1. Read the Nonfiction Text on the Rock Cycle 2

Total Page:16

File Type:pdf, Size:1020Kb

1. Read the Nonfiction Text on the Rock Cycle 2 Hello Here are the instructions to complete your second blizzard bag lesson: 1. Read the nonfiction text on the rock cycle 2. Watch the two videos listed here (just click on the link): http://www.youtube.com/watch?v=jPgE74Vltdc http://www.youtube.com/watch?v=pg_jKJFbA2A 3. Answer the comprehension questions. If you do not have access to a printer, please write your answers on notebook paper. This lesson will be a good review of what you already know about the three types of rocks and will help prepare you for our rocks and mineral unit in 6th grade! You have 2 weeks from the day this lesson is assigned to return it to me. If you have any questions make sure to ask for clarification on a day when class is in session or by email ([email protected], or [email protected]) . Work hard, have fun, and STAY WARM!!! ;) See you Soon- Mrs. Adcock & Mrs. Hawk The Rock Cycle There are three major classifications of rock: Igneous rock, metamorphic rock and sedimentary rock. The rock cycle is the series of processes by which rocks are transformed from one type to another and continually renewed. The origin of all rock can be ultimately traced back to the solidification of molten magma. Magma is a hot liquid made of melted minerals and compounds commonly found in rocks. Igneous Rock Igneous rock forms when magma and lava cool and make mineral crystals. The texture and appearance of igneous rock depends greatly on how it was formed. Examples of igneous rock include granite, basalt, pumice, and obsidian. Intrusive Igneous Intrusive igneous rock forms underground, within the Earth’s crust or mantle, where magma cools slowly. Because it cools slowly, intrusive igneous rock typically has large mineral crystals. Granite is a common type of intrusive igneous rock. The relatively large mineral crystals are easy to see with the naked eye. Extrusive Igneous Extrusive igneous rock forms above ground, as lava and other materials that erupt from volcanoes cool quickly. Because they cool quickly, extrusive igneous rocks have small mineral crystals. Basalt is a common type of extrusive igneous rock. Individual mineral crystals in basalt are small and difficult to see. This image shows fresh basalt as it forms from cooling lava. Sedimentary Rock Weathering is the breakdown of rock by agents such as wind and water. Erosion is the transportion of the broken rock material, or sediments, to a new location, where it is deposited. Sediments may also contain plant and animal matter. As more sediment is deposited, it stacks up in layers. Eventually, the upper layers put pressure on the lower layers. This causes sediments to pack closer together in a process called compaction. Through the process of cementation, minerals from groundwater form between sediment grains, connecting the grains together to form rock. The rocks formed from deposition, compaction, and cementation of sediment are sedimentary rocks. Sedimentary rocks commonly form as a layers. These rock layers in the Grand Canyon represent a variety of sedimentary rock types, including sandstone, siltstone, shale, limestone, and dolomite. Sedimentary rocks often occur in distinct layers and sometimes contain fossils. Sedimentary rocks that are well-cemented hold together well, while poorly cemented rocks tend to crumble more easily. Some common sedimentary rock types include sandstone, siltstone, and shale. Sedimentary rocks that form mainly from chemical processes include limestone and dolomite. Evaporites, such as rock salt, are sedimentary rocks that form when minerals are left behind by evaporating water. Metamorphic Rock The third major classification of rock is appropriately named metamorphic rock. The word metamorphic comes from metamorphosis, which means "transformation" or "change." Tectonic forces can push all types of rocks deeper into the Earth. These rocks are then subjected to extreme heat and pressure. If the rocks do not become hot enough to melt, these conditions can cause the crystal structure and texture of the rocks to change, forming a new kind of rock. Metamorphic rocks are formed from pre-existing rocks which have been changed by the exposure to extreme heat and pressure. Some rocks have certain mineral grains that become flattened and line up in parallel planes or that separate into light and dark compositional bands when exposed to heat and pressure. These scenarios result in foliated metamorphic rocks, such as slate, phyllite, schist, and gneiss. Metamorphic rocks without these planes or bands are nonfoliated. Marble is a nonfoliated metamorphic rock that forms from the sedimentary rock limestone. Quartzite is a metamorphic rock that forms from quartz sandstone. Phyllite, pictured above, is an example of a foliated metamorphic rock. Phyllite forms under moderate temperature and pressure conditions relative to other types of metamorphic rocks. **Information obtained from Study Island Study Island Copyright © 2014 Edmentum - All rights reserved. Generation Date: 01/30/2014 Generated By: Trisha Adcock 1. Which of the following is true about the formation of sedimentary rocks? Sedimentary rocks form in the same manner as igneous rocks. A. Sedimentary rocks form in the same manner as metamorphic rocks. B. Most types of sedimentary rock form from nonliving processes. C. D. all of these 2. The process of sediments being compacted and cemented to form sedimentary rocks is called A. deposition. B. lithification. C. metamorphism. D. crystallization. 3. Which choice below shows the steps of the formation of sedimentary rock in the correct order? A. weathering erosion deposition compaction/cementation B. erosion weathering deposition compaction/cementation C. compaction/cementation erosion weathering deposition D. weathering erosion compaction/cementation deposition 4. Which of the following are most important for the formation of sedimentary rock? A. wind and crystallization B. compaction and cementation C. high temperatures D. eruption and fossilization 5. Rocks are made of minerals, and they are formed in different ways. According to the diagram above, how are igneous rocks formed? Other rocks experience intense heat and pressure. A. Molten rock cools and turns solid. B. Sand and other particles are buried, compacted, and cemented together. C. Wastes deposited by plants and animals decompose and weather. D. 6. Metamorphic rocks are formed when sedimentary or igneous rocks are subjected to heat or pressure and recrystallize without melting. Which of the following rocks results from the metamorphism of limestone? A. sandstone B. marble C. slate D. granite 7. Igneous rocks are made of a mixture of materials made from both living and nonliving processes. A. fossil fuels and other materials that came from once-living things. B. materials that came from living things and that accumulated on the seafloor. C. materials that crystallized from magma or lava, not from once-living things. D. 8. Which type of rock is formed as a result of lava cooling quickly? A. extrusive igneous rock B. shale C. intrusive igneous rock D. marble 9. Metamorphic rock forms from the nonliving process of melting. A. nonliving processes of weathering, erosion, and deposition. B. living process of shell formation. C. nonliving processes of heating and pressurization. D. .
Recommended publications
  • Calcite Cementation of Sixty-Five-Year-Old Aragonite Sand Dredge Pile
    University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 2011 Calcite Cementation of Sixty-Five-Year-Old Aragonite Sand Dredge Pile Nathan M. Snyder Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Geology Commons Recommended Citation Snyder, Nathan M., "Calcite Cementation of Sixty-Five-Year-Old Aragonite Sand Dredge Pile" (2011). Electronic Theses and Dissertations. 269. https://egrove.olemiss.edu/etd/269 This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. CALCITE CEMENTATION OF SIXTY-FIVE-YEAR-OLD ARAGONITE SAND DREDGE PILE A Thesis presented in partial fulfillment of requirements for the degree of Master of Science in the Department of Geology and Geological Engineering The University of Mississippi by NATHANIAL M. SNYDER May 2011 Copyright Nathanial M. Snyder ALL RIGHTS RESERVED ABSTRACT Dredging of the harbor at Stocking Island, Bahamas (23°31’45”N, 75°49’41”W) in 1942 produced four dredge piles of cross-bedded aragonite skeletal sand. The spoils piles are on the leeward (western) shore of the island, where they are subject to minimal wave energy. Collectively they are 350 x 50 m in plan view and 2 m high. The surface is very well cemented, which requires a hammer and chisel for sampling. Samples were collected from six sites at various locations of the dredge pile. Samples were analyzed for both chemical and physical properties using thin-section examination, X-ray diffraction, X-ray fluorescence, bulk density measurements, isotopic analyses, and scanning electron microscopy.
    [Show full text]
  • Hydrogeology of Wales
    Hydrogeology of Wales N S Robins and J Davies Contributors D A Jones, Natural Resources Wales and G Farr, British Geological Survey This report was compiled from articles published in Earthwise on 11 February 2016 http://earthwise.bgs.ac.uk/index.php/Category:Hydrogeology_of_Wales BRITISH GEOLOGICAL SURVEY The National Grid and other Ordnance Survey data © Crown Copyright and database rights 2015. Hydrogeology of Wales Ordnance Survey Licence No. 100021290 EUL. N S Robins and J Davies Bibliographical reference Contributors ROBINS N S, DAVIES, J. 2015. D A Jones, Natural Rsources Wales and Hydrogeology of Wales. British G Farr, British Geological Survey Geological Survey Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail [email protected]. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract. Maps and diagrams in this book use topography based on Ordnance Survey mapping. Cover photo: Llandberis Slate Quarry, P802416 © NERC 2015. All rights reserved KEYWORTH, NOTTINGHAM BRITISH GEOLOGICAL SURVEY 2015 BRITISH GEOLOGICAL SURVEY The full range of our publications is available from BGS British Geological Survey offices shops at Nottingham, Edinburgh, London and Cardiff (Welsh publications only) see contact details below or BGS Central Enquiries Desk shop online at www.geologyshop.com Tel 0115 936 3143 Fax 0115 936 3276 email [email protected] The London Information Office also maintains a reference collection of BGS publications, including Environmental Science Centre, Keyworth, maps, for consultation.
    [Show full text]
  • Strength Developed from Carbonate Cementation in Silica-Carbonate Base Course Materials
    24 TRANSPORTATION RESEARCH RECORD 1190 Strength Developed from Carbonate Cementation in Silica-Carbonate Base Course Materials ROBIN E. GRAVES, JAMES L. EADES, AND LARRY L. SMITH Strength increases resulting Crom carbonate cementalion in are depleted, new sources must be found to accommodate compacted sands and cemented coquina highway base course the transportation needs of the state's rapidly expanding materials or variable quartz-calcite composition were investi­ population. Materials obtained from the newer quarries gated lhrough the use of limerock-bearing-ratio (LBR) le ting. often have a different mineralogical composition because Q uart~ and calcite sands were mixed in various proportion , of the great variability of geologic conditions affecting their compacted into LBR mold , oaked for time periods from 2 deposition. days up to 60 days, and tested to determine stt·ength increase with time. For comparison, cemented coquina highway base This has been the case with cemented coquina base course course materials of variable quartz-calcite composition were materials in Florida (3). Currently mined cemented coquina also compacted soaked, and tested. Jn addition duplicate sets contains abundant quartz sand, often resulting in carbon­ or specimens were te tcd that had 1 percent Ca(OH}i, (hydrated ate compositions below the 50 percent required by FDOT. lime) mixed with the dry materials before compacting and The quartz occurs in two forms. Some is incorporated into soaking. This was done to provide a om·ce of' CaH ions for cemented limestone rock, but most exists as unconsoli­ formation of additional calcium carbonate cement. Re ul~ of the LBR testing program showed that more strength developed dated quartz sand.
    [Show full text]
  • Sediment Diagenesis
    Sediment Diagenesis http://eps.mcgill.ca/~courses/c542/ SSdiedimen t Diagenes is Diagenesis refers to the sum of all the processes that bring about changes (e.g ., composition and texture) in a sediment or sedimentary rock subsequent to deposition in water. The processes may be physical, chemical, and/or biological in nature and may occur at any time subsequent to the arrival of a particle at the sediment‐water interface. The range of physical and chemical conditions included in diagenesis is 0 to 200oC, 1 to 2000 bars and water salinities from fresh water to concentrated brines. In fact, the range of diagenetic environments is potentially large and diagenesis can occur in any depositional or post‐depositional setting in which a sediment or rock may be placed by sedimentary or tectonic processes. This includes deep burial processes but excldludes more extensive hig h temperature or pressure metamorphic processes. Early diagenesis refers to changes occurring during burial up to a few hundred meters where elevated temperatures are not encountered (< 140oC) and where uplift above sea level does not occur, so that pore spaces of the sediment are continually filled with water. EElarly Diagenesi s 1. Physical effects: compaction. 2. Biological/physical/chemical influence of burrowing organisms: bioturbation and bioirrigation. 3. Formation of new minerals and modification of pre‐existing minerals. 4. Complete or partial dissolution of minerals. 5. Post‐depositional mobilization and migration of elements. 6. BtilBacterial ddtidegradation of organic matter. Physical effects and compaction (resulting from burial and overburden in the sediment column, most significant in fine-grained sediments – shale) Porosity = φ = volume of pore water/volume of total sediment EElarly Diagenesi s 1.
    [Show full text]
  • Geometry of Calcite Cemented Zones in Shallow Marine Sandstones
    '’W 4 PROFIT RF-^/w 1990-1994 PROJECT SUMMARY REPORTS RESERVOIR CHARACTERIZATION NEAR WELL FLOW Program for Research On Field Oriented Improved Recovery Technology oismsunoN of ihb documeot is iwumiteo % Edited by: Jem Olsen, Snorre Olaussen, Trond B. Jensen, Geir Helge Landa, Leif Hinderaker Norwegian Petroleum Directorate Stavanger 1995 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document PROFIT - RESERVOIR CHARACTERIZATION Geometry of calcite cemented zones in shallow marine sandstones Olav Walderhaug, Edward Prestholm and Ingrid E.L0xnevad Rogaland Research, Stavanger Abstract thought to belong to concretions. The difference between the geometry of calcite Calcite cementation in the Jurassic shallow cementation in the Ula Formation and in the marine sandstones of the Bearreraig Formation, Bridport Sands is thought to be due to a the Valtos Formation, the Bridport Sands and relatively uniform rate of siliciclastic deposition the Bencliff Grit occurs as continuously for the Ula Formation having led to a more cemented layers, as stratabound concretions and uniform distribution of biogenic carbonate as scattered concretions. All three geometrical compared to the Bridport Sands where laterally forms of calcite cementaton may occur within extensive layers of biogenic carbonate formed the same formation, whereas in other cases a during periods of very low siliciclastic formation may be dominated by only one or deposition. Based on the results of the core and two of these modes of calcite cementation. outcrop studies, a tentative identification key Calcite cemented layers and layers of for calcite cemented zones encountered in cores stratabound concretions in the studied is suggested.
    [Show full text]
  • A) Conglomerate B) Dolostone C) Siltstone D) Shale 1. Which
    1. Which sedimentary rock would be composed of 7. Which process could lead most directly to the particles ranging in size from 0.0004 centimeter to formation of a sedimentary rock? 0.006 centimeter? A) metamorphism of unmelted material A) conglomerate B) dolostone B) slow solidification of molten material C) siltstone D) shale C) sudden upwelling of lava at a mid-ocean ridge 2. Which sedimentary rock could form as a result of D) precipitation of minerals from evaporating evaporation? water A) conglomerate B) sandstone 8. Base your answer to the following question on the C) shale D) limestone diagram below. 3. Limestone is a sedimentary rock which may form as a result of A) melting B) recrystallization C) metamorphism D) biologic processes 4. The dot below is a true scale drawing of the smallest particle found in a sample of cemented sedimentary rock. Which sedimentary rock is shown in the diagram? What is this sedimentary rock? A) conglomerate B) sandstone C) siltstone D) shale A) conglomerate B) sandstone C) siltstone D) shale 9. Which statement about the formation of a rock is best supported by the rock cycle? 5. Which sequence of events occurs in the formation of a sedimentary rock? A) Magma must be weathered before it can change to metamorphic rock. A) B) Sediment must be compacted and cemented before it can change to sedimentary rock. B) C) Sedimentary rock must melt before it can change to metamorphic rock. C) D) Metamorphic rock must melt before it can change to sedimentary rock. D) 6. Which sedimentary rock formed from the compaction and cementation of fragments of the skeletons and shells of sea organisms? A) shale B) gypsum C) limestone D) conglomerate Base your answers to questions 10 and 11 on the diagram below, which is a geologic cross section of an area where a river has exposed a 300-meter cliff of sedimentary rock layers.
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Sedimentary Test 2 Review Guide Making Sedimentary Rocks 1
    Name: KEY Unit III: Section 3: Sedimentary Processes Earth & Environmental Systems Science Test 2 Review Guide Sedimentary Test 2 Review Guide Making Sedimentary Rocks 1. What vocabulary word describes turning sediment into solid rock? Lithification = compaction + cementation 2. List and describe the processes to form sediment and then a sedimentary rock in order? - Weathering – breaking down - Erosion – moving/transporting sediment - Deposition – putting sediment into place Sediment MADE! Lithification: Turning sediment into a solid rock -Compaction – generally through burial and reduces pore space -Cementation – gluing sediment together using a mineral water solution Sedimentary Rock MADE! 3. What acts as glue to form Clastic and Bioclastic textured sedimentary rocks? Water moves through soil and rocks and dissolves minerals along the way. The mineral water solution settles in the sediment, the water evaporates, and the minerals are left behind to bind sediment. Uniformitarianism and Stratigraphy 4. What geological principle states that the same processes that operate today also operated in the past? Uniformitarianism – James Hutton 5. List and describe the 3 laws of Stratigraphy: -Law of Horizontal Deposition – Sediment is deposited and lithified in flat layers -Law of Superposition – oldest layers are on the bottom and youngest is on the top -Law of Cross-cutting – anything that cuts across sedimentary layers (faults or igneous intrusions) are younger than the layers that they cut across 6. What is an unconformity? Any process that disturbs sedimentary layers 7. List and describe the 3 types of unconformities: -Angular – beds are tilted (by plate tectonics), weathered and eroded, and new beds are placed on top at a different angle -Nonconformity – Igneous beds eat through sedimentary beds from the bottom -Disconformity – Sedimentary beds are missing due to weathering and erosion generally drawn as a straight squiggly line.
    [Show full text]
  • Lite Geology 14
    Winter 1995 L I T E NewMexico Bureau ~.~, .~,..,.~ "~ ~,,~..~,~.~.,..~,~ of .............. ¯ Mines and Mineral .’..:. .i .,.."".. Resources (NMBM&MR) A quarterly publication for educators arid the public- contemporary geological topics~ issues and events EadhBriefs "Concretions, Bombs, and Ground Water Peter S. Mozley Departmentof Earth and EnVironmental Science, NewMexico Tech Concretions are hard masses of sedimentary and, more rarely, volcanic rock that form by the preferential precipitation of minerals (cementation) in localized portions of the rock. They are commonlysubspherical, but frequently form a variety of other shapes, including disks, grape-like aggregates, and complex shapes that defy description (Figs. 1, 2, and 3). Concretions are usually very noticeable features, because they have a strikingly. different color and/or hardness than the rest of the rock. In someareas this is unfortunate, as the concretions have attracted the unwanted attention of local graffiti artists. Commonly, when you break open concretions you will find that they have formed around a nucleus, such as a fossil fragment or piece of organic matter. For a variety of reasons, this nucleus created a more favorable site for cement precipitation than other sites in therock. ~erhapsthe mostunusual concretion "[ spent too much time in thesame place in the back swamp .nucleiarefound in a modemcoastal’ and the clanged concretion went and nucleated on me." saltmarsh in England.Siderite (FeCOa) concretionsin the marshformed aroundWorld-War-II era military shells,bombs, and associated shrapnel, ThisIssue: includingsome large unexploded shells(AI-Agha et al.,1995). A British Earth Briefs--how does Nature conceal Reptiles’onthe Rocks--someunique geologiststudying these concretions bombs and record ancient water-flow photosof homedlizards in New realizedthis only after striking a large pathways? Mexico unexplodedshell repeatedly with his rockhammer (yes, he livedto tellabout Have you ever wondered..
    [Show full text]
  • Scientist Guide the Crayon Rock Cycle
    Scientist Guide The Crayon Rock Cycle Introduction Soil is one of Earth’s most important natural resources. It is the bridge between the living and non- living worlds and ultimately where most of our food originates. Soil is composed of organic materi- al (humus), water, air and minerals. Rocks are mixtures of minerals such as quartz, feldspar, mica and calcite. They are the source of all soil mineral material and the origin of all plant nutrients with the exception of nitrogen, hydrogen and carbon. As rock is chemically and physically weathered, eroded and precipitated, it is trans- formed into soil. The rock cycle shows how rocks change over time by a variety of physical and chemical processes (see Figure 1). Natural processes that are part of the rock cycle include weathering, erosion, lithifi- cation, metamorphism, melting and cooling. • Weathering involves both the chemical and physical IGNEOUS ROCK Weathering breakdown of rock at or near the Earth’s surface. and Erosion Cooling This results in accumulation of sediments – loose materials, such as rock and mineral fragments, or Sediment Magma pieces of animal and plant remains that have been transported. Lithification (Compaction and Cementation) Melting • Erosion is the process by which soil and rock are removed from the Earth’s surface by exogenic SEDIMENTARY METAMORPHIC processes, such as wind or water flow, and then ROCK ROCK transported and deposited in other locations. Metamorphism (Heat and/or Pressure) • Lithification is the transformation of sediment into rock. The main processes involved in lithification are: Figure 1. o Cementation – large sediments are held together by natural cements.
    [Show full text]
  • Hydrogeological Properties of Fault Zones in a Karstified Carbonate Aquifer (Northern Calcareous Alps, Austria)
    Hydrogeol J DOI 10.1007/s10040-016-1388-9 PAPER Hydrogeological properties of fault zones in a karstified carbonate aquifer (Northern Calcareous Alps, Austria) H. Bauer1 & T. C. Schröckenfuchs 1 & K. Decker1 Received: 17 July 2015 /Accepted: 14 February 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract This study presents a comparative, field-based impermeable fault cores only very locally have the potential hydrogeological characterization of exhumed, inactive fault to create barriers. zones in low-porosity Triassic dolostones and limestones of the Hochschwab massif, a carbonate unit of high economic Keywords Fractured rocks . Carbonate rocks . Fault zones . importance supplying 60 % of the drinking water of Austria’s Hydrogeological properties . Austria capital, Vienna. Cataclastic rocks and sheared, strongly cemented breccias form low-permeability (<1 mD) domains along faults. Fractured rocks with fracture densities varying by Introduction a factor of 10 and fracture porosities varying by a factor of 3, and dilation breccias with average porosities >3 % and per- Fault zones in the upper crust produce permeability heteroge- meabilities >1,000 mD form high-permeability domains. With neities that have a large impact on subsurface fluid migration respect to fault-zone architecture and rock content, which is and storage patterns (e.g. Agosta et al. 2010, 2012; Caine et al. demonstrated to be different for dolostone and limestone, four 1996;Faulkneretal.2010;Jourdeetal.2002; Mitchell and types of faults are presented. Faults with single-stranded mi- Faulkner 2012; Shipton and Cowie 2003; Shipton et al. 2006; nor fault cores, faults with single-stranded permeable fault Wibberley and Shimamoto 2003; Wibberley et al.
    [Show full text]
  • SUBMERGENCE and EMERGENCE of Rock Layers with Respect to Sea Level
    SUBMERGENCE AND EMERGENCE of Rock Layers With Respect to Sea Level The building up and wearing away of Earth's Crust. Follow the progression of illustrations to see the roles that submergence and emergence of rock layers play in both the addition of rock material to earth's surface as well as its removal. The Key: Be sure to look at the key before observing the Illustration 1: Sedimentary Rocks are typically layered series of illustrations. horizontally and the Law of Superposition dictates that, Notice that not only do symbols exist for sandstone, shale unless overturning of rock layers has occurred, the oldest and conglomerate, but also for the loose sediments that rock layers are towards the bottom of a rock column while will eventually lithify to become these rock types. the youngest layers are at the top. This illustration depicts layers of sedimentary shale, sandstone and limestone, exposed at earth's surface. Illustration 2: The rock layers have been submerged, Illustration 3: Over time the processes of compaction possibly due to crustal movement or to a rise in sea level. and cementation will lithify these loose sediments turning All rock layers are now underwater and there exists the them into sedimentary rocks. The newly lithified rock possibility for additional, loose sediments to be deposited layer will be on top of the original layers shown in on top of the preexisting layers. Illustration 1 and it will be the youngest layer by L. Immoor 2006 Geoteach.com 1 comparison. Notice the unconformity in this illustration. The unconformity is evidenced by the wavy, eroded top surface of a rock layer.
    [Show full text]