Methane Production in Ruminant Animals: Implication for Their Impact on Climate Change
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ruminal Protection and Intestinal Availability of Rumen-Protected Methionine and Lysine in Lactating Dairy Cows
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2019 Ruminal Protection and Intestinal Availability of Rumen-Protected Methionine and Lysine in Lactating Dairy Cows Sara Menchu Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Dairy Science Commons Recommended Citation Menchu, Sara, "Ruminal Protection and Intestinal Availability of Rumen-Protected Methionine and Lysine in Lactating Dairy Cows" (2019). All Graduate Theses and Dissertations. 7451. https://digitalcommons.usu.edu/etd/7451 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. RUMINAL PROTECTION AND INTESTINAL AVAILABILITY OF RUMEN- PROTECTED METHIONINE AND LYSINE IN LACTATING DAIRY COWS by Sara Menchu A thesis submitted in partial fulfillment of requirements for the degree of MASTER OF SCIENCE in Animal, Dairy, and Veterinary Sciences Approved: Jeffery O. Hall, D.V.M., Ph.D. Jong-Su Eun, Ph.D. Major Professor Committee Member Kerry A. Rood, M.S., D.V.M., M.P.H. Richard S. Inouye, Ph.D. Committee Member Vice Provost for Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2019 Copyright © Sara Menchu 2019 All Rights Reserved iii ABSTRACT Ruminal Protection and Intestinal Availability of Rumen-Protected Methionine and Lysine in Lactating Dairy Cows by Sara S. Menchu, Master of Science Utah State University, 2019 Major Professor: Dr. Jeffery O. Hall Department: Animal, Dairy, and Veterinary Sciences Rumen protected Methionine (MET) and Lysine (LYS) are critical for milk protein synthesis in dairy cows. -
Greenhouse Gas Emissions from Ruminant Supply Chains – a Global
5. Discussion This section discusses the key drivers of variation in emissions from major process- es in the ruminant supply chain that contribute significantly to the carbon footprint of ruminant species, highlighting differences among species and world regions. The section also discusses some of the parameters and assumptions that could strongly influence the results. 5.1 METHANE EMISSIONS FROM ENTERIC FERMENTATION Regardless of the species, the largest source of GHG emissions in ruminant produc- tion is CH4, with more than 90 percent originating from enteric fermentation and the rest from manure. Globally, enteric fermentation from cattle, buffalo, and small ruminants contributes 2 448 million tonnes CO2-eq, of which 76 percent is emitted by cattle and 14 percent and 10 percent by buffalo and small ruminants, respec- tively. The production of enteric CH4 from ruminants is mainly affected by feed intake and feed quality which, in turn, defines the total energy and nutrient intake and consequently animal performance. Many of these factors are interrelated, some of which affect net emissions and others emission intensity. At animal level, net emissions are influenced by feed intake and digestibility, while emission intensity is a function of net emissions, yield per animal, health and genetics. At herd level, factors affecting net emissions are similar to those cited above, while emission intensity is determined by issues such as reproductive and mortality rates, herd structure, management, etc. The following sections discuss some of the important factors that drive the variation in enteric CH4. Productivity. Productivity is an important factor in explaining the variation of emissions among different production typologies. -
Altering the Gut Microbiome of Cattle: Considerations of Host-Microbiome Interactions for Persistent Microbiome Manipulation
Microbial Ecology https://doi.org/10.1007/s00248-018-1234-9 HOST MICROBE INTERACTIONS Altering the Gut Microbiome of Cattle: Considerations of Host-Microbiome Interactions for Persistent Microbiome Manipulation Brooke A. Clemmons1 & Brynn H. Voy1 & Phillip R. Myer1 Received: 18 September 2017 /Accepted: 16 July 2018 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract The beef cattle industry represents a significant portion of the USA’s agricultural sect, with beef cattle accounting for the most red meat consumed in the USA. Feed represents the largest input cost in the beef industry, accounting for approximately 70% of total input cost. Given that, novel methods need to be employed to optimize feed efficiency in cattle to reduce monetary cost as well as environmental cost associated with livestock industries, such as methane production and nitrogen release into the environment. The rumen microbiome contributes to feed efficiency by breaking down low-quality feedstuffs into energy substrates that can subsequently be utilized by the host animal. Attempts to manipulate the rumen microbiome have been met with mixed success, though persistent changes have not yet been achieved beyond changing diet. Recent technological advances have made analyzing host-wide effects of the rumen microbiome possible, as well as provided finer resolution of those effects. This manuscript reviews contributing factors to the rumen microbiome establishment or re-establishment following rumen microbiome perturbation, as well as host-microbiome interactions that may be responsible for possible host specificity of the rumen microbiome. Understanding and accounting for the variety of factors contributing to rumen microbiome establishment or re-establishment in cattle will ultimately lead to identification of biomarkers of feed efficiency that will result in improved selection criteria, as well as aid to determine methods for persistent microbiome manipulation to optimize production phenotypes. -
Estimation of Methane Emissions and Dietary Interventions for Mitigation
sustainability Review Towards Sustainable Livestock Production: Estimation of Methane Emissions and Dietary Interventions for Mitigation Pragna Prathap 1 , Surinder Singh Chauhan 1 , Brian Joseph Leury 1, Jeremy James Cottrell 1 and Frank Rowland Dunshea 1,2,* 1 Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; [email protected] (P.P.); [email protected] (S.S.C.); [email protected] (B.J.L.); [email protected] (J.J.C.) 2 Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK * Correspondence: [email protected] Abstract: The increasing need for sustainable livestock production demands more research in the field of greenhouse gas (GHG), particularly methane (CH4), measurement and mitigation. Dietary interventions, management, and biotechnological strategies to reduce the environmental impacts and economic implications of enteric CH4 emissions are needed. While the use of biotechnological interventions and management strategies can be challenging on a routine basis, feed additive supple- mentation appears to be the most researched, developed, and ready to use strategy to mitigate enteric CH4 emissions. This paper discusses various recently developed feeding strategies to reduce enteric CH4 emissions in livestock. Additionally, the manuscript reviews various technologies developed for CH4 estimation since the accurate and reliable estimation of CH4 emissions can be a limiting step Citation: Prathap, P.; Chauhan, S.S.; in the development and adoption of any mitigation strategy. Leury, B.J.; Cottrell, J.J.; Dunshea, F.R. Towards Sustainable Livestock Keywords: climate change; livestock production; methane estimation; nutritional strategies; in vitro Production: Estimation of Methane fermentation; gas chambers Emissions and Dietary Interventions for Mitigation. -
Greenhouse Gas Mitigation Options and Costs for Agricultural Land and Animal Production Within the United States
Greenhouse Gas Mitigation Options and Costs for Agricultural Land and Animal Production within the United States ICF International February 2013 Greenhouse Gas Mitigation Options and Costs for Agricultural Land and Animal Production within the United States Prepared by: ICF International 1725 I St NW, Suite 1000 Washington, DC 20006 For: U.S. Department of Agriculture Climate Change Program Office Washington, DC February 2013 Greenhouse Gas Mitigation Options and Costs for Agricultural Land and Animal Production within the United States Preparation of this report was done under USDA Contract No. AG-3142-P-10-0214 in support of the project: Greenhouse Gas Mitigation Options and Costs for Agricultural Land and Animal Production within the United States. This draft report was provided to USDA under contract by ICF International and is presented in the form in which it was received from the contractor. Any views presented are those of the authors and are not necessarily the views of or endorsed by USDA. For more information, contact the USDA Climate Change Program Office by email at [email protected], fax (202) 401-1176, or phone (202) 720-6699. Cover Photo Credit: (Middle Photo) California Bioenergy LLC, Dairy Biogas Project, Bakersfield, CA. How to Obtain Copies: You may electronically download this document from the U.S. Department of Agriculture’s Web site at: http://www.usda.gov/oce/climate_change/mitigation_technologies/GHGMitigationProduction_Cost.htm For Further Information Contact: Jan Lewandrowski, USDA Project Manager ([email protected]) -
Sheep and Goat Production: Basic Differences, Impact on Climate and Molecular Tools for Rumen Microbiome Study
Int.J.Curr.Microbiol.App.Sci (2014) 3(1): 684-706 ISSN: 2319-7706 Volume 3 Number 1 (2014) pp. 684-706 http://www.ijcmas.com Review Article Sheep and goat production: basic differences, impact on climate and molecular tools for rumen microbiome study A.R.Agrawal1, S. A. Karim2, Rajiv Kumar2, A.Sahoo2 and P. J. John1 1Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, India 2Central Sheep and Wool Research Institute, Avikanagar, Tonk, Rajasthan, India *Corresponding author e-mail: A B S T R A C T Small ruminants are able to utilize the lingo-cellulosic materials and convert them to animal products of high nutritional value viz. meat, milk, wool/fur, hide and manure. However ruminants are also contributing towards green house gas emission. Like large ruminants, these fore gut fermenters also harbor a dense and diverse microbial population belonging to different group of flora and fauna. The mammalian system is K e y w o r d s devoid of enzymes cellulase to degrade structural carbohydrate while ruminants are able to degrade them by the enzymes elaborated by symbiotic microbes inhabiting in Sheep; the rumen. Importance of small ruminants in Indian economy lies in their smaller size, Goats; Rumen which is easy to graze and manage. Sheep and goat production is an integral microbiome; component of rural economy of India and serves as major source of economic Green House sustenance for weaker segments of the society in the hot semiarid and arid region. gas; Sheep and goats are closely related since both belong to subfamily Caprinae whereas Differences they are separate species. -
Enteric Methane and Nitrogen Emissions in Beef Cattle Grazing a Tannin-Containing Legume Relative to Feedlot and Traditional Pasture-Based Production Systems
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 12-2019 Enteric Methane and Nitrogen Emissions in Beef Cattle Grazing a Tannin-Containing Legume Relative to Feedlot and Traditional Pasture-Based Production Systems Raúl David Guevara Ballesteros Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Agriculture Commons Recommended Citation Ballesteros, Raúl David Guevara, "Enteric Methane and Nitrogen Emissions in Beef Cattle Grazing a Tannin-Containing Legume Relative to Feedlot and Traditional Pasture-Based Production Systems" (2019). All Graduate Theses and Dissertations. 7666. https://digitalcommons.usu.edu/etd/7666 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. ENTERIC METHANE AND NITROGEN EMISSIONS IN BEEF CATTLE GRAZING A TANNIN-CONTAINING LEGUME RELATIVE TO FEEDLOT AND TRADITIONAL PASTURE-BASED PRODUCTION SYSTEMS by Raúl David Guevara Ballesteros A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Range Science Approved: _________________________ _________________________ Juan J. Villalba, Ph.D. Jennifer W. MacAdam, Ph.D. Major Professor Committee Member _________________________ _________________________ Eric Thacker, Ph.D. Richard S. Inouye, Ph.D. Committee Member Vice Provost for Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2019 ii Copyright © Raúl David Guevara Ballesteros 2019 All Rights Reserved iii ABSTRACT Enteric Methane and Nitrogen Emissions in Beef Cattle Grazing a Tannin-containing Legume Relative to Feedlot and Traditional Pasture-based Production Systems by Raúl David Guevara Ballesteros, Master of Science Utah State University, 2019 Major Professor: Dr. -
Biosynthesis of Conjugated Linoleic Acid and Its Incorporation Into Ruminant's Products**
306 Biosynthesis of Conjugated Linoleic Acid and Its Incorporation into Ruminant’s Products** Man K. Song* and John J. Kennelly1 Department of Animal Science, Chungbuk National University, Cheongju 361-763, Korea ABSTRACT : Bio-hydrogenation of C18-unsaturated fatty acids released from the hydrolysis of dietary lipids in the rumen, in general, occurs rapidly but the range of hydrogenation is quite large, depending on the degree of unsaturation of fatty acids, the configuration of unsaturated fatty acids, microbial type and the experimental condition. Conjugated linoleic acid (CLA) is incompletely hydrogenated products by rumen microorganisms in ruminant animals. It has been shown to have numerous potential benefits for human health and the richest dietary sources of CLA are bovine milk and milk products. The cis-9, trans-11 is the predominant CLA isomer in bovine products and other isomers can be formed with double bonds in positions 8/10, 10/12, or 11/13. The term CLA refers to this whole group of 18 carbon conjugated fatty acids. Alpha-linolenic acid goes through a similar bio-hydrogenation process producing trans-11 C18:1 and C18:0, but may not appear to produce CLA as an intermediate. Although the CLA has been mostly derived from the dietary C18:2 alternative pathway may be existed due to the extreme microbial diversity in the reticulo-rumen. Regardless of the origin of CLA, manipulation of the bio-hydrogenation process remains the key to increasing CLA in milk and beef by dietary means, by increasing rumen production of CLA. Although the effect of oil supplementation on changes in fatty acid composition in milk seems to be clear its effect on beef is still controversial. -
Amino Acids in Rumen Escape Protein COOPERATIVE EXTENSION
UC COOPERATIVE EXTENSION CE UNIVERSITY OF CALIFORNIA, DAVIS Amino Acids in Rumen Escape Protein 3. Plant and Non-Plant Source Protein Meals P.H. Robinson Cooperative Extension Specialist University of California, Davis, CA 95616-8521 Dairy cattle require dietary nitrogen and proteins to meet the requirements of their ruminal populations of microorganisms. If ruminal microorganisms, particularly bacteria, become nitrogen deficient then their growth and fermentative activity can be restricted leading to reduced digestion of structural carbohydrates and declining levels of feed intake. These microorganisms, which die and wash out of the rumen to the small intestine, provide a substantial proportion of the protein which is absorbed from the small intestine of the animal to meet the animal’s metabolic requirements for amino acids, which are the building blocks of proteins. However, with the exception of the lowest producing bovines, the microbial contribution alone is seldom sufficient to meet these metabolic requirements making enhancement of intestinally delivered supplies of protein from dietary feed sources critical if the animal is to reach its genetic potential for productivity. Plant and non-plant source protein meals comprise a portion of most successful rations for lactating dairy cows. These feedstuffs are typically added to the diet primarily to contribute protein, often intestinally absorbable protein, but also contribute variable quantities of non-structural carbohydrates that are available to be fermented by microbes in the rumen. Protein meals containing between 40 and 90% crude protein, of which 20 to 70% escapes the rumen undegraded, that is fed at 5% to 15% of total dry matter intake to high producing dairy cows will supply between 500 and 1000 g of intestinally absorbable amino acids. -
Longitudinal Evaluation of Fecal Microbiota Transplantation for Ameliorating Calf Diarrhea and Improving Growth Performance
ARTICLE https://doi.org/10.1038/s41467-020-20389-5 OPEN Longitudinal evaluation of fecal microbiota transplantation for ameliorating calf diarrhea and improving growth performance Hyun Sik Kim1,5, Tae Woong Whon1,3,5, Hojun Sung1, Yun-Seok Jeong1, Eun Sung Jung 2, Na-Ri Shin1,4, ✉ Dong-Wook Hyun1, Pil Soo Kim1, June-Young Lee1, Choong Hwan Lee2 & Jin-Woo Bae 1 1234567890():,; Calf diarrhea is associated with enteric infections, and also provokes the overuse of anti- biotics. Therefore, proper treatment of diarrhea represents a therapeutic challenge in live- stock production and public health concerns. Here, we describe the ability of a fecal microbiota transplantation (FMT), to ameliorate diarrhea and restore gut microbial compo- sition in 57 growing calves. We conduct multi-omics analysis of 450 longitudinally collected fecal samples and find that FMT-induced alterations in the gut microbiota (an increase in the family Porphyromonadaceae) and metabolomic profile (a reduction in fecal amino acid con- centration) strongly correlate with the remission of diarrhea. During the continuous follow-up study over 24 months, we find that FMT improves the growth performance of the cattle. This first FMT trial in ruminants suggest that FMT is capable of ameliorating diarrhea in pre- weaning calves with alterations in their gut microbiota, and that FMT may have a potential role in the improvement of growth performance. 1 Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea. 2 Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea. 3Present address: Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea. -
Ruminant Animal? Many Different Species of Ruminant Animals Are Found Around the World
What is a Ruminant Animal? Many different species of ruminant animals are found around the world. Ruminants include cattle, sheep, goats, buffalo, deer, elk, giraffes and camels. These animals all have a digestive system that is uniquely different from our own. Instead of one compartment to the stomach they have four. Of the four compartments the rumen is the largest section and the main digestive centre. The rumen is filled with billions of tiny microorganisms that are able to break down grass and other coarse vegetation that animals with one stomach (including humans, chickens and pigs) cannot digest. Ruminant animals do not completely chew the grass or vegetation they eat. The partially chewed grass goes into the large rumen where it is stored and broken down into balls of “cud”. When the animal has eaten its fill it will rest and “chew its cud”. The cud is then swallowed once again where it will pass into the next three compartments—the reticulum, the omasum and the true stomach, the abomasum. Dairy calves have a four-part stomach when they are born. However, they function primarily as a monogastric (simple-stomached) animal during the first part of their lives. At birth the first three compartments of a calf’s stomach—rumen, reticulum, and omasum—are inactive and undeveloped. As the calf grows and begins to eat a variety of feeds, its stomach compartments also begin to grow and change. The abomasum constitutes nearly 60 percent of the young calf’s stomach, decreasing to about 8 percent in the mature cow. The rumen comprises about 25 percent of the young calf’s stomach, increasing to 80 percent in the mature cow. -
The Present Role and New Potentials of Anaerobic Fungi in Ruminant Nutrition
Journal of Fungi Review The Present Role and New Potentials of Anaerobic Fungi in Ruminant Nutrition Thomas Hartinger * and Qendrim Zebeli Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; [email protected] * Correspondence: [email protected] Abstract: The ruminal microbiota allows ruminants to utilize fibrous feeds and is in the limelight of ruminant nutrition research for many years. However, the overwhelming majority of investigations have focused on bacteria, whereas anaerobic fungi (AF) have been widely neglected by ruminant nutritionists. Anaerobic fungi are not only crucial fiber degraders but also important nutrient sources for the host. This review summarizes the current findings on AF and, most importantly, discusses their new application potentials in modern ruminant nutrition. Available data suggest AF can be applied as direct-fed microbials to enhance ruminal fiber degradation, which is indeed of interest for high-yielding dairy cows that often show depressed ruminal fibrolysis in response to high-grain feeding. Moreover, these microorganisms have relevance for the nutrient supply and reduction of methane emissions. However, to reach AF-related improvements in ruminal fiber breakdown and animal performance, obstacles in large-scale AF cultivation and applicable administration options need to be overcome. At feedstuff level, silage production may benefit from the application of fungal enzymes that cleave lignocellulosic structures and consequently enable higher energy exploitation from forages in the rumen. Concluding, AF hold several potentials in improving ruminant feeding and future research efforts are called for to harness these potentials. Citation: Hartinger, T.; Zebeli, Q. Keywords: additive; anaerobic digestion; cattle; enzyme; anaerobic fungi; herbivore; Neocalli- The Present Role and New Potentials mastigomycota; rumen; silage of Anaerobic Fungi in Ruminant Nutrition.