High-Speed Rail General Characteristics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bullets and Trains: Exporting Japan's Shinkansen to China and Taiwan
Volume 5 | Issue 3 | Article ID 2367 | Mar 01, 2007 The Asia-Pacific Journal | Japan Focus Bullets and Trains: Exporting Japan's Shinkansen to China and Taiwan Christopher P. Hood Bullets and Trains: ExportingJapan ’s Japan, like many other countries has a de facto Shinkansen to China and Taiwan two-China policy with formal recognition of the People’s Republic but extensive economic and By Christopher P. Hood other ties with the Republic. One example of this dual policy is the use of Haneda Airport by China Airlines (Taiwan), but the use of Narita It is over forty years since the Shinkansen Airport by airlines from China. (‘bullet train’) began operating between Tokyo and Osaka. Since then the network has The Shinkansen expanded, but other countries, most notably France and Germany, have been developing The Shinkansen is one ofJapan ’s iconic their own high speed railways, too. As other symbols. The image ofMount Fuji with a countries, mainly in Asia, look to develop high passing Shinkansen is one of the most speed railways, the battle over which country projected images of Japan. The history of the will win the lucrative contracts for them is on. Shinkansen dates back to the Pacific War. It is not only a matter of railway technology. Shima Yasujiro’s plan for thedangan ressha Political, economic & cultural influences are (‘bullet train’) then included the idea of a line also at stake. This paper will look at these linking Tokyo with Korea and China (1). various aspects in relation to the export of the Although that plan never materialised, the Shinkansen to China in light of previous Shinkansen idea was reborn nearly two Japanese attempts to export the Shinkansen decades later, as yume-no-chotokkyu (‘super and the situation in Taiwan. -
Pioneering the Application of High Speed Rail Express Trainsets in the United States
Parsons Brinckerhoff 2010 William Barclay Parsons Fellowship Monograph 26 Pioneering the Application of High Speed Rail Express Trainsets in the United States Fellow: Francis P. Banko Professional Associate Principal Project Manager Lead Investigator: Jackson H. Xue Rail Vehicle Engineer December 2012 136763_Cover.indd 1 3/22/13 7:38 AM 136763_Cover.indd 1 3/22/13 7:38 AM Parsons Brinckerhoff 2010 William Barclay Parsons Fellowship Monograph 26 Pioneering the Application of High Speed Rail Express Trainsets in the United States Fellow: Francis P. Banko Professional Associate Principal Project Manager Lead Investigator: Jackson H. Xue Rail Vehicle Engineer December 2012 First Printing 2013 Copyright © 2013, Parsons Brinckerhoff Group Inc. All rights reserved. No part of this work may be reproduced or used in any form or by any means—graphic, electronic, mechanical (including photocopying), recording, taping, or information or retrieval systems—without permission of the pub- lisher. Published by: Parsons Brinckerhoff Group Inc. One Penn Plaza New York, New York 10119 Graphics Database: V212 CONTENTS FOREWORD XV PREFACE XVII PART 1: INTRODUCTION 1 CHAPTER 1 INTRODUCTION TO THE RESEARCH 3 1.1 Unprecedented Support for High Speed Rail in the U.S. ....................3 1.2 Pioneering the Application of High Speed Rail Express Trainsets in the U.S. .....4 1.3 Research Objectives . 6 1.4 William Barclay Parsons Fellowship Participants ...........................6 1.5 Host Manufacturers and Operators......................................7 1.6 A Snapshot in Time .................................................10 CHAPTER 2 HOST MANUFACTURERS AND OPERATORS, THEIR PRODUCTS AND SERVICES 11 2.1 Overview . 11 2.2 Introduction to Host HSR Manufacturers . 11 2.3 Introduction to Host HSR Operators and Regulatory Agencies . -
Notice of Series N700 Shinkansen Train Bogie Frames Matter
Kawasaki Heavy Industries, Ltd. February 28, 2018 Notice of Series N700 Shinkansen Train Bogie Frames matter Kawasaki hereby reports on the above matter, as described in the attached documents. It is still not clear how far this matter will affect business performance; however, should matters requiring disclosure be identified, you will be notified promptly. February 28, 2018 Kawasaki Heavy Industries, Ltd. Series N700 Shinkansen Train Bogie Frames With reference to the crack (structural failure) of the bogie (or truck) frame (hereinafter referred to as the “Failed Bogie Frame”) of series N700 Shinkansen train owned by West Japan Railway Company (hereinafter referred as "JR West") occurred at Nagoya Station on 11 December 2017, we, as the manufacturer of the Failed Bogie Frame, hereby express our sincere apology for inconvenience and concern caused to passengers of Tokaido-Sanyo Shinkansen, JR West, Central Japan Railway Company (hereinafter referred to as “JR Central”) and any other related party. While the Japan Transport Safety Board (hereinafter referred to as “JTSB”) is currently conducting dedicated investigations into a root cause of the crack of the Failed Bogie Frame, we hereunder report what has been revealed in the investigation until now and our remedial actions to be taken. 1. Results of the investigation of the Failed Bogie Frame and defects during manufacturing process We manufactured the Failed Bogie Frame in February 2007 at Kawasaki’s Rolling Stock Company Hyogo Works, and the followings have been revealed in the investigation until now. (1) Although the bottom plate of the side frame of the bogie frame of series N700 Shinkansen train should be 8mm thick the design specifications (more than 7mm post-processing), it is 4.7mm at the thinnest location. -
The Body Inclining System of the Series N700 Shinkansen
The Japan Society of Mechanical Engineers International Symposium on Speed-up, Safety and Service Technology for Railway and Maglev Systems 2009 (STECH’09) 2009.6.16-19 Niigata JAPAN THE BODY INCLINING SYSTEM OF THE SERIES N700 SHINKANSEN Yasuki Nakakura *1 and Kosuke Hayakawa *2 *1 Shinkansen Operations Division, Central Japan Railway Company, [email protected] *2 Shinkansen Operations Division, Central Japan Railway Company, [email protected] ABSTRACT 2. OVERVIEW OF THE BODY INCLINING The Series N700 is the first Shinkansen rolling stock to SYSTEM employ a body inclining system, which allows speed increases on curves while maintaining riding comfort. 2.1 Requirements of the body inclining system for a For use in the Tokaido Shinkansen, such a system needs Tokaido Shinkansen train-set to be light-weight and possess a reliable means to provide Over the years, body inclining system has been used with high precision position data. Reliability is a crucial factor conventional trains, but no such system has been when considering that the Tokaido Shinkansen operates a employed in Shinkansens excluding cases of test use. maximum of 13 train-sets per hour. In order to meet these Looking at high-speed trains in Europe, there exist cases requirements, the Series N700 adopts a simple and light where body-inclining mechanisms have been adopted weight air-spring based body inclining mechanism, such as the Italian ETR450 and the Swedish X2000. which combines the new automatic train control (ATC) However, their mechanisms are complex and heavy, technology capable of providing reliable high-precision making them unsuitable for use in the Tokaido position data, and control transmission technology that Shinkansen, where axle load restriction is strict. -
He Superconducting Maglev Train & Impacts of New Transportation
COVER STORY • “Amazing Tokyo” — Beyond 2020 • 7 he Superconducting Maglev Train & Impacts of New Transportation Infrastructure TBy Shigeru Morichi Author Shigeru Morichi Transportation Technology regions. Many countries have since achieved high economic growth, & Economic Development but with widening income gaps between regions. In this respect, Japan achieved a different outcome. Japan’s achievement in reaching high economic growth in just What impact, then, will the current development of new under 20 years after the end of World War II was once called a transportation infrastructure have on Japan? “miracle”. Twenty years further on, following the oil shock, there was talk of “Japan as Number One” when the rest of the world was Superconducting Magnetic Levitation Railway suffering from recession. Behind these two phenomena were not just the quality and manufacturing costs of Japan’s industrial products, Process of development but also technological innovation in its transportation system. Construction for the superconducting magnetic levitation railway, During the high economic growth period, achievements were the Chuo Shinkansen, began in December 2014, and by 2027 it will made in marine transport via containerization, and also through only take 40 minutes to travel the 286 kilometers between mass reduction in transportation costs with the introduction of Shinagawa Station in Tokyo and Nagoya Station. The current Tokaido specialized vessels for transporting motor vehicles and crude oil, as Shinkansen runs on a different route, and it currently takes 90 well as large vessels. Without these developments, industrial minutes to travel the 335 km between Shinagawa and Nagoya. The products from distant Japan could not have proved competitive in new Chuo Shinkansen will only take 67 minutes to travel the 438 km Europe or the United States. -
Overseas Deployment of Shinkansen Systems / Taiwan High Speed Rail
Overseas Deployment of Shinkansen Systems / Taiwan High Speed Rail Taipei Taoyuan Nangang Taiwan High Speed Rail( THSR) Banqiao Hsinchu The Taiwan High Speed Rail (THSR) is the first example of the exportation overseas of a Shinkansen system based on the principle of “Crash Avoidance”. After commencing limited operation in January 2007, the THSR Miaoli commenced commercial operation between Taipei and Zuoying in March of the same year. With the THSR stretching from Taipei in the North, Taiwan’s political and economic center, along the West Coast where most of the population resides, to Zuoying in the South, Taiwan’s society, economy, and the lifestyle of its people has dramatically changed. When the THSR first Taichung opened, transport volume was approximately 15 million people per year. This number has grown annually and in 2017 yearly transport volume exceeded 60 million passengers. In December 2015, Miaoli, Changhua and Changhua Yunlin stations were opened, and in July 2016 Nangang Station was Yunlin opened for commercial operation. The THSR continues to evolve as a means of transportation deeply rooted in the lives of the Taiwanese people. Chiayi Tainan Zuoying ■ Distribution of Major Cities on the Line 2,602 2,821 2,766 1,875 Taipei Taichung Tainan Kaohsiung Statistics Yearbook, Ministry of Interior, ROC(2020) Population unit: 1,000’s people km 0 100 200 300 400 ■ Basic Information ■ Passenger Ridership 60,000 Operating segment Nangang-Zuoying 50,000 January 2007 (Banqiao-Zuoying) March 2007 (Taipei-Banqiao) Inauguration December 2015 (Miaoli, Changhua, Yunlin) 40,000 July 2016 (Nangang-Taipei) 30,000 Operating distance 350km Maximum 300km operating speed 20,000 Minimum travel time 1h 45min 10,000 Trains/day 142 trains/day Number of stations 12 (Thousand)0 2007 2008 2009 2010 2011 2012 20 13 2014 2015 2016 2017 ※ Train number is calculated based on the annual number of trains. -
How the Punctuality of the Shinkansen Has Been Achieved
Computers in Railways XII 111 How the punctuality of the Shinkansen has been achieved N. Tomii Chiba Institute of Technology, Japan Abstract The high speed railway line in Japan began operation in 1964. The high speed railway is called the Shinkansen and is known for its safety and reliability. In addition, the Shinkansen is well known for punctuality. As a matter of fact, the average delay of trains is less than one minutes every year. The Shinkansen runs along dedicated lines, which seem to be advantageous in keeping punctuality. However, there are lots of disadvantages as well. For example, although traffic is very dense, resources are not abundant. In some Shinkansen lines, trains go directly through conventional railway lines and the Shinkansen is easily influenced by the disruption of those lines. Punctuality of the Shinkansen is supported by hardware, software and humanware. In this paper, we first introduce a brief history of the Shinkansen and then focus on humanware, which makes the punctuality possible. Keywords: high speed trains, punctuality, rescheduling, Shinkansen. 1 Introduction In 1964, a high speed railway line opened in Japan. The new line connects Tokyo, the capitol, and Osaka, the second largest city located 600 km away. The maximum speed of trains was 210km/h, which was almost twice that of other trains in those days and the travelling time between these two cities was halved to only three hours and ten minutes. The new high-speed line was called the Shinkansen and it had a great impact not only on railways in Japan, but also on railways worldwide. -
Superconducting Maglev(Scmaglev)
THE REVIEW SUPERCONDUCTING MAGLEV (SCMAGLEV) , http: // jr-central.co.jp/ 17.05 SUPERCONDUCTING MAGLEV (SCMAGLEV) e Superconducting Maglev -Next Generation Transportation System e Superconducting Maglev (SCMAGLEV) is an internationally acclaimed, cutting-edge technology unique to Japan. Unlike conventional railway systems that rely on adhesion between wheel and rail for movement, the Superconducting Maglev is a contactless transportation system that accelerates and decelerates by the magnetic force generated between the onboard superconducting magnets and ground coils, which enables a stable ultra-high speed operation at the speed of 311mph. Research of a totally new levitated transportation system commenced in 1962, and running tests on the Yamanashi Maglev Line began in 1997. Since then, a wide range of tests were conducted and cleared. With these test results, the Maglev Technological Practicality Evaluation Committee (MTPEC) under the Japanese Ministry of Land, Infrastructure, Transport and Tourism (MLIT) has evaluated Superconducting Maglev technology at each stage. In July 2009, MTPEC acknowledged that the technology has been established comprehensively and systematically, which makes it possible to draw up detailed specications and technological standards for revenue service. In December 2011, the technical standards of the Superconducting Maglev were enacted by the Japanese Minister of Land, Infrastructure, Transport and Tourism. In August 2013, the Yamanashi Maglev Line was fully renewed and extended to 42.8km (26.6miles), and is currently operating using Series L0 (L Zero). is leading edge Japanese technology is the next generation of super fast train travel. e Principles of the Superconducting Maglev System How the Superconducting Maglev runs at ultra high-speed? In order to operate at ultra high-speed, the Superconducting Maglev levitates 10cm (about 3.9in) above ground by the magnetic force Electric resistance generated between the onboard Superconducting Magnets and ground coils. -
Bus Stop Guide
Bus Stop Guide Depart from Taipei Yuanshan Station Taipei Railway Station Lane 9, Jiuquan St Taipei Bus Station Exit 2 Yuanshan Station Yuanshan Civic Blvd.Sec1. North 2 Exit Taipei Main Station 重 慶 北 路 一 段 Shelter to Linkou Rd.Sec1 Chongde Taipei N.Rd.Sec1 Zhongshan Main Station Exit 1 Jiuquan St Jiuquan St Lane 10, Section 1, Zhongxiao W Rd Station Front Metro Mall Shinkong Mitsukoshi Route Guide: Yuanshan Station → Exit 1 & 2 Route Guide: Taipei Main Station→North 2 Exit Boarding Spot: Exit 1, turn right go along MRT Boarding Spot: Exit 2, turn left go along MRT Taipei Main Station:1210 Shelter to Linkou:936.937 MRT Banqiao Station / HSR Banqiao Station Songshan Airport Xinzhan Rd A Zhanqian Rd P B Parking 1 North Gate 2 P HSR Banqiao Parking 2 Bus Station Songshan Section 1, Wenhua Rd Section 1, Wenhua Station Section 2, Xianmin Blvd Airport Station Shelter Exit 3 MRT No.3 MRT Banqiao Station MRT Exit 3 West Gate 2 3 Xinfu Rd B Exit 2 6 7 8 MRT MRT Exit 1 A Exit 1 Exit 2 4 2 Terminal Exit C Shelter No.2 Terminal 1 Route Guide: MRT Banqiao Station → Exit 2 & 3 Route Guide: HSR Banqiao Station → Exit North Gate 2 & West Gate Songshan Airport → Terminal 1 Exit C Songshan Airport Station → Exit 3 Boarding Spot: A Shelter No. :4 786.920.948 Boarding Spot: B : Bus Station 920 Shelter No. :3 945.1211.1211sub 1/2 Bus Stop Guide Depart from Taoyuan Taoyuan International Airport Terminal 1 Taoyuan International Airport Terminal 2 P Parking 2 Mini Bus Stop Zone Bus Platform Hangzhan S Rd Hangzhan N Rd Hangzhan S Rd To 2F To 2F Hangzhan N Rd -