Loss of RANBP3L Leads to Transformation of Renal Epithelial
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1W9c Lichtarge Lab 2006
Pages 1–7 1w9c Evolutionary trace report by report maker June 18, 2010 4.3.1 Alistat 7 4.3.2 CE 7 4.3.3 DSSP 7 4.3.4 HSSP 7 4.3.5 LaTex 7 4.3.6 Muscle 7 4.3.7 Pymol 7 4.4 Note about ET Viewer 7 4.5 Citing this work 7 4.6 About report maker 7 4.7 Attachments 7 1 INTRODUCTION From the original Protein Data Bank entry (PDB id 1w9c): Title: Proteolytic fragment of crm1 spanning six c-terminal heat repeats Compound: Mol id: 1; molecule: crm1 protein; chain: a, b; frag- ment: c-terminal six heat repeats, residues 707-1027; synonym: exportin 1; engineered: yes Organism, scientific name: Homo Sapiens; 1w9c contains a single unique chain 1w9cA (321 residues long) CONTENTS and its homologue 1w9cB. 1 Introduction 1 2 CHAIN 1W9CA 2.1 O14980 overview 2 Chain 1w9cA 1 2.1 O14980 overview 1 From SwissProt, id O14980, 100% identical to 1w9cA: 2.2 Multiple sequence alignment for 1w9cA 1 Description: Exportin-1 (Chromosome region maintenance 1 protein 2.3 Residue ranking in 1w9cA 2 homolog). 2.4 Top ranking residues in 1w9cA and their position on Organism, scientific name: Homo sapiens (Human). the structure 2 Taxonomy: Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; 2.4.1 Clustering of residues at 25% coverage. 2 Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; 2.4.2 Overlap with known functional surfaces at Catarrhini; Hominidae; Homo. 25% coverage. 2 Function: Mediates the nuclear export of cellular proteins (cargoes) 2.4.3 Possible novel functional surfaces at 25% bearing a leucine-rich nuclear export signal (NES) and of RNAs. -
UNIVERSITY of CALIFORNIA, SAN DIEGO Functional Analysis of Sall4
UNIVERSITY OF CALIFORNIA, SAN DIEGO Functional analysis of Sall4 in modulating embryonic stem cell fate A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Molecular Pathology by Pei Jen A. Lee Committee in charge: Professor Steven Briggs, Chair Professor Geoff Rosenfeld, Co-Chair Professor Alexander Hoffmann Professor Randall Johnson Professor Mark Mercola 2009 Copyright Pei Jen A. Lee, 2009 All rights reserved. The dissertation of Pei Jen A. Lee is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ Co-Chair ______________________________________________________________ Chair University of California, San Diego 2009 iii Dedicated to my parents, my brother ,and my husband for their love and support iv Table of Contents Signature Page……………………………………………………………………….…iii Dedication…...…………………………………………………………………………..iv Table of Contents……………………………………………………………………….v List of Figures…………………………………………………………………………...vi List of Tables………………………………………………….………………………...ix Curriculum vitae…………………………………………………………………………x Acknowledgement………………………………………………….……….……..…...xi Abstract………………………………………………………………..…………….....xiii Chapter 1 Introduction ..…………………………………………………………………………….1 Chapter 2 Materials and Methods……………………………………………………………..…12 -
Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002) -
WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US). -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Modulation of Gene Expression Associated with the Cell Cycle and Tumorigenicity of Glioblastoma Cells by the 18 Kda Translocator Protein (TSPO)
Open Access Austin Journal of Pharmacology and Therapeutics Research Article Modulation of Gene Expression Associated with the Cell Cycle and Tumorigenicity of Glioblastoma Cells by the 18 kDa Translocator Protein (TSPO) Julia Bode1,2#, Leo Veenman3#, Alex Vainshtein3, Wilfried Kugler1,4, Nahum Rosenberg3,5 and Abstract Moshe Gavish3* After PK 11195 (25 µM) exposure (24 and 48 hours) and permanent TSPO 1Department of Pediatrics, Hematology and Oncology, silencing by siRNA to U118MG glioblastoma cells, microarray analysis of gene University Medical Center of the Georg- August- expression, followed up by validation with real time polymerase chain reaction University Goettingen, Germany (RT-PCR), showed effects on gene expression related to the cell cycle. Other 2Schaller Research Group at the University of Heidelberg affected genes are related to apoptosis, oxidative stress, immune responses, and the German Cancer Research Center, Division of DNA repair, and membrane functions, including adhesion and transport. In Molecular Mechanisms of Tumor Invasion, German relation to post transcriptional and post translational effects, TSPO ligand and Cancer Research Center (DKFZ), Germany TSPO knockdown affected gene expression for many short nucleolar RNAs. 3Department of Molecular Pharmacology, Ruth and Bruce Applying a 2-fold, cut off to micro array analysis revealed that 24 and 48 hours Rappaport Faculty of Medicine, Technion-Israel Institute of PK 11195 exposure affected respectively 128 and 85 genes that were also of Technology, Israel affected by TSPO silencing. Taking a 2.5 fold, cut off, only gene expression 4Fluoron City GmbH, Magirus-Deutz-Straße, Neu Ulm of v-FOS was found to be modulated by each of these TSPO manipulations. -
Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing -
Small Gtpase Ran and Ran-Binding Proteins
BioMol Concepts, Vol. 3 (2012), pp. 307–318 • Copyright © by Walter de Gruyter • Berlin • Boston. DOI 10.1515/bmc-2011-0068 Review Small GTPase Ran and Ran-binding proteins Masahiro Nagai 1 and Yoshihiro Yoneda 1 – 3, * highly abundant and strongly conserved GTPase encoding ∼ 1 Biomolecular Dynamics Laboratory , Department a 25 kDa protein primarily located in the nucleus (2) . On of Frontier Biosciences, Graduate School of Frontier the one hand, as revealed by a substantial body of work, Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Ran has been found to have widespread functions since Osaka 565-0871 , Japan its initial discovery. Like other small GTPases, Ran func- 2 Department of Biochemistry , Graduate School of Medicine, tions as a molecular switch by binding to either GTP or Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 , GDP. However, Ran possesses only weak GTPase activ- Japan ity, and several well-known ‘ Ran-binding proteins ’ aid in 3 Japan Science and Technology Agency , Core Research for the regulation of the GTPase cycle. Among such partner Evolutional Science and Technology, Osaka University, 1-3 molecules, RCC1 was originally identifi ed as a regulator of Yamada-oka, Suita, Osaka 565-0871 , Japan mitosis in tsBN2, a temperature-sensitive hamster cell line (3) ; RCC1 mediates the conversion of RanGDP to RanGTP * Corresponding author in the nucleus and is mainly associated with chromatin (4) e-mail: [email protected] through its interactions with histones H2A and H2B (5) . On the other hand, the GTP hydrolysis of Ran is stimulated by the Ran GTPase-activating protein (RanGAP) (6) , in con- Abstract junction with Ran-binding protein 1 (RanBP1) and/or the large nucleoporin Ran-binding protein 2 (RanBP2, also Like many other small GTPases, Ran functions in eukaryotic known as Nup358). -
Microrna Regulation During Neuroinflammation: from Junk DNA to a Phd Thesis
microRNA regulation during neuroinflammation: from junk DNA to a PhD thesis Camille A. Juźwik A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Doctor of Philosophy in Neurological Sciences Integrated Program in Neuroscience Department of Neurology and Neurosurgery - McGill University 3801 University Street - Montreal, QC, H3A 2B4, Canada March 2019 © Camille A. Juźwik, 2019 All rights reserved Table of Contents 1 Forward………..……………………………………………………………. 5 1.1 Abstract………………………………………………………………………....................... 5 1.2 Résumé………………………………………………………………………....................... 6 1.3 Acknowledgments…………………………………………………………......................... 8 1.4 Preface and Author Contributions.…...……………………………………………........... 10 1.5 List of Figures and Tables…………………………………………………........................ 12 1.6 List of Abbreviations…….…………………………………………………........................ 15 1.7 List of Publications...…………………………………………………………...................... 17 2 Chapter 1. Introduction…………………………………………………... 19 2.1 General Introduction………………………………………………………………………. 19 2.2 Multiple Sclerosis……..…………………………………………………………………… 22 2.2.1 White matter lesions: axonal pathology….…………………………….............................................................. 24 2.2.2 Gray matter lesions: soma pathology ……….................................................................................................. 25 2.2.3 Experimental autoimmune encephalomyelitis…………………………………….............................................. 27 2.2.4 Not all -
Tumor-Associated NADH Oxidase (Tnox)-NAD+-Sirtuin 1 Axis Contributes to Oxaliplatin-Induced Apoptosis of Gastric Cancer Cells
www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 9), pp: 15338-15348 Research Paper Tumor-associated NADH oxidase (tNOX)-NAD+-sirtuin 1 axis contributes to oxaliplatin-induced apoptosis of gastric cancer cells Huei-Yu Chen1, Hsiao-Ling Cheng1, Yi-Hui Lee1, Tien-Ming Yuan1,2, Shi-Wen Chen2, You-Yu Lin1, Pin Ju Chueh1,3,4,5 1Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40227, Taiwan 2Department of Surgery, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung 42055, Taiwan 3Graduate Institute of Basic Medicine, China Medical University, Taichung, 40402, Taiwan 4Department of Medical Research, China Medical University Hospital, Taichung, 40402, Taiwan 5Department of Biotechnology, Asia University, Taichung, 41354, Taiwan Correspondence to: Pin Ju Chueh, email: [email protected] Keywords: apoptosis, deacetylase, oxaliplatin, tumor-associated NADH oxidase (tNOX or ENOX2), sirtuin 1 (SIRT1) Received: October 20, 2016 Accepted: January 09, 2017 Published: January 21, 2017 ABSTRACT Oxaliplatin belongs to the platinum-based drug family and has shown promise in cancer treatment. The major mechanism of action of platinum compounds is to form platinum–DNA adducts, leading to DNA damage and apoptosis. Accumulating evidence suggests that they might also target non-DNA molecules for their apoptotic activity. We explored the effects of oxaliplatin on a tumor-associated NADH oxidase (tNOX) in gastric cancer lines. In AGS cells, we found that the oxaliplatin-inhibited tNOX effectively attenuated the NAD+/NADH ratio and reduced the deacetylase activity of an NAD+-dependent sirtuin 1, thereby enhancing p53 acetylation and apoptosis. Similar results were also observed in tNOX-knockdown AGS cells. -
Supplementary Table 1
Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7 -
Rabbit Anti-Ranbp3/FITC Conjugated Antibody
SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-RanBP3/FITC Conjugated antibody SL20113R-FITC Product Name: Anti-RanBP3/FITC Chinese Name: FITC标记的RANBinding protein3抗体 Alias: Ran BP-3; Ran binding protein 3; Ran-binding protein 3; RANB3_HUMAN; RanBP3. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat,Chicken,Dog,Pig, ICC=1:50-200IF=1:50-200 Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 60kDa Form: Lyophilized or Liquid Concentration: 1mg/ml immunogen: KLH conjugated synthetic peptide derived from human RanBP3 Lsotype: IgG Purification: affinity purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibodywww.sunlongbiotech.com is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. background: Acts as a cofactor for XPO1/CRM1-mediated nuclear export, perhaps as export complex scaffolding protein. Bound to XPO1/CRM1, stabilizes the XPO1/CRM1-cargo interaction. In the absence of Ran-bound GTP prevents binding of XPO1/CRM1 to the nuclear pore complex. Binds to CHC1/RCC1 and increases the guanine nucleotide Product Detail: exchange activity of CHC1/RCC1. Recruits XPO1/CRM1 to CHC1/RCC1 in a Ran- dependent manner.