Rumen Microorganisms and Fermentation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ruminal Protection and Intestinal Availability of Rumen-Protected Methionine and Lysine in Lactating Dairy Cows
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2019 Ruminal Protection and Intestinal Availability of Rumen-Protected Methionine and Lysine in Lactating Dairy Cows Sara Menchu Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Dairy Science Commons Recommended Citation Menchu, Sara, "Ruminal Protection and Intestinal Availability of Rumen-Protected Methionine and Lysine in Lactating Dairy Cows" (2019). All Graduate Theses and Dissertations. 7451. https://digitalcommons.usu.edu/etd/7451 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. RUMINAL PROTECTION AND INTESTINAL AVAILABILITY OF RUMEN- PROTECTED METHIONINE AND LYSINE IN LACTATING DAIRY COWS by Sara Menchu A thesis submitted in partial fulfillment of requirements for the degree of MASTER OF SCIENCE in Animal, Dairy, and Veterinary Sciences Approved: Jeffery O. Hall, D.V.M., Ph.D. Jong-Su Eun, Ph.D. Major Professor Committee Member Kerry A. Rood, M.S., D.V.M., M.P.H. Richard S. Inouye, Ph.D. Committee Member Vice Provost for Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2019 Copyright © Sara Menchu 2019 All Rights Reserved iii ABSTRACT Ruminal Protection and Intestinal Availability of Rumen-Protected Methionine and Lysine in Lactating Dairy Cows by Sara S. Menchu, Master of Science Utah State University, 2019 Major Professor: Dr. Jeffery O. Hall Department: Animal, Dairy, and Veterinary Sciences Rumen protected Methionine (MET) and Lysine (LYS) are critical for milk protein synthesis in dairy cows. -
Methanothermus Fervidus Type Strain (V24S)
UC Davis UC Davis Previously Published Works Title Complete genome sequence of Methanothermus fervidus type strain (V24S). Permalink https://escholarship.org/uc/item/9367m39j Journal Standards in genomic sciences, 3(3) ISSN 1944-3277 Authors Anderson, Iain Djao, Olivier Duplex Ngatchou Misra, Monica et al. Publication Date 2010-11-20 DOI 10.4056/sigs.1283367 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2010) 3:315-324 DOI:10.4056/sigs.1283367 Complete genome sequence of Methanothermus fervidus type strain (V24ST) Iain Anderson1, Olivier Duplex Ngatchou Djao2, Monica Misra1,3, Olga Chertkov1,3, Matt Nolan1, Susan Lucas1, Alla Lapidus1, Tijana Glavina Del Rio1, Hope Tice1, Jan-Fang Cheng1, Roxanne Tapia1,3, Cliff Han1,3, Lynne Goodwin1,3, Sam Pitluck1, Konstantinos Liolios1, Natalia Ivanova1, Konstantinos Mavromatis1, Natalia Mikhailova1, Amrita Pati1, Evelyne Brambilla4, Amy Chen5, Krishna Palaniappan5, Miriam Land1,6, Loren Hauser1,6, Yun-Juan Chang1,6, Cynthia D. Jeffries1,6, Johannes Sikorski4, Stefan Spring4, Manfred Rohde2, Konrad Eichinger7, Harald Huber7, Reinhard Wirth7, Markus Göker4, John C. Detter1, Tanja Woyke1, James Bristow1, Jonathan A. Eisen1,8, Victor Markowitz5, Philip Hugenholtz1, Hans-Peter Klenk4, and Nikos C. Kyrpides1* 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 5 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 6 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 7 University of Regensburg, Archaeenzentrum, Regensburg, Germany 8 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Nikos C. -
Altering the Gut Microbiome of Cattle: Considerations of Host-Microbiome Interactions for Persistent Microbiome Manipulation
Microbial Ecology https://doi.org/10.1007/s00248-018-1234-9 HOST MICROBE INTERACTIONS Altering the Gut Microbiome of Cattle: Considerations of Host-Microbiome Interactions for Persistent Microbiome Manipulation Brooke A. Clemmons1 & Brynn H. Voy1 & Phillip R. Myer1 Received: 18 September 2017 /Accepted: 16 July 2018 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract The beef cattle industry represents a significant portion of the USA’s agricultural sect, with beef cattle accounting for the most red meat consumed in the USA. Feed represents the largest input cost in the beef industry, accounting for approximately 70% of total input cost. Given that, novel methods need to be employed to optimize feed efficiency in cattle to reduce monetary cost as well as environmental cost associated with livestock industries, such as methane production and nitrogen release into the environment. The rumen microbiome contributes to feed efficiency by breaking down low-quality feedstuffs into energy substrates that can subsequently be utilized by the host animal. Attempts to manipulate the rumen microbiome have been met with mixed success, though persistent changes have not yet been achieved beyond changing diet. Recent technological advances have made analyzing host-wide effects of the rumen microbiome possible, as well as provided finer resolution of those effects. This manuscript reviews contributing factors to the rumen microbiome establishment or re-establishment following rumen microbiome perturbation, as well as host-microbiome interactions that may be responsible for possible host specificity of the rumen microbiome. Understanding and accounting for the variety of factors contributing to rumen microbiome establishment or re-establishment in cattle will ultimately lead to identification of biomarkers of feed efficiency that will result in improved selection criteria, as well as aid to determine methods for persistent microbiome manipulation to optimize production phenotypes. -
Biosynthesis of Conjugated Linoleic Acid and Its Incorporation Into Ruminant's Products**
306 Biosynthesis of Conjugated Linoleic Acid and Its Incorporation into Ruminant’s Products** Man K. Song* and John J. Kennelly1 Department of Animal Science, Chungbuk National University, Cheongju 361-763, Korea ABSTRACT : Bio-hydrogenation of C18-unsaturated fatty acids released from the hydrolysis of dietary lipids in the rumen, in general, occurs rapidly but the range of hydrogenation is quite large, depending on the degree of unsaturation of fatty acids, the configuration of unsaturated fatty acids, microbial type and the experimental condition. Conjugated linoleic acid (CLA) is incompletely hydrogenated products by rumen microorganisms in ruminant animals. It has been shown to have numerous potential benefits for human health and the richest dietary sources of CLA are bovine milk and milk products. The cis-9, trans-11 is the predominant CLA isomer in bovine products and other isomers can be formed with double bonds in positions 8/10, 10/12, or 11/13. The term CLA refers to this whole group of 18 carbon conjugated fatty acids. Alpha-linolenic acid goes through a similar bio-hydrogenation process producing trans-11 C18:1 and C18:0, but may not appear to produce CLA as an intermediate. Although the CLA has been mostly derived from the dietary C18:2 alternative pathway may be existed due to the extreme microbial diversity in the reticulo-rumen. Regardless of the origin of CLA, manipulation of the bio-hydrogenation process remains the key to increasing CLA in milk and beef by dietary means, by increasing rumen production of CLA. Although the effect of oil supplementation on changes in fatty acid composition in milk seems to be clear its effect on beef is still controversial. -
Amino Acids in Rumen Escape Protein COOPERATIVE EXTENSION
UC COOPERATIVE EXTENSION CE UNIVERSITY OF CALIFORNIA, DAVIS Amino Acids in Rumen Escape Protein 3. Plant and Non-Plant Source Protein Meals P.H. Robinson Cooperative Extension Specialist University of California, Davis, CA 95616-8521 Dairy cattle require dietary nitrogen and proteins to meet the requirements of their ruminal populations of microorganisms. If ruminal microorganisms, particularly bacteria, become nitrogen deficient then their growth and fermentative activity can be restricted leading to reduced digestion of structural carbohydrates and declining levels of feed intake. These microorganisms, which die and wash out of the rumen to the small intestine, provide a substantial proportion of the protein which is absorbed from the small intestine of the animal to meet the animal’s metabolic requirements for amino acids, which are the building blocks of proteins. However, with the exception of the lowest producing bovines, the microbial contribution alone is seldom sufficient to meet these metabolic requirements making enhancement of intestinally delivered supplies of protein from dietary feed sources critical if the animal is to reach its genetic potential for productivity. Plant and non-plant source protein meals comprise a portion of most successful rations for lactating dairy cows. These feedstuffs are typically added to the diet primarily to contribute protein, often intestinally absorbable protein, but also contribute variable quantities of non-structural carbohydrates that are available to be fermented by microbes in the rumen. Protein meals containing between 40 and 90% crude protein, of which 20 to 70% escapes the rumen undegraded, that is fed at 5% to 15% of total dry matter intake to high producing dairy cows will supply between 500 and 1000 g of intestinally absorbable amino acids. -
Longitudinal Evaluation of Fecal Microbiota Transplantation for Ameliorating Calf Diarrhea and Improving Growth Performance
ARTICLE https://doi.org/10.1038/s41467-020-20389-5 OPEN Longitudinal evaluation of fecal microbiota transplantation for ameliorating calf diarrhea and improving growth performance Hyun Sik Kim1,5, Tae Woong Whon1,3,5, Hojun Sung1, Yun-Seok Jeong1, Eun Sung Jung 2, Na-Ri Shin1,4, ✉ Dong-Wook Hyun1, Pil Soo Kim1, June-Young Lee1, Choong Hwan Lee2 & Jin-Woo Bae 1 1234567890():,; Calf diarrhea is associated with enteric infections, and also provokes the overuse of anti- biotics. Therefore, proper treatment of diarrhea represents a therapeutic challenge in live- stock production and public health concerns. Here, we describe the ability of a fecal microbiota transplantation (FMT), to ameliorate diarrhea and restore gut microbial compo- sition in 57 growing calves. We conduct multi-omics analysis of 450 longitudinally collected fecal samples and find that FMT-induced alterations in the gut microbiota (an increase in the family Porphyromonadaceae) and metabolomic profile (a reduction in fecal amino acid con- centration) strongly correlate with the remission of diarrhea. During the continuous follow-up study over 24 months, we find that FMT improves the growth performance of the cattle. This first FMT trial in ruminants suggest that FMT is capable of ameliorating diarrhea in pre- weaning calves with alterations in their gut microbiota, and that FMT may have a potential role in the improvement of growth performance. 1 Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea. 2 Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea. 3Present address: Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea. -
Ruminant Animal? Many Different Species of Ruminant Animals Are Found Around the World
What is a Ruminant Animal? Many different species of ruminant animals are found around the world. Ruminants include cattle, sheep, goats, buffalo, deer, elk, giraffes and camels. These animals all have a digestive system that is uniquely different from our own. Instead of one compartment to the stomach they have four. Of the four compartments the rumen is the largest section and the main digestive centre. The rumen is filled with billions of tiny microorganisms that are able to break down grass and other coarse vegetation that animals with one stomach (including humans, chickens and pigs) cannot digest. Ruminant animals do not completely chew the grass or vegetation they eat. The partially chewed grass goes into the large rumen where it is stored and broken down into balls of “cud”. When the animal has eaten its fill it will rest and “chew its cud”. The cud is then swallowed once again where it will pass into the next three compartments—the reticulum, the omasum and the true stomach, the abomasum. Dairy calves have a four-part stomach when they are born. However, they function primarily as a monogastric (simple-stomached) animal during the first part of their lives. At birth the first three compartments of a calf’s stomach—rumen, reticulum, and omasum—are inactive and undeveloped. As the calf grows and begins to eat a variety of feeds, its stomach compartments also begin to grow and change. The abomasum constitutes nearly 60 percent of the young calf’s stomach, decreasing to about 8 percent in the mature cow. The rumen comprises about 25 percent of the young calf’s stomach, increasing to 80 percent in the mature cow. -
Methane Production in Ruminant Animals: Implication for Their Impact on Climate Change
Concepts of Dairy & Veterinary Sciences DOI: ISSN: 2637-4749 10.32474/CDVS.2019.02.000142Review Article Methane Production in Ruminant Animals: Implication for Their Impact on Climate Change Mebrate Getabalew1, Tewodros Alemneh2* and Dawit Akeberegn3 1College of Agricultural and Natural Resource Science, Department of Animal Science, Debre Berhan University, Ethiopia 2Woreta Town Office of Agriculture and Environmental Protection, South Gondar Zone, Amhara Regional State, Ethiopia 3Debre Berhan City Municipality Office, Meat Inspection and Hygiene, Amhara Regional State, Ethiopia *Corresponding author: Tewodros Alemneh, Woreta Town Office of Agriculture and Environmental Protection, South Gondar Zone, Amhara Regional State, Ethiopia Received: Published: January 03, 2019 April 04, 2019 Abstract Agriculture accounts for about 47%-56% of the total anthropogenic methane (CH4) emission. It is known that from the agricultural sector, ruminant livestock (dairy, beef, goats, and sheep) substantially contributes to the increase in CH4 production through continuous natural rumen fermentation process. Methane emission is now the second contributor to global warming, which it has 23 times more influence than that of carbon dioxide (CO2). Many factors affect the amount of ruminant CH4 production, including level of feed intake, type and quality of feeds, energy consumption, animal size, growth rate, level of production, and environmental temperature. Methane also produced from manure of animals depending on the physical form of the faeces, the amount of digestible material, the climate, and the time they remained intact. The major part of methanogenesis in ruminants occurs in the large fermentative chamber, which is rumen. Ruminal digestion of feed by microorganisms, under anaerobic conditions, results in the production of acetate, propionate and butyrate (volatile fatty acids) which are used by the animal as energy source, and production of ruminal gases such as carbon dioxide (CO2) and CH4, which eliminated through eructation. -
The Present Role and New Potentials of Anaerobic Fungi in Ruminant Nutrition
Journal of Fungi Review The Present Role and New Potentials of Anaerobic Fungi in Ruminant Nutrition Thomas Hartinger * and Qendrim Zebeli Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; [email protected] * Correspondence: [email protected] Abstract: The ruminal microbiota allows ruminants to utilize fibrous feeds and is in the limelight of ruminant nutrition research for many years. However, the overwhelming majority of investigations have focused on bacteria, whereas anaerobic fungi (AF) have been widely neglected by ruminant nutritionists. Anaerobic fungi are not only crucial fiber degraders but also important nutrient sources for the host. This review summarizes the current findings on AF and, most importantly, discusses their new application potentials in modern ruminant nutrition. Available data suggest AF can be applied as direct-fed microbials to enhance ruminal fiber degradation, which is indeed of interest for high-yielding dairy cows that often show depressed ruminal fibrolysis in response to high-grain feeding. Moreover, these microorganisms have relevance for the nutrient supply and reduction of methane emissions. However, to reach AF-related improvements in ruminal fiber breakdown and animal performance, obstacles in large-scale AF cultivation and applicable administration options need to be overcome. At feedstuff level, silage production may benefit from the application of fungal enzymes that cleave lignocellulosic structures and consequently enable higher energy exploitation from forages in the rumen. Concluding, AF hold several potentials in improving ruminant feeding and future research efforts are called for to harness these potentials. Citation: Hartinger, T.; Zebeli, Q. Keywords: additive; anaerobic digestion; cattle; enzyme; anaerobic fungi; herbivore; Neocalli- The Present Role and New Potentials mastigomycota; rumen; silage of Anaerobic Fungi in Ruminant Nutrition. -
Session 2019-20
S.N. CONTENTS Page 1. Taxonomy 1 2. H Taxonomy 10 3. K M 14 4. K Protista 32 5. K Fungi 37 6. P Kngdom 53 A. A 53 B. B 62 C. Pteridophyta 66 D. Gymnosperms 71 7. Eerci-I (Cceptua Qti) 83 RLD 8. Eer-II (Previou Y Qestio)2019-20100 9. Eer-III (Analytica Q) 118 10. Eer-IV (Asser & R) 128 11. Virus 132 12. Lchen 135 13. MrrhizaSession 137 14. T World 138 E ALLEN NEET SYLLABUS DIVERSITY IN LIVING WORLD : What is living? ; Biodiversity; Need for classification; Three domains of life; Taxonomy & Systematics; Concept of species and taxonomical hierarchy; Binomial nomenclature; Tools for study of Taxonomy – Museums, Zoos, Herbaria, Botanical gardens. Five kingdom classification; salient features and classification of Monera; Protista and Fungi into major groups; Lichens; Viruses and Viroids. Salient features and classification of plants into major groups-Algae, Bryophytes, Pteridophytes, Gymnosperms and Angiosperms (three to five salient and distinguishing features and at least two examples of each category); Angiosperms- classification up to class, characteristic features and examples). Aristotle (384-322 BC) He was a Greek philosopher and scientist born in the city of Stagira, Chalkidice of classical Greece. His father died when Aristotle was a child. At eighteen, he joined Plato's Academy in Athens and remained there until the age of thirty seven (c.347 BC). His writings cover many subjects including physics, biology, zoology, metaphysics, poetry, politics and government. Shortly after Plato died, Aristotle left Athens and, at the request of Philip of Macedon, tutored Alexander the Great. Aristotle was the first genuine scientist in history and every scientist is in his debt.He is regarded as father of biology and zoology. -
Owenweeksia Hongkongensis UST20020801T
Lawrence Berkeley National Laboratory Recent Work Title Genome sequence of the orange-pigmented seawater bacterium Owenweeksia hongkongensis type strain (UST20020801(T)). Permalink https://escholarship.org/uc/item/8734g6jx Journal Standards in genomic sciences, 7(1) ISSN 1944-3277 Authors Riedel, Thomas Held, Brittany Nolan, Matt et al. Publication Date 2012-10-01 DOI 10.4056/sigs.3296896 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2012) 7:120-130 DOI:10.4056/sigs.3296896 Genome sequence of the orange-pigmented seawater bacterium Owenweeksia hongkongensis type strain (UST20020801T) Thomas Riedel1, Brittany Held2,3, Matt Nolan2, Susan Lucas2, Alla Lapidus2, Hope Tice2, Tijana Glavina Del Rio2, Jan-Fang Cheng2, Cliff Han2,3, Roxanne Tapia2,3, Lynne A. Goodwin2,3, Sam Pitluck2, Konstantinos Liolios2, Konstantinos Mavromatis2, Ioanna Pagani2, Natalia Ivanova2, Natalia Mikhailova2, Amrita Pati2, Amy Chen4, Krishna Palaniappan4, Manfred Rohde1, Brian J. Tindall6, John C. Detter2,3, Markus Göker6, Tanja Woyke2, James Bristow2, Jonathan A. Eisen2,7, Victor Markowitz4, Philip Hugenholtz2,8, Hans-Peter Klenk6*, and Nikos C. Kyrpides2 1 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 2 DOE Joint Genome Institute, Walnut Creek, California, USA 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 5 Oak -
Characterization of Anaerobic Rumen Fungal Community Composition in Yak, Tibetan Sheep and Small Tail Han Sheep Grazing on the Qinghai-Tibetan Plateau
animals Article Characterization of Anaerobic Rumen Fungal Community Composition in Yak, Tibetan Sheep and Small Tail Han Sheep Grazing on the Qinghai-Tibetan Plateau Wei Guo 1, Weiwei Wang 1, Sisi Bi 2, Ruijun Long 2, Farman Ullah 3, Muhammad Shafiq 4 , Mi Zhou 5,* and Ying Zhang 6,* 1 State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; [email protected] (W.G.); [email protected] (W.W.) 2 School of Life Sciences, Lanzhou University, Lanzhou 730020, China; [email protected] (S.B.); [email protected] (R.L.) 3 Department of Animal Breeding and Genetics, Lasbela University of Agriculture Water and Marine Sciences, Uthal 90150, Pakistan; [email protected] 4 College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; drshafi[email protected] 5 Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada 6 School of Public Health, Lanzhou University, Lanzhou 730020, China * Correspondence: [email protected] (M.Z.); [email protected] (Y.Z.) Received: 30 November 2019; Accepted: 14 January 2020; Published: 16 January 2020 Simple Summary: Anaerobic rumen fungi play a vital role in fiber degradation. The objective of this study was to compare the anaerobic rumen fungal communities of full grazing ruminants in the Qinghai-Tibetan Plateau. Our results showed that the anaerobic rumen fungal community was affected by host species and the dynamic associations of them were host specific. This is the first study exploring the anaerobic rumen fungi in the full-grazing ruminants, which could lay a solid foundation to really identify fiber degradation fungal taxa using culture-dependent techniques in the future.