mail: [email protected] Weapons, exaggerated structures used by males to increase mating opportunities, are among the most elaborate and diverse structures in animals, but we know very little about the mechanisms driving their evolution. Comparative approaches that determine patterns of weapon evolution across a group of closely related species can help us understand why weapons are so diverse. We are investigating the factors driving weapon diversity in a group of endemic New Zealand arachnids, the neopilionid harvestmen. Males bear extremely exaggerated chelicerae, which are correspondingly much reduced in size in females. The degree and form of chelicerae exaggeration varies drastically both within and between species. 21st International Congress of Arachnology 2 As well a striking range of chelicerae size and shape among species, several species also exhibit chelicerae polymorphism, where males can possess reduced female-like chelicerae or one of two exaggerated morphs (long slender or short broad chelicerae). Using a phylogenetic framework coupled micro-CT imaging to quantify 3D shape variation, we elucidate patterns of weapon divergence across this group to determine how these extreme traits have evolved. Young Arachnologist: Oral presentation, day 1 Evolution of palpimanoid spiders: bizarre morphologies, unusual behaviours, and extreme speeds Hannah Wood Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington D.C, USA E-mail: [email protected] Morphological diversity may be redundant in relation to function, that is, different morphological solutions may evolve to produce similar performances. Thus, in order to understand how morphological diversification occurs it is crucial to first understand the link between form and function. The palpimanoid spiders have restricted distributions, exhibit strikingly deviant morphological, behavioural, and ecological traits, and are an ancient lineage with a fossil record. In particular, in palpimanoids, the novel and unusual modifications of the cephalicarea and chelicerae may allow these spiders to capture prey in innovative ways. They are an excellent group for addressing questions about how a specific trait functions, which in turn, may allow for examination of broader macroevolutionary questions about how these traits (as well as lineages) diversify. My talk will be a discussion of our current understanding of cheliceral function and morphology in palpimanoids, which has been enhanced by Computed- Tomography scanning techniques for visualization of minute internal structures. Additionally, I’ll talk about how the extensive fossil record in palpimanoids has allowed for the examination of shifts in morphological diversity over time. Finally, the study of morphological evolution is confounded by distribution patterns, and I’ll discuss research about the interplay between trait evolution and biogeography patterns. Young Arachnologist: Oral presentation, day 1 The promises of next generation sequencing technology for high throughput assessment of spider diversity Henrik Krehenwinkel Department of Biogeography, University Trier, Germany; Environmental Science, Policy and Management, University of California, Berkeley, USA E-mail: [email protected] Next generation sequencing (NGS) technology has revolutionised evolutionary biology and ecology in the past decade and enabled unprecedented insights into the structure of the tree of life and the genetic basis of speciation and local adaptation. NGS based DNA barcoding protocols have also greatly simplified the analysis of species diversity and interactions in biological communities. Using Hawaiian spider communities, we here present different NGS based tools for rapid, cost-efficient and large-scale analysis of taxonomy, biogeography and species interactions. Home to impressive and diverse adaptive radiations, the Hawaiian Archipelago is a biodiversity hotspot of global importance. In conjunction with its geographic isolation and well-known geology, the island chain is also considered a natural laboratory for 21st International Congress of Arachnology 3 the study of island biogeography. Although much of the Hawaiian biodiversity is comprised of arthropods, very little is known about diversification and assembly of Hawaiian arthropod communities. The emerging technologies of next generation sequencing now allow for unprecedented insights into the process of community assembly. Here, we present results from the application NGS to multi-locus phylogenetic and taxonomic analyses of mixed spider community samples. Using metabarcoding protocols, we acquire qualitative and quantitative data of the species composition within and across communities on the Hawaiian Islands. In addition, we introduce novel approaches to study the feeding ecology of spiders in great detail. Combining gut content analysis and microbial community sequencing, we then present results on the effect of diet on the gut microbial communities associated with spiders. Plenary talk, day 2 Spider phylogenetics and evolution – beyond the trees Martín J. Ramírez Museo Argentino de Ciencias Naturales – CONICET, Buenos Aires, Argentina E-mail: [email protected] Spider systematics has advanced tremendously in the last years from phylogenetic analyses of sequence data, mainly anonymous in terms of phenotype. For the first time the phylogenies are relatively robust and easy to obtain, yet the evolutionary implications for functional morphology, behaviour and biogeography are only slowly emerging. For those who are not systematists it is difficult to digest the phylogenies that are published year after year, and for systematists it is not easy to understand or elaborate on the evolutionary implications of their discoveries. In this talk I will try to summarise a personal view of some important advances in spider systematics and how they are linked to general questions of functional anatomy and behaviour. Then I will discuss how is it like to investigate the historical biogeography of spiders from a peripheral
Recommended publications
  • TFG Lucas Fernandez Miriam.Pdf
    UNIVERSIDAD DE JAÉN Facultad de Ciencias Experimentales Trabajo Fin de Grado Revisión bibliográfica de los Licósidos (Araneidae, Lycosidae) presentes en el sureste de la península ibérica Ciencias Experimentales Alumno: Miriam Lucas Fernández Facultad de Julio, 2020 UNIVERSIDAD DE JAÉN FACULTAD DE CIENCIAS EXPERIMENTALES GRADO EN BIOLOGÍA Trabajo Fin de Grado Revisión bibliográfica de los Licósidos (Araneidae, Lycosidae) presentes en el sureste de la península ibérica Miriam Lucas Fernández Julio, 2020 1 RESUMEN ………………………………………………………………………………3 2 INTRODUCCIÓN ................................................................................................ 4 2.1 Distribución y diversidad de las arañas ......................................................... 4 2.2 Morfología biológica ...................................................................................... 5 2.3 Biología reproductiva del orden Araneae ...................................................... 7 3 OBJETIVOS ........................................................................................................ 8 4 MATERIALES Y MÉTODOS ............................................................................... 9 5 FAMILIA LYCOSIDAE: Perspectiva mundial e ibérica ....................................... 9 5.1 Taxonomía .................................................................................................. 10 5.2 Identificación ............................................................................................... 12 5.3 Hábitat ........................................................................................................
    [Show full text]
  • Changes in the Midgut Diverticula Epithelial Cells of the European
    www.nature.com/scientificreports OPEN Changes in the midgut diverticula epithelial cells of the European cave spider, Meta menardi, under Received: 13 March 2018 Accepted: 24 August 2018 controlled winter starvation Published: xx xx xxxx Saška Lipovšek1,2,3,4, Tone Novak2, Franc Janžekovič2, Nina Brdelak5 & Gerd Leitinger 4 The European cave spider, Meta menardi, is among the most common troglophile species inhabiting the cave entrance zone in Europe, where prey is scarce in winter. Spiders feed only if prey is available; otherwise, they are subjected to long-term winter starvation. We carried out a four-month winter starvation of M. menardi under controlled conditions to analyze ultrastructural changes in the midgut diverticula epithelial cells at the beginning, in the middle and at the end of the starvation period. We used light microscopy, TEM and quantifed reserve lipids and glycogen. The midgut diverticula epithelium consisted of secretory cells, digestive cells and adipocytes. During starvation, gradual vacuolization of some digestive cells, and some necrotic digestive cells and adipocytes appeared. Autophagic structures, autophagosomes, autolysosomes and residual bodies were found in all three cell types. Spherites and the energy-reserve compounds were gradually exploited, until in some spherites only the membrane remained. Comparison between spring, autumn and winter starvation reveals that, during the growth period, M. menardi accumulate reserve compounds in spherites and protein granules, and energy-supplying lipids and glycogen, like many epigean, overwintering arthropods. In M. menardi, otherwise active all over the year, this is an adaptive response to the potential absence of prey in winter. Te European cave spider, Meta menardi (Latreille, 1804) (Araneae, Tetragnathidae) inhabit the twilight zone of most hypogean habitats across Europe.
    [Show full text]
  • Curriculum Vitae Bradley Evan Carlson, Ph.D
    Curriculum Vitae Bradley Evan Carlson, Ph.D. Byron K. Trippet Assistant Professor of Biology Wabash College Crawfordsville, IN 47933 Email: [email protected] Telephone: (765) 361-6460 Website: carlsonecolab.weebly.com Professional Experience 2014 - present Byron K. Trippet Assistant Professor of Biology, Wabash College Education 2009-2014 PhD in Ecology, minor in Statistics, The Pennsylvania State University, University Park, PA Advisor: Dr. Tracy Langkilde Dissertation: The evolutionary ecology of intraspecific trait variation in larval amphibians 2008 B.S. in Biology, Bethel University, St. Paul, MN Summa cum laude, Honors Graduate Thesis: Temperature and desiccation effects on the antipredator behavior of Centruroides vittatus (Scorpiones: Buthidae) Research Interests Evolutionary ecology – phenotypic diversity, local adaptation, trait integration Behavioral ecology – phenotypic plasticity, predator-prey interactions, personality traits Community ecology – trait-mediated indirect interactions, predation, aquatic ecology Zoology – herpetology, arachnology, comparative morphology Publications (*co-author was undergraduate) Kashon*, EAF, and BE Carlson. 2018. Consistently bolder turtles maintain higher body temperatures in the field but may experience greater predation risk. Behavioral Ecology and Sociobiology 72:9. Carlson, BE, and T Langkilde. 2017. Body size variation in aquatic consumers causes pervasive community effects, independent of mean body size. Ecology and Evolution 7:9978-9990. Lambert, MR, Carlson, BE, Smylie, MS, and L Swierk. 2017. Ontogeny of sexual dichromatism in the explosively breeding Wood Frog. Herpetological Conservation and Biology 12:447-456. Media coverage: InsideEcology.com (https://insideecology.com/2018/02/12/amphibians-that-change-colour/) Carlson, BE, and T Langkilde. 2016. The role of resources in microgeographic variation in Red- spotted Newt (Notophthalmus v. viridescens) morphology. Journal of Herpetology 50:442-448.
    [Show full text]
  • Five New Species of the Open-Holed Trapdoor Spider Genus Aname
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 35 010–038 (2020) DOI: 10.18195/issn.0312-3162.35.2020.010-038 Five new species of the open-holed trapdoor spider genus Aname (Araneae: Mygalomorphae: Anamidae) from Western Australia, with a revised generic placement for Aname armigera Mark S. Harvey1,2, Karl Gruber2, Mia J. Hillyer1 and Joel A. Huey1,2,3,4 1 Collections and Research, Western Australian Museum, 49 Kew Street, Welshpool, Western Australia 6106, Australia. 2 School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia. 3 Adjunct, School of Natural Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia. 4 Present address: Biologic Environmental Survey, East Perth, Western Australia 6004, Australia. Corresponding author: [email protected] ABSTRACT – The open-holed trapdoor spider genus Aname L. Koch, 1873 is widely distributed throughout Australia, and currently contains 44 named species. Using a combination of morphological and molecular data, we describe fve new species from the Wheatbelt, Mid-west and Goldfelds regions of Western Australia: A. exulans sp. nov., A. lillianae sp. nov., A. mccleeryorum sp. nov., A. phillipae sp. nov. and A. simoneae sp. nov. The female holotype of Aname armigera Rainbow and Pulleine, 1918 from near Mullewa was examined and found to belong to the genus Proshermacha Simon forming the new combination P. armigera (Rainbow and Pulleine, 1918), comb. nov. KEYWORDS: taxonomy, systematics, molecular phylogenetics urn:lsid:zoobank.org:pub:98828964-6150-465D-B5AE-1480DA0D454E INTRODUCTION Castalanelli, Framenau, Huey and Harvey, 2020, a The open-holed trapdoor spider genus Aname species from Western Australia recently described in L.
    [Show full text]
  • Sexual Selection Research on Spiders: Progress and Biases
    Biol. Rev. (2005), 80, pp. 363–385. f Cambridge Philosophical Society 363 doi:10.1017/S1464793104006700 Printed in the United Kingdom Sexual selection research on spiders: progress and biases Bernhard A. Huber* Zoological Research Institute and Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany (Received 7 June 2004; revised 25 November 2004; accepted 29 November 2004) ABSTRACT The renaissance of interest in sexual selection during the last decades has fuelled an extraordinary increase of scientific papers on the subject in spiders. Research has focused both on the process of sexual selection itself, for example on the signals and various modalities involved, and on the patterns, that is the outcome of mate choice and competition depending on certain parameters. Sexual selection has most clearly been demonstrated in cases involving visual and acoustical signals but most spiders are myopic and mute, relying rather on vibrations, chemical and tactile stimuli. This review argues that research has been biased towards modalities that are relatively easily accessible to the human observer. Circumstantial and comparative evidence indicates that sexual selection working via substrate-borne vibrations and tactile as well as chemical stimuli may be common and widespread in spiders. Pattern-oriented research has focused on several phenomena for which spiders offer excellent model objects, like sexual size dimorphism, nuptial feeding, sexual cannibalism, and sperm competition. The accumulating evidence argues for a highly complex set of explanations for seemingly uniform patterns like size dimorphism and sexual cannibalism. Sexual selection appears involved as well as natural selection and mechanisms that are adaptive in other contexts only. Sperm competition has resulted in a plethora of morpho- logical and behavioural adaptations, and simplistic models like those linking reproductive morphology with behaviour and sperm priority patterns in a straightforward way are being replaced by complex models involving an array of parameters.
    [Show full text]
  • Comparison of Reproductive Traits Between Two Salt-Marsh Wolf Spiders (Araneae, Lycosidae) Under Different Habitat Suitability Conditions
    Animal Biology 61 (2011) 127–138 brill.nl/ab Comparison of reproductive traits between two salt-marsh wolf spiders (Araneae, Lycosidae) under different habitat suitability conditions Charlène Puzin1, Anthony Acou2, Dries Bonte3 and Julien Pétillon4,∗ 1 Université de Rennes 1, U.R.U. 420 – Biodiversité et Gestion des territoires, U.F.R. SVE, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France 2 Muséum National d’Histoire Naturelle, U.M.R. 7208 BOREA – Biologie des Organismes et Ecosystèmes Aquatiques, Station Marine de Dinard, BP 70134, 38 rue du Port Blanc, 35800 Dinard, France 3 Ghent University, Terrestrial Ecology Unit (TEREC), Department of Biology, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium 4 University of Antwerp, Evolutionary Ecology Group, Department of Biology, Groenenborgerlaan 171, 2020 Antwerpen, Belgium Abstract Salt-marsh invasions by the grass Elymus athericus (Poaceae) recently transformed usual areas dom- inated by Atriplex portulacoides (Chenopodiaceae) into homogeneous meadows. Two wolf spider species, Pardosa purbeckensis and Arctosa fulvolineata, show contrasting densities and habitat prefer- ences in salt marshes (respectively dominant and co-dominant ground-living spiders) and oppositely respond to the grass invasion. This allowed us to test whether invasive species that alter habitat struc- ture affect reproduction in addition to previously recorded changes in density. Reproductive traits (female mass, cocoon mass, number and volume of eggs, hatched cocoon as a proxy of reproduc- tion date) were studied in both invaded and natural salt marshes during 2007 and 2008 in the Mont St-Michel Bay (France). In both species, reproductive outputs (cocoon mass) were higher in optimal habitats and volume of eggs was found to be independent from female mass, whereas the latter sig- nificantly influenced the number of eggs.
    [Show full text]
  • De Hooiwagens 1St Revision14
    Table of Contents INTRODUCTION ............................................................................................................................................................ 2 CHARACTERISTICS OF HARVESTMEN ............................................................................................................................ 2 GROUPS SIMILAR TO HARVESTMEN ............................................................................................................................. 3 PREVIOUS PUBLICATIONS ............................................................................................................................................. 3 BIOLOGY ......................................................................................................................................................................... 3 LIFE CYCLE ..................................................................................................................................................................... 3 MATING AND EGG-LAYING ........................................................................................................................................... 4 FOOD ............................................................................................................................................................................. 4 DEFENCE ........................................................................................................................................................................ 4 PHORESY,
    [Show full text]
  • Spiders in Wheat Fields and Semi-Desert in the Negev (Israel)
    View metadata, citation2008. and The similar Journal papers of Arachnology at core.ac.uk 36:368–373 brought to you by CORE provided by Bern Open Repository and Information System (BORIS) Spiders in wheat fields and semi-desert in the Negev (Israel) Therese Pluess1,3, Itai Opatovsky2, Efrat Gavish-Regev2, Yael Lubin2 and Martin H. Schmidt1: 1University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland; 2Mitrani Department of Desert Ecology, Ben-Gurion University of the Negev, 84990 Midreshet Ben-Gurion, Israel Abstract. Intensively cultivated arable land and semi-desert are two dominant habitat types in the arid agroecosystem in the northwest Negev Desert (Israel). The present study compares activity-densities and species richness of spiders in these distinctive habitat types. Sixteen wheat fields and twelve locations in the semi-desert were sampled during the winter growing season of wheat. Semi-desert habitats had more spider species and higher spider activity-densities than irrigated wheat fields. The majority of spider families, namely Gnaphosidae, Thomisidae, Salticidae, Zodariidae, Philodromidae, Dysderidae, and Clubionidae had significantly higher activity-densities in the semi-desert compared to wheat. Only two families, the Linyphiidae that strongly dominated the arable spider community and Corinnidae had higher activity- densities in wheat than in semi-desert. Out of a total of 94 spider species, fourteen had significantly higher activity-densities in semi-desert than in wheat fields and eight species had significantly higher activity-densities in wheat fields than in semi- desert. Spider families and species that dominated the semi-desert communities also occurred in the wheat fields but at lower activity-densities.
    [Show full text]
  • Biology Distilled Minimize Boom-And-Bust Cycles of Species Outbreaks and Ecosystem Imbalances
    COMMENT BOOKS & ARTS “Serengeti Rules”), which he shows are appli- cable both to the restoration of ecosystems and to the management of the biosphere. The same rule may carry different names in different biological contexts. The double- negative logic rule, for instance, enables a given gene product to feed back to slow down its own synthesis. In an ecosystem the same rule, known as top-down regulation, NHPA/PHOTOSHOT VINCE BURTON/ applies when the abundance of a predator (such as lynx) limits the rise in the popu- lation of prey (such as snowshoe hares). This is why, in Yellowstone National Park in Wyoming, the reintroduction of wolves has resulted in non-intuitive changes in hydrology and forest cover: wolves prey on elk, which disproportionately feed on streamside willows and tree seedlings. It is also why ecologists can continue to manage the Serengeti, and have been able to ‘rebuild’ a functioning ecosystem from scratch in Gorongosa National Park, Mozambique. Carroll argues that the rules regulat- Interactions between predators and prey, such as lynxes and hares, can be modelled with biological rules. ing human bodily functions — which have improved medical care and driven drug dis- ECOLOGY covery — can be applied to ecosystems, to guide conservation and restoration, and to heal our ailing planet. His Serengeti Rules encapsulate the checks and balances that Biology distilled minimize boom-and-bust cycles of species outbreaks and ecosystem imbalances. Eco- Brian J. Enquist reflects on a blueprint to guide logical systems that are missing key regula- the recovery of life on Earth. tory players, such as predators, can collapse; if they are overtaken by organisms spread by human activities, such as the kudzu vine, a an biology become as predictive as the unification of biology ‘cancer-like’ growth of that species can result.
    [Show full text]
  • Appendix G Short Range Endemic Invertebrate Survey.Pdf
    Appendix G Short Range Endemic Invertebrate Survey (Invertebrate Solutions 2018) Short Range Endemic invertebrate desktop assessment for Lot 102 Farrall Road, Midvale, Western Australia. Report by Invertebrate Solutions for Emerge Associates Pty Ltd on Behalf of Peet Stratton Pty Ltd March 2019 Dr Timothy Moulds Director and Principal Ecologist Invertebrate Solutions PO Box 14 Victoria Park, WA 6979 Australia [email protected] www.invertebratesolutions.com Invertebrate Solutions. (2018). Short Range Endemic invertebrate desktop assessment for Lot 102 Farrall Rd, Midvale, Western Australia. Unpublished report to Emerge Associates on behalf of Peet Stratton Pty Ltd, March 2019. Report Number 2018ISJ11_F01_20190304 Prepared for: Emerge Associates Frontispiece: The tree cricket Pachysaga munggai from the Swan Coastal Plain COPYRIGHT: This document has been prepared to the requirements of the client identified above, and no representation is made to any third party. Copyright and any other Intellectual Property associated with the document belongs to Invertebrate Solutions and may not be reproduced without written permission of the Client or Invertebrate Solutions. It may be cited for the purposes of scientific research or other fair use, but it may not be reproduced or distributed to any third party by any physical or electronic means without the express permission of the client for whom it was prepared or Invertebrate Solutions. Lot 102 Farrall Rd, Midvale SRE Desktop Assessment Contents Contents ................................................................................................................................................
    [Show full text]
  • Howard Associate Professor of Natural History and Curator Of
    INGI AGNARSSON PH.D. Howard Associate Professor of Natural History and Curator of Invertebrates, Department of Biology, University of Vermont, 109 Carrigan Drive, Burlington, VT 05405-0086 E-mail: [email protected]; Web: http://theridiidae.com/ and http://www.islandbiogeography.org/; Phone: (+1) 802-656-0460 CURRICULUM VITAE SUMMARY PhD: 2004. #Pubs: 138. G-Scholar-H: 42; i10: 103; citations: 6173. New species: 74. Grants: >$2,500,000. PERSONAL Born: Reykjavík, Iceland, 11 January 1971 Citizenship: Icelandic Languages: (speak/read) – Icelandic, English, Spanish; (read) – Danish; (basic) – German PREPARATION University of Akron, Akron, 2007-2008, Postdoctoral researcher. University of British Columbia, Vancouver, 2005-2007, Postdoctoral researcher. George Washington University, Washington DC, 1998-2004, Ph.D. The University of Iceland, Reykjavík, 1992-1995, B.Sc. PROFESSIONAL AFFILIATIONS University of Vermont, Burlington. 2016-present, Associate Professor. University of Vermont, Burlington, 2012-2016, Assistant Professor. University of Puerto Rico, Rio Piedras, 2008-2012, Assistant Professor. National Museum of Natural History, Smithsonian Institution, Washington DC, 2004-2007, 2010- present. Research Associate. Hubei University, Wuhan, China. Adjunct Professor. 2016-present. Icelandic Institute of Natural History, Reykjavík, 1995-1998. Researcher (Icelandic invertebrates). Institute of Biology, University of Iceland, Reykjavík, 1993-1994. Research Assistant (rocky shore ecology). GRANTS Institute of Museum and Library Services (MA-30-19-0642-19), 2019-2021, co-PI ($222,010). Museums for America Award for infrastructure and staff salaries. National Geographic Society (WW-203R-17), 2017-2020, PI ($30,000). Caribbean Caves as biodiversity drivers and natural units for conservation. National Science Foundation (IOS-1656460), 2017-2021: one of four PIs (total award $903,385 thereof $128,259 to UVM).
    [Show full text]
  • Sand Transport and Burrow Construction in Sparassid and Lycosid Spiders
    2017. Journal of Arachnology 45:255–264 Sand transport and burrow construction in sparassid and lycosid spiders Rainer Foelix1, Ingo Rechenberg2, Bruno Erb3, Andrea Alb´ın4 and Anita Aisenberg4: 1Neue Kantonsschule Aarau, Biology Department, Electron Microscopy Unit, Zelgli, CH-5000 Aarau, Switzerland. Email: [email protected]; 2Technische Universita¨t Berlin, Bionik & Evolutionstechnik, Sekr. ACK 1, Ackerstrasse 71-76, D-13355 Berlin, Germany; 3Kilbigstrasse 15, CH-5018 Erlinsbach, Switzerland; 4Laboratorio de Etolog´ıa, Ecolog´ıa y Evolucio´n, Instituto de Investigaciones Biolo´gicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay Abstract. A desert-living spider sparassid (Cebrennus rechenbergi Ja¨ger, 2014) and several lycosid spiders (Evippomma rechenbergi Bayer, Foelix & Alderweireldt 2017, Allocosa senex (Mello-Leita˜o, 1945), Geolycosa missouriensis (Banks, 1895)) were studied with respect to their burrow construction. These spiders face the problem of how to transport dry sand and how to achieve a stable vertical tube. Cebrunnus rechenbergi and A. senex have long bristles on their palps and chelicerae which form a carrying basket (psammophore). Small balls of sand grains are formed at the bottom of a tube and carried to the burrow entrance, where they are dispersed. Psammophores are known in desert ants, but this is the first report in desert spiders. Evippomma rechenbergi has no psammophore but carries sand by using a few sticky threads from the spinnerets; it glues the loose sand grains together, grasps the silk/sand bundle and carries it to the outside. Although C. rechenbergi and E. rechenbergi live in the same environment, they employ different methods to carry sand.
    [Show full text]