Microbial Community Analysis of the University of Wisconsin Oshkosh Dry Biodigester

Total Page:16

File Type:pdf, Size:1020Kb

Microbial Community Analysis of the University of Wisconsin Oshkosh Dry Biodigester UNIVERSITY OF WISCONSIN SYSTEM SOLID WASTE RESEARCH PROGRAM Student Project Report Microbial Community Analysis of the University of Wisconsin Oshkosh Dry Biodigester May 2015 Student Investigator: Jessi Zimmerman Advisor: Dr. Eric Matson University of Wisconsin-Oshkosh 1 Abstract In natural environments, heterotrophic bacteria and methanogenic Archaea assist in the degradation of organic waste, which results in the production of a mixture of carbon dioxide and methane gas, together known as biogas. In the UW-Oshkosh dry anaerobic biodigester, these same naturally occurring microbial processes are utilized to benefit the University and surrounding community. Organic waste produced by local farms, grocery stores, and residential households are collected and delivered to the biodigester facility rather than being added to landfills. These waste products serve as the feedstock for biogas production. The combustible biogas is captured and used as fuel for a combined heat and power generator, which meets about 10% of the campus electricity demand and helps to heat the digester and other nearby campus facilities. The process reduces the University’s operating costs while diverting some forms of municipal waste away from landfills and provides a cleaner alternative to fossil fuels. The composition of the incoming feedstock is closely monitored as are the physicochemical conditions such as temperature, pH and hydration. These are measured at the beginning and throughout the cycle, because they can influence methane output. What is not measured (and not currently known) is how the growth of microbial species changes throughout the course of the digestion cycle. In particular, changes that may occur in methanogenic species richness and relative abundance are likely to influence biogas quality and output. Therefore, the aims of this study were to 1) extract and purify DNA samples suitable for genomic and metagenomic analysis from the microbial community at time points that span the duration of a digestion cycle and 2) measure community dynamics in some of these samples using high-throughput next- generation sequencing (NGS). Biodigester samples collected and sequenced from two digester bays showed that methanogenic Archaea populations change markedly over time and differ between separate digestion cycles. Through understanding how these populations are changing, this research may help to identify conditions that could stimulate rapid growth and 2 prolonged maintenance of methanogen populations and, thus, improve the efficiency of methane production in the biodigester. Statement of Objectives The primary objective of this project was to obtain high-quality microbial community DNA samples from two fermentation chambers of the UW-Oshkosh biodigester over the course of a 28-day cycle. These samples will allow researchers to examine several aspects of the Archaeal communities - now and in years to come. The sample collection will be used for species-based assessments of community structure, such as in the current study and functional gene-based studies in future research. The secondary objective was to use universal PCR primers to amplify Archaeal SSU rRNA genes from the microbial community DNA samples and to sequence the resulting amplicons. The SSU rRNA sequencing data provides species identity data as well as frequency of occurrence throughout the biodigester cycle. Analyses that reveal structural changes to the community over the course of a cycle and between digester cycles will be compared to data on physicochemical conditions in the biodigester bays. Together, these comparisons will show how the microbial community may be responding to conditions within the digester throughout the cycle. Introduction The biodigester on the UW-Oshkosh campus (Fig. 1) is the only commercial dry biodigester in the Western hemisphere and has been in operation since the fall of 2011 (Innovations in Sustainability and Renewable Energy, 2014). Because it is a “dry” biodigester, the input material used has a moisture content of 75% or less (BIOFerm Energy Systems, 2011). The majority of the input consists of organic materials such as food, agriculture and yard waste from 3 campus, local community sources and additional area partners (Innovations in Sustainability and Renewable Energy, 2014). Figure 1. UW-Oshkosh biodigester facility located at 755 Dempsey Trail, Oshkosh, WI. The organic waste is loaded into individual fermentation chambers (Fig. 2) and liquid percolate, which is rich in microorganisms such as methanogenic Archaea, is sprayed over the feedstock to assist in decomposition and methane production (BIOFerm Energy Systems, 2011). The organic waste is broken down throughout a series of steps, collectively known as anaerobic digestion (AD), which results in the production of carbon dioxide and methane, or biogas. The biogas is captured and combusted to produce heat and electricity. This environmentally beneficial process provides clean, renewable energy while reducing and reusing organic wastes. The amount of solid waste generated is reduced by 40% at the end of the 28-day cycle. 4 Figure 2. The UW-Oshkosh anaerobic digester has four separate bays that operate continuously on staggered 28 day cycles. Arrows indicate the location of floor drains for fermenter bays 1 (left) and 2 (right). The left over solid waste, known as digestate, is low in odor and rich in nutrients and serves two purposes: approximately half of the digestate is reserved and mixed in with the incoming fresh feedstock as a source of inoculum, while the remaining half is further composted off-site and can be later used as fertilizer or a soil supplement. This increases the lifespan of landfills and capacity of compost sites, while decreasing the energy consumption and costs involved with moving waste (Innovation in Sustainability and Renewable Energy, 2014). Each week, one of the four digester bays starts a new 28-day cycle, such that the facility on the whole is maintained in a state of continuous operation. Once the mixing and loading of feedstock is complete, the airtight fermenter doors close and the chamber air is evacuated. Aerobic bacteria consume residual oxygen within the chamber, creating an anaerobic environment and thus starting the AD process. Anaerobic digestion is a series of biological processes in which microorganisms decompose organic material in the absence of oxygen. The process involves four steps: hydrolysis, acidogenesis, acetogenesis and methanogenesis, and is carried out by communities of hydrolyzing, acid-producing and acetate-producing bacteria and methane-producing Archaea (Fig. 3). During hydrolysis, hydrolytic bacteria convert complex insoluble polymers into simpler, soluble monomers, making them available for other bacteria. For instance, carbohydrates are 5 converted to simple sugars, lipids to fatty acids and proteins to amino acids. In the next step, acidogenesis, fermentative bacteria convert the soluble organic monomers into volatile fatty acids, ketones, ethanol, hydrogen and carbon dioxide. Acetic acid, carbon dioxide and hydrogen created at this step skip acetogenesis (Serna, 2009), as they can be used directly by hydrogen-consuming (hydrogenotrophic) methanogens to produce methane. The majority of methanogens are hydrogenotrophs (Sarmiento, et al., 2011), which use hydrogen, and sometimes formate and carbon monoxide, as the electron donors to drive the reduction of carbon dioxide (Ferry, 2010). During acetogenesis, hydrogen-producing acetogenic bacteria convert volatile fatty acids and ethanol into acetic acid, carbon dioxide and hydrogen. The majority of the methane (approximately 72%) is produced by hydrogen-producing aceticlastic methanogens, which produce methane and carbon dioxide via the decarboxylation of acetate. Most of the balance is produced by hydrogenotrophic methanogens (Kanhal, 2009) though small amounts of methane are produced by the conversion of methylotrophic substrates, such as methanol, methylamines and methyl sulfides as well (Ferry, 2010). 6 1) Hydrolysis (fermentative bacteria) 2) Acidogenesis (fermentative bacteria) 3) Acetogenesis (acetogenic bacteria) 4) Methanogenesis Hydrogenotrophic Acetoclastic (methanogenic Archaea) Figure 3. Anaerobic digestion process. Microorganisms decompose organic material through a series of biological processes in the absence of oxygen, resulting in the production of biogas. Biogas typically consists of 60-70% methane, 30-40% carbon dioxide (EPA, 2014), and trace amounts of other gases, such as hydrogen, nitrogen, carbon monoxide, oxygen and hydrogen sulfide. This gas is collected, treated to remove impurities, such as hydrogen sulfide, and used to generate energy, providing a cleaner alternative to traditional fossil fuels (BIOferm, 2011). 7 Materials and Methods Sample collection. Being that the biodigester is a closed system, one cannot enter to collect samples. However, the percolate that flows through the biomass is accessible via floor drains in front of the individual chambers. The floor drains allow access to microorganisms that are washed out with the percolate from each fermenter and should provide an estimate of the microorganisms within the biomass piles. These floor drains, immediately adjacent to the fermenter bays, were used to individually sample bay 1 and bay 2 (F1 and F2) over the duration of a 28-day cycle (Fig. 2 and Fig. 4a). Samples of percolate were also collected from the percolate holding tank, which is a large, 120,000 gallon reservoir where the percolate
Recommended publications
  • Methanothermus Fervidus Type Strain (V24S)
    UC Davis UC Davis Previously Published Works Title Complete genome sequence of Methanothermus fervidus type strain (V24S). Permalink https://escholarship.org/uc/item/9367m39j Journal Standards in genomic sciences, 3(3) ISSN 1944-3277 Authors Anderson, Iain Djao, Olivier Duplex Ngatchou Misra, Monica et al. Publication Date 2010-11-20 DOI 10.4056/sigs.1283367 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2010) 3:315-324 DOI:10.4056/sigs.1283367 Complete genome sequence of Methanothermus fervidus type strain (V24ST) Iain Anderson1, Olivier Duplex Ngatchou Djao2, Monica Misra1,3, Olga Chertkov1,3, Matt Nolan1, Susan Lucas1, Alla Lapidus1, Tijana Glavina Del Rio1, Hope Tice1, Jan-Fang Cheng1, Roxanne Tapia1,3, Cliff Han1,3, Lynne Goodwin1,3, Sam Pitluck1, Konstantinos Liolios1, Natalia Ivanova1, Konstantinos Mavromatis1, Natalia Mikhailova1, Amrita Pati1, Evelyne Brambilla4, Amy Chen5, Krishna Palaniappan5, Miriam Land1,6, Loren Hauser1,6, Yun-Juan Chang1,6, Cynthia D. Jeffries1,6, Johannes Sikorski4, Stefan Spring4, Manfred Rohde2, Konrad Eichinger7, Harald Huber7, Reinhard Wirth7, Markus Göker4, John C. Detter1, Tanja Woyke1, James Bristow1, Jonathan A. Eisen1,8, Victor Markowitz5, Philip Hugenholtz1, Hans-Peter Klenk4, and Nikos C. Kyrpides1* 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 5 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 6 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 7 University of Regensburg, Archaeenzentrum, Regensburg, Germany 8 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Nikos C.
    [Show full text]
  • Session 2019-20
    S.N. CONTENTS Page 1. Taxonomy 1 2. H Taxonomy 10 3. K M 14 4. K Protista 32 5. K Fungi 37 6. P Kngdom 53 A. A 53 B. B 62 C. Pteridophyta 66 D. Gymnosperms 71 7. Eerci-I (Cceptua Qti) 83 RLD 8. Eer-II (Previou Y Qestio)2019-20100 9. Eer-III (Analytica Q) 118 10. Eer-IV (Asser & R) 128 11. Virus 132 12. Lchen 135 13. MrrhizaSession 137 14. T World 138 E ALLEN NEET SYLLABUS DIVERSITY IN LIVING WORLD : What is living? ; Biodiversity; Need for classification; Three domains of life; Taxonomy & Systematics; Concept of species and taxonomical hierarchy; Binomial nomenclature; Tools for study of Taxonomy – Museums, Zoos, Herbaria, Botanical gardens. Five kingdom classification; salient features and classification of Monera; Protista and Fungi into major groups; Lichens; Viruses and Viroids. Salient features and classification of plants into major groups-Algae, Bryophytes, Pteridophytes, Gymnosperms and Angiosperms (three to five salient and distinguishing features and at least two examples of each category); Angiosperms- classification up to class, characteristic features and examples). Aristotle (384-322 BC) He was a Greek philosopher and scientist born in the city of Stagira, Chalkidice of classical Greece. His father died when Aristotle was a child. At eighteen, he joined Plato's Academy in Athens and remained there until the age of thirty seven (c.347 BC). His writings cover many subjects including physics, biology, zoology, metaphysics, poetry, politics and government. Shortly after Plato died, Aristotle left Athens and, at the request of Philip of Macedon, tutored Alexander the Great. Aristotle was the first genuine scientist in history and every scientist is in his debt.He is regarded as father of biology and zoology.
    [Show full text]
  • Owenweeksia Hongkongensis UST20020801T
    Lawrence Berkeley National Laboratory Recent Work Title Genome sequence of the orange-pigmented seawater bacterium Owenweeksia hongkongensis type strain (UST20020801(T)). Permalink https://escholarship.org/uc/item/8734g6jx Journal Standards in genomic sciences, 7(1) ISSN 1944-3277 Authors Riedel, Thomas Held, Brittany Nolan, Matt et al. Publication Date 2012-10-01 DOI 10.4056/sigs.3296896 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2012) 7:120-130 DOI:10.4056/sigs.3296896 Genome sequence of the orange-pigmented seawater bacterium Owenweeksia hongkongensis type strain (UST20020801T) Thomas Riedel1, Brittany Held2,3, Matt Nolan2, Susan Lucas2, Alla Lapidus2, Hope Tice2, Tijana Glavina Del Rio2, Jan-Fang Cheng2, Cliff Han2,3, Roxanne Tapia2,3, Lynne A. Goodwin2,3, Sam Pitluck2, Konstantinos Liolios2, Konstantinos Mavromatis2, Ioanna Pagani2, Natalia Ivanova2, Natalia Mikhailova2, Amrita Pati2, Amy Chen4, Krishna Palaniappan4, Manfred Rohde1, Brian J. Tindall6, John C. Detter2,3, Markus Göker6, Tanja Woyke2, James Bristow2, Jonathan A. Eisen2,7, Victor Markowitz4, Philip Hugenholtz2,8, Hans-Peter Klenk6*, and Nikos C. Kyrpides2 1 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 2 DOE Joint Genome Institute, Walnut Creek, California, USA 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 5 Oak
    [Show full text]
  • Characterization of Antibiotic Resistance Genes in the Species of the Rumen Microbiota
    ARTICLE https://doi.org/10.1038/s41467-019-13118-0 OPEN Characterization of antibiotic resistance genes in the species of the rumen microbiota Yasmin Neves Vieira Sabino1, Mateus Ferreira Santana1, Linda Boniface Oyama2, Fernanda Godoy Santos2, Ana Júlia Silva Moreira1, Sharon Ann Huws2* & Hilário Cuquetto Mantovani 1* Infections caused by multidrug resistant bacteria represent a therapeutic challenge both in clinical settings and in livestock production, but the prevalence of antibiotic resistance genes 1234567890():,; among the species of bacteria that colonize the gastrointestinal tract of ruminants is not well characterized. Here, we investigate the resistome of 435 ruminal microbial genomes in silico and confirm representative phenotypes in vitro. We find a high abundance of genes encoding tetracycline resistance and evidence that the tet(W) gene is under positive selective pres- sure. Our findings reveal that tet(W) is located in a novel integrative and conjugative element in several ruminal bacterial genomes. Analyses of rumen microbial metatranscriptomes confirm the expression of the most abundant antibiotic resistance genes. Our data provide insight into antibiotic resistange gene profiles of the main species of ruminal bacteria and reveal the potential role of mobile genetic elements in shaping the resistome of the rumen microbiome, with implications for human and animal health. 1 Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil. 2 Institute for Global Food Security, School of Biological
    [Show full text]
  • MICRO-ORGANISMS and RUMINANT DIGESTION: STATE of KNOWLEDGE, TRENDS and FUTURE PROSPECTS Chris Mcsweeney1 and Rod Mackie2
    BACKGROUND STUDY PAPER NO. 61 September 2012 E Organización Food and Organisation des Продовольственная и cельскохозяйственная de las Agriculture Nations Unies Naciones Unidas Organization pour организация para la of the l'alimentation Объединенных Alimentación y la United Nations et l'agriculture Наций Agricultura COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE MICRO-ORGANISMS AND RUMINANT DIGESTION: STATE OF KNOWLEDGE, TRENDS AND FUTURE PROSPECTS Chris McSweeney1 and Rod Mackie2 The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the FAO or its Members. 1 Commonwealth Scientific and Industrial Research Organisation, Livestock Industries, 306 Carmody Road, St Lucia Qld 4067, Australia. 2 University of Illinois, Urbana, Illinois, United States of America. This document is printed in limited numbers to minimize the environmental impact of FAO's processes and contribute to climate neutrality. Delegates and observers are kindly requested to bring their copies to meetings and to avoid asking for additional copies. Most FAO meeting documents are available on the Internet at www.fao.org ME992 BACKGROUND STUDY PAPER NO.61 2 Table of Contents Pages I EXECUTIVE SUMMARY .............................................................................................. 5 II INTRODUCTION ............................................................................................................ 7 Scope of the Study ...........................................................................................................
    [Show full text]
  • International Code of Nomenclature of Prokaryotes
    2019, volume 69, issue 1A, pages S1–S111 International Code of Nomenclature of Prokaryotes Prokaryotic Code (2008 Revision) Charles T. Parker1, Brian J. Tindall2 and George M. Garrity3 (Editors) 1NamesforLife, LLC (East Lansing, Michigan, United States) 2Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (Braunschweig, Germany) 3Michigan State University (East Lansing, Michigan, United States) Corresponding Author: George M. Garrity ([email protected]) Table of Contents 1. Foreword to the First Edition S1–S1 2. Preface to the First Edition S2–S2 3. Preface to the 1975 Edition S3–S4 4. Preface to the 1990 Edition S5–S6 5. Preface to the Current Edition S7–S8 6. Memorial to Professor R. E. Buchanan S9–S12 7. Chapter 1. General Considerations S13–S14 8. Chapter 2. Principles S15–S16 9. Chapter 3. Rules of Nomenclature with Recommendations S17–S40 10. Chapter 4. Advisory Notes S41–S42 11. References S43–S44 12. Appendix 1. Codes of Nomenclature S45–S48 13. Appendix 2. Approved Lists of Bacterial Names S49–S49 14. Appendix 3. Published Sources for Names of Prokaryotic, Algal, Protozoal, Fungal, and Viral Taxa S50–S51 15. Appendix 4. Conserved and Rejected Names of Prokaryotic Taxa S52–S57 16. Appendix 5. Opinions Relating to the Nomenclature of Prokaryotes S58–S77 17. Appendix 6. Published Sources for Recommended Minimal Descriptions S78–S78 18. Appendix 7. Publication of a New Name S79–S80 19. Appendix 8. Preparation of a Request for an Opinion S81–S81 20. Appendix 9. Orthography S82–S89 21. Appendix 10. Infrasubspecific Subdivisions S90–S91 22. Appendix 11. The Provisional Status of Candidatus S92–S93 23.
    [Show full text]
  • Diet-Induced Changes of Redox Potential Underlie Compositional Shifts in the Rumen Archaeal Community
    Environmental Microbiology (2017) 19(1), 174–184 doi:10.1111/1462-2920.13551 Diet-induced changes of redox potential underlie compositional shifts in the rumen archaeal community Nir Friedman,1,2,3 Eran Shriker,1,2,3 Ben Gold,1 factor that causes these dietary induced alternations in Thomer Durman,1 Raphy Zarecki,4 this taxa’s abundance. Our genomic analysis suggests Eytan Ruppin5,6,7 and Itzhak Mizrahi1* that the redox potential effect stems from a reduced 1The Department of Life Sciences & the National number of anti-reactive oxygen species proteins coded Institute for Biotechnology in the Negev, Ben-Gurion in this taxon’s genome. Our study highlights redox University of the Negev, Beer-Sheva 84105, Israel. potential as a pivotal factor that could serve as a sculp- 2Department of Ruminant Science, Institute of Animal turing force of community assembly within anaerobic Sciences, Agricultural Research Organization, Volcani gut microbial communities. Center, P.O. Box 6, Bet Dagan 50250, Israel. 3The Porter School of Environmental Studies, Tel Aviv University, Tel Aviv, 69978, Israel. Introduction 4Center for Bioinformatics and Computational Biology & The mammalian gut microbiome is now well recognized to Department of Computer Science, Tel Aviv University, play a central role in its host’s physiology (Ley et al., 2008). Tel Aviv 69978, Israel. Nevertheless, the forces that shape these cardinal microbi- 5The Sackler School of Medicine, Tel Aviv University, al communities are still not fully understood. Diet and Tel Aviv 69978, Israel. eating behavior have been shown to play a major role in 6Blavatnik School of Computer Sciences, Tel Aviv shaping the gut microbiome of mammals (Muegge et al., University, Tel Aviv 69978, Israel.
    [Show full text]
  • Taxonomy and Ecology of Methanogens
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Horizon / Pleins textes FEMS Microbiology Reviews 87 (1990) 297-308 297 Pubfished by Elsevier FEMSRE 00180 Taxonomy and ecology of methanogens J.L. Garcia Laboratoire de Microbiologie ORSTOM, Université de Provence, Marseille, France Key words: Methanogens; Archaebacteria; Taxonomy; Ecology 1. INTRODUCTION methane from CO2 using alcohols as hydrogen donors; 2-propanol is oxidized to acetone, and More fhan nine reviews on taxonomy of 2-butanol to 2-butanone. Carbon monoxide may methanogens have been published during the last also be converted into methane; most hydro- decade [l-91, after the discovery of the unique genotrophic species (60%) will also use formate. biochemical and genetic properties of these Some aceticlastic species are incapable of oxidiz- organisms led to the concept of Archaebacteria at ing H,. The aceticlastic species of the genus the end of the seventies. Moreover, important Methanosurcina are the most metabolically diverse economic factors have ,placed these bacteria in the methanogens, whereas the obligate aceticlastic limelight [5], including the need to develop alter- Methanosaeta (Methanothrix) can use only acetate. native forms of energy, xenobiotic pollution con- The taxonomy of the methanogenic bacteria trol, the enhancement of meat yields in the cattle has been extensively revised in the light of new industry, the distinction between biological and information based on comparative studies of 16 S thermocatalytic petroleum generation, and the rRNA oligonucleotide sequences, membrane lipid global distribution of methane in the earth's atmo- composition, and antigenic fingerprinting data. sphere. The phenotypic characteristics often do not pro- vide a sufficient means of distinguishing among taxa or determining the phylogenetic position of a 2.
    [Show full text]
  • ESTCP Final Report
    FINAL REPORT Assessment of Post Remediation Performance of a Biobarrier Oxygen Injection System at a Methyl Tert-Butyl Ether (MTBE)- Contaminated Site, Marine Corps Base Camp Pendleton San Diego, California ESTCP Project ER-201588 March 2017 DECEMBER 2015 Kenda Neil Tanwir Chaudhry NAVFAC EXWC Dr. Kate H. Kucharzyk Dr. Heather V. Rectanus Dr. Craig Bartling Pamela Chang Stephen Rosansky Battelle Memorial Institute Distribution Statement A This document has been cleared for public release Page Intentionally Left Blank ESTCP Final Report ER-201588-PR ii May 2017 This report was prepared under contract to the Department of Defense (DoD) Environmental Security Technology Certification Program (ESTCP). The publication of this report does not indicate endorsement by the DoD, nor should the contents be construed as reflecting the official policy or position of the DoD. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the DoD. ESTCP Final Report ER-201588-PR iii May 2017 Page Intentionally Left Blank ESTCP Final Report ER-201588-PR iv May 2017 Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302.
    [Show full text]
  • Optimization of Isopropanol Production by Engineered Escherichia Coli
    Optimization of Isopropanol Production by Engineered Escherichia coli DISSERTATION In Partial Fulfillment of the Requirements For the Academic Degree of Doctor rerum naturalium (Dr. rer. nat.) Submitted to the Faculty of Sciences I – Life Sciences Martin Luther University Halle-Wittenberg By Ramona Engelhardt, née Konrad, MSc Born on January 15, 1982 in Buende, Germany Halle (Saale) 2020 Examiners: 1. Prof. Dr. Markus Pietzsch, Martin Luther University Halle-Wittenberg 2. Prof. Dr. Bruno Bühler, Martin Luther University Halle-Wittenberg 3. Prof. Dr. Udo Rau, Technical University Braunschweig Oral Defense: 03.11.2020 2 Declaration of Academic Honesty I hereby declare and confirm with my signature that the present doctoral dissertation is solely the result of my own work, based on my research and without using any other resources than the ones indicated. All thoughts taken directly or indirectly from external sources are properly denoted as such. I further declare that all persons and institutions that have assisted in the preparation of the thesis have been acknowledged and that this thesis has not been submitted, in part or wholly, as an examination document to any other authority. Halle (Saale), 08.06.2020 (Signature) 3 Acknowledgement I would like to express my sincere gratitude to my doctoral advisor Prof. Dr. Markus Pietzsch for his continuous support during my PhD studies, for his guidance, motivation and immense knowledge. Thank you for being a great teacher in every aspect of research. I would particularly like to thank the Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF) for the financial support and funding of the Leading-Edge Cluster “BioEconomy” and the Cluster project “TG 2 – Chemistry, VP 2.5, Energy-efficient synthesis of olefins from their corresponding alcohols”.
    [Show full text]
  • Contents Topic 1. Introduction to Microbiology. the Subject and Tasks
    Contents Topic 1. Introduction to microbiology. The subject and tasks of microbiology. A short historical essay………………………………………………………………5 Topic 2. Systematics and nomenclature of microorganisms……………………. 10 Topic 3. General characteristics of prokaryotic cells. Gram’s method ………...45 Topic 4. Principles of health protection and safety rules in the microbiological laboratory. Design, equipment, and working regimen of a microbiological laboratory………………………………………………………………………….162 Topic 5. Physiology of bacteria, fungi, viruses, mycoplasmas, rickettsia……...185 TOPIC 1. INTRODUCTION TO MICROBIOLOGY. THE SUBJECT AND TASKS OF MICROBIOLOGY. A SHORT HISTORICAL ESSAY. Contents 1. Subject, tasks and achievements of modern microbiology. 2. The role of microorganisms in human life. 3. Differentiation of microbiology in the industry. 4. Communication of microbiology with other sciences. 5. Periods in the development of microbiology. 6. The contribution of domestic scientists in the development of microbiology. 7. The value of microbiology in the system of training veterinarians. 8. Methods of studying microorganisms. Microbiology is a science, which study most shallow living creatures - microorganisms. Before inventing of microscope humanity was in dark about their existence. But during the centuries people could make use of processes vital activity of microbes for its needs. They could prepare a koumiss, alcohol, wine, vinegar, bread, and other products. During many centuries the nature of fermentations remained incomprehensible. Microbiology learns morphology, physiology, genetics and microorganisms systematization, their ecology and the other life forms. Specific Classes of Microorganisms Algae Protozoa Fungi (yeasts and molds) Bacteria Rickettsiae Viruses Prions The Microorganisms are extraordinarily widely spread in nature. They literally ubiquitous forward us from birth to our death. Daily, hourly we eat up thousands and thousands of microbes together with air, water, food.
    [Show full text]
  • Supplement of Biogeosciences, 16, 4229–4241, 2019 © Author(S) 2019
    Supplement of Biogeosciences, 16, 4229–4241, 2019 https://doi.org/10.5194/bg-16-4229-2019-supplement © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Supplement of Identifying the core bacterial microbiome of hydrocarbon degradation and a shift of dominant methanogenesis pathways in the oil and aqueous phases of petroleum reservoirs of different temperatures from China Zhichao Zhou et al. Correspondence to: Ji-Dong Gu ([email protected]) and Bo-Zhong Mu ([email protected]) The copyright of individual parts of the supplement might differ from the CC BY 4.0 License. 1 Supplementary Data 1.1 Characterization of geographic properties of sampling reservoirs Petroleum fluids samples were collected from eight sampling sites across China covering oilfields of different geological properties. The reservoir and crude oil properties together with the aqueous phase chemical concentration characteristics were listed in Table 1. P1 represents the sample collected from Zhan3-26 well located in Shengli Oilfield. Zhan3 block region in Shengli Oilfield is located in the coastal area from the Yellow River Estuary to the Bohai Sea. It is a medium-high temperature reservoir of fluvial face, made of a thin layer of crossed sand-mudstones, pebbled sandstones and fine sandstones. P2 represents the sample collected from Ba-51 well, which is located in Bayindulan reservoir layer of Erlian Basin, east Inner Mongolia Autonomous Region. It is a reservoir with highly heterogeneous layers, high crude oil viscosity and low formation fluid temperature. It was dedicated to water-flooding, however, due to low permeability and high viscosity of crude oil, displacement efficiency of water-flooding driving process was slowed down along the increase of water-cut rate.
    [Show full text]