The Space of Essential Matrices As a Riemannian Quotient Manifold∗

Total Page:16

File Type:pdf, Size:1020Kb

The Space of Essential Matrices As a Riemannian Quotient Manifold∗ SIAM J. IMAGING SCIENCES c 2017 Society for Industrial and Applied Mathematics Vol. 10, No. 3, pp. 1416{1445 The Space of Essential Matrices as a Riemannian Quotient Manifold∗ Roberto Trony and Kostas Daniilidisz Abstract. The essential matrix, which encodes the epipolar constraint between points in two projective views, is a cornerstone of modern computer vision. Previous works have proposed different characterizations of the space of essential matrices as a Riemannian manifold. However, they either do not consider the symmetric role played by the two views or do not fully take into account the geometric peculiarities of the epipolar constraint. We address these limitations with a characterization as a quotient manifold that can be easily interpreted in terms of camera poses. While our main focus is on theoretical aspects, we include applications to optimization problems in computer vision. Key words. epipolar geometry, Riemannian geometry, optimization AMS subject classifications. 68Q25, 68R10, 68U05 DOI. 10.1137/16M1091332 1. Introduction. The essential matrix and the epipolar constraint, introduced by [16], have been a major mainstay of compute vision for the last 30 years and are the basic building block in any Structure from Motion (SfM) system. Its robust estimation from image data is now standard course material (see the textbooks from [13] and [17]). In practical terms, an essential matrix encodes an epipolar configuration (i.e., an Euclidean motion between two 3×3 3×3 camera views) as a matrix in R . The space of essential matrices is a subset of R , but the algebraic relations imposed by the epipolar constraint render its geometry and its relation with the space of epipolar configurations far from trivial. There have been a few attempts to characterize the space of essential matrices as a Riemannian manifold. The earliest works in this aspect are from [22] and [18], with a follow-up from [7]; in these works, one of the two views is chosen as the global reference frame, and essential matrices are parametrized using the (normalized) relative poses between cameras (unit vectors for the translations and rotation matrices). This parametrization implies a preferential treatment of one of the two cameras and breaks the natural symmetry of the constraint. A different representation, based on the Singular Value Decomposition (SVD) of the essential matrix, has been used in several papers [9, 14, 24, 25]. While this representation has a natural symmetry, previous works do not provide an intuitive geometric interpretation of its parameters. In addition, they do not completely take into account the well-known twisted-pair ambiguity, ∗Received by the editors August 29, 2016; accepted for publication (in revised form) March 27, 2017; published electronically August 31, 2017. A preliminary version of part of this work has appeared in the conference proceeding [28]. http://www.siam.org/journals/siims/10-3/M109133.html Funding: The work of the authors was supported by grants NSF-IIP-0742304, NSF-OIA-1028009, ARL MAST- CTA W911NF-08-2-0004, and ARL RCTA W911NF-10-2-0016, NSF-DGE-0966142, and NSF-IIS-1317788. yDepartment of Mechanical Engineering, Boston University, Boston, MA 02215 ([email protected], http://sites.bu. edu/tron). zGRASP Lab, University of Pennsylvania, Philadelphia, PA 19104 ([email protected], www.cis.upenn.edu/ ∼kostas). 1416 THE SPACE OF ESSENTIAL MATRICES 1417 i.e., the fact that four different epipolar configurations correspond to the same essential matrix (with an arbitrary choice of sign). Moreover, when considered, the algorithm used for the computation of the logarithm map (which is related to the notion of geodesics in this space) is neither efficient nor rigorously motivated. In this work, we propose characterizations of the spaces of essential matrices and epipolar configurations as Riemannian quotient manifolds. We make the following contributions: 1. Our representation is related to the aforementioned SVD formulation, but we derive our results from a particular choice of the global reference frame, leading to a clear geometric interpretation of the parameters. 2. We clarify the relation between the chirality constraint (i.e., the constraint that all the points lie in front of both cameras), the space of essential matrices, and the space of epipolar configurations. 3. We use the theory of quotient manifold to endow the space of essential matrices and the space of epipolar configurations with a Riemannian manifold structure. This procedure leads to a natural characterization of geodesics, distance, and curvature from those defined in the space of rotations. 4. We provide expressions for the curvature of the manifolds, showing that it is nonnegative. This is an important fact for some optimization algorithms. 5. Our treatment includes procedures to efficiently and correctly compute the logarithm map and distance function between points on the manifolds. 6. We apply the theory to problems in two-view SfM, showing that the proposed represen- tation provides an effective way to parametrize optimization problems and a meaningful notion of distance between epipolar configurations. Some material in this paper might appear quite basic for any reader versed in computer vision. However, it is necessary to revisit it and place it in the context of our parametrization. Paper outline. The paper is organized as follows. We first introduce our notation and review basic concepts in Riemannian geometry and group theory (section2). We then derive a canonical decomposition of essential matrices that is given by a particular choice of the global reference frame (subsection 4.1), use it to characterize the space of essential matrices as a quotient space (subsection 4.2), and show its interpretation in terms of image vectors (subsection 4.3). Using the chirality constraint, we derive the signed normalized essential space from the space of essential matrices and show that it is a quotient manifold (subsection 5.3); we derive expressions and algorithms for computing geodesics, distances, and curvature of this manifold (subsections 5.4 to 5.6). We use these results to then go back to the space of essential matrices and show that it is also a manifold (section6). Finally, we show an application of the theory to optimization problems in computer vision (section7). 2. Definitions and notation. In this section, we define the notation used in this paper and review several notions from Riemannian geometry and group theory. For the most part, these are well-established results, and we include here just the minimum necessary to follow the paper while referring the reader to the literature for complete and rigorous definitions [6, 21]. Nonetheless, subsection 2.7 includes results for SO(3) × SO(3) as a Lie group that, although simple, have never been explicitly presented before. 1418 ROBERTO TRON AND KOSTAS DANIILIDIS 3×3 2.1. General notation. We denote as I 2 R the identity matrix and as Pz = diag(1; 1; 0) the standard projector on the xy-plane. As customary, we use so(3) to indicate the space of 3 3 3 × 3 skew-symmetric matrices. For standard vectors a 2 R ,[a]× : R ! so(3) denotes the 3 matrix representation of the cross-product operator, i.e., [a]×b = a × b for all a; b 2 R . We use inv 3 [a]× : so(3) ! R to denote the inverse of this linear mapping. We use sym(A) and skew(A) d×d to denote, respectively, the symmetric and antisymmetric part of a square matrix A 2 R , that is, 1 1 (1) sym(A) = A + AT ; skew(A) = A − AT : 2 2 2.2. Riemannian geometry. At a high level, a manifold M is defined by a topological space that is Hausdorff1 and that is equipped with a set of overlapping local coordinate charts. These charts locally parametrize the space, and it is possible to transition smoothly from one chart to the other. The tangent space at a point x 2 M, denoted as TxM, can be defined as the linear space containing all the tangent vectors corresponding to the curves passing through _ x. We use the notation v to denote the vector of coordinates of v in some basis for TxM.A vector field V assigns a tangent vector v = V jx to each x in M or a subset of it. We denote as X (M) the set of smooth vector fields on M. Given V; W 2 X (M), the Lie bracket of two vector fields is denoted as [V; W ] 2 X (M). Intuitively, [V; W ] represents the \derivative" of a field with respect to another and assumes a simple expression for the manifolds and fields considered in this paper (as we will see in subsection 2.7). A Riemannian manifold (M; h·; ·i) is a manifold endowed with a Riemannian metric, a collection of inner products h·; ·ix over TxM that varies smoothly with x. The metric is used to define the length of a curve γ : R ⊃ [a; b] !M. A curve is a geodesic if the covariant derivative of its tangent is zero, i.e., rγ_ γ_ ≡ 0, where r is the Levi-Civita connection. The exponential map expx : TxM!M maps each tangent vector v to the endpoint of the unit-speed geodesic starting at x with tangent v. The logarithm map logx is the inverse of the expx and is defined (in general) only on a neighborhood of x. We use the shorthand notation Log = log_ to denote the logarithm map expressed in local tangent space coordinates. For any point x and any curve γ(t) in M sufficiently close together, the logarithm is related to the distance function by the relations d 1 (2) dx; γ(t) = kLog γ(t)k; d2x; γ(t) = − Log γ(t)Tγ_ (t)_: x dt 2 x Given the Levi-Civita connection, one can define an intrinsic notion of curvature of the space.
Recommended publications
  • What's in a Name? the Matrix As an Introduction to Mathematics
    St. John Fisher College Fisher Digital Publications Mathematical and Computing Sciences Faculty/Staff Publications Mathematical and Computing Sciences 9-2008 What's in a Name? The Matrix as an Introduction to Mathematics Kris H. Green St. John Fisher College, [email protected] Follow this and additional works at: https://fisherpub.sjfc.edu/math_facpub Part of the Mathematics Commons How has open access to Fisher Digital Publications benefited ou?y Publication Information Green, Kris H. (2008). "What's in a Name? The Matrix as an Introduction to Mathematics." Math Horizons 16.1, 18-21. Please note that the Publication Information provides general citation information and may not be appropriate for your discipline. To receive help in creating a citation based on your discipline, please visit http://libguides.sjfc.edu/citations. This document is posted at https://fisherpub.sjfc.edu/math_facpub/12 and is brought to you for free and open access by Fisher Digital Publications at St. John Fisher College. For more information, please contact [email protected]. What's in a Name? The Matrix as an Introduction to Mathematics Abstract In lieu of an abstract, here is the article's first paragraph: In my classes on the nature of scientific thought, I have often used the movie The Matrix to illustrate the nature of evidence and how it shapes the reality we perceive (or think we perceive). As a mathematician, I usually field questions elatedr to the movie whenever the subject of linear algebra arises, since this field is the study of matrices and their properties. So it is natural to ask, why does the movie title reference a mathematical object? Disciplines Mathematics Comments Article copyright 2008 by Math Horizons.
    [Show full text]
  • Multivector Differentiation and Linear Algebra 0.5Cm 17Th Santaló
    Multivector differentiation and Linear Algebra 17th Santalo´ Summer School 2016, Santander Joan Lasenby Signal Processing Group, Engineering Department, Cambridge, UK and Trinity College Cambridge [email protected], www-sigproc.eng.cam.ac.uk/ s jl 23 August 2016 1 / 78 Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... Summary Overview The Multivector Derivative. 2 / 78 Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... Summary Overview The Multivector Derivative. Examples of differentiation wrt multivectors. 3 / 78 Functional Differentiation: very briefly... Summary Overview The Multivector Derivative. Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. 4 / 78 Summary Overview The Multivector Derivative. Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... 5 / 78 Overview The Multivector Derivative. Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... Summary 6 / 78 We now want to generalise this idea to enable us to find the derivative of F(X), in the A ‘direction’ – where X is a general mixed grade multivector (so F(X) is a general multivector valued function of X). Let us use ∗ to denote taking the scalar part, ie P ∗ Q ≡ hPQi. Then, provided A has same grades as X, it makes sense to define: F(X + tA) − F(X) A ∗ ¶XF(X) = lim t!0 t The Multivector Derivative Recall our definition of the directional derivative in the a direction F(x + ea) − F(x) a·r F(x) = lim e!0 e 7 / 78 Let us use ∗ to denote taking the scalar part, ie P ∗ Q ≡ hPQi.
    [Show full text]
  • Handout 9 More Matrix Properties; the Transpose
    Handout 9 More matrix properties; the transpose Square matrix properties These properties only apply to a square matrix, i.e. n £ n. ² The leading diagonal is the diagonal line consisting of the entries a11, a22, a33, . ann. ² A diagonal matrix has zeros everywhere except the leading diagonal. ² The identity matrix I has zeros o® the leading diagonal, and 1 for each entry on the diagonal. It is a special case of a diagonal matrix, and A I = I A = A for any n £ n matrix A. ² An upper triangular matrix has all its non-zero entries on or above the leading diagonal. ² A lower triangular matrix has all its non-zero entries on or below the leading diagonal. ² A symmetric matrix has the same entries below and above the diagonal: aij = aji for any values of i and j between 1 and n. ² An antisymmetric or skew-symmetric matrix has the opposite entries below and above the diagonal: aij = ¡aji for any values of i and j between 1 and n. This automatically means the digaonal entries must all be zero. Transpose To transpose a matrix, we reect it across the line given by the leading diagonal a11, a22 etc. In general the result is a di®erent shape to the original matrix: a11 a21 a11 a12 a13 > > A = A = 0 a12 a22 1 [A ]ij = A : µ a21 a22 a23 ¶ ji a13 a23 @ A > ² If A is m £ n then A is n £ m. > ² The transpose of a symmetric matrix is itself: A = A (recalling that only square matrices can be symmetric).
    [Show full text]
  • Geometric-Algebra Adaptive Filters Wilder B
    1 Geometric-Algebra Adaptive Filters Wilder B. Lopes∗, Member, IEEE, Cassio G. Lopesy, Senior Member, IEEE Abstract—This paper presents a new class of adaptive filters, namely Geometric-Algebra Adaptive Filters (GAAFs). They are Faces generated by formulating the underlying minimization problem (a deterministic cost function) from the perspective of Geometric Algebra (GA), a comprehensive mathematical language well- Edges suited for the description of geometric transformations. Also, (directed lines) differently from standard adaptive-filtering theory, Geometric Calculus (the extension of GA to differential calculus) allows Fig. 1. A polyhedron (3-dimensional polytope) can be completely described for applying the same derivation techniques regardless of the by the geometric multiplication of its edges (oriented lines, vectors), which type (subalgebra) of the data, i.e., real, complex numbers, generate the faces and hypersurfaces (in the case of a general n-dimensional quaternions, etc. Relying on those characteristics (among others), polytope). a deterministic quadratic cost function is posed, from which the GAAFs are devised, providing a generalization of regular adaptive filters to subalgebras of GA. From the obtained update rule, it is shown how to recover the following least-mean squares perform calculus with hypercomplex quantities, i.e., elements (LMS) adaptive filter variants: real-entries LMS, complex LMS, that generalize complex numbers for higher dimensions [2]– and quaternions LMS. Mean-square analysis and simulations in [10]. a system identification scenario are provided, showing very good agreement for different levels of measurement noise. GA-based AFs were first introduced in [11], [12], where they were successfully employed to estimate the geometric Index Terms—Adaptive filtering, geometric algebra, quater- transformation (rotation and translation) that aligns a pair of nions.
    [Show full text]
  • Determinants Math 122 Calculus III D Joyce, Fall 2012
    Determinants Math 122 Calculus III D Joyce, Fall 2012 What they are. A determinant is a value associated to a square array of numbers, that square array being called a square matrix. For example, here are determinants of a general 2 × 2 matrix and a general 3 × 3 matrix. a b = ad − bc: c d a b c d e f = aei + bfg + cdh − ceg − afh − bdi: g h i The determinant of a matrix A is usually denoted jAj or det (A). You can think of the rows of the determinant as being vectors. For the 3×3 matrix above, the vectors are u = (a; b; c), v = (d; e; f), and w = (g; h; i). Then the determinant is a value associated to n vectors in Rn. There's a general definition for n×n determinants. It's a particular signed sum of products of n entries in the matrix where each product is of one entry in each row and column. The two ways you can choose one entry in each row and column of the 2 × 2 matrix give you the two products ad and bc. There are six ways of chosing one entry in each row and column in a 3 × 3 matrix, and generally, there are n! ways in an n × n matrix. Thus, the determinant of a 4 × 4 matrix is the signed sum of 24, which is 4!, terms. In this general definition, half the terms are taken positively and half negatively. In class, we briefly saw how the signs are determined by permutations.
    [Show full text]
  • Matrices and Tensors
    APPENDIX MATRICES AND TENSORS A.1. INTRODUCTION AND RATIONALE The purpose of this appendix is to present the notation and most of the mathematical tech- niques that are used in the body of the text. The audience is assumed to have been through sev- eral years of college-level mathematics, which included the differential and integral calculus, differential equations, functions of several variables, partial derivatives, and an introduction to linear algebra. Matrices are reviewed briefly, and determinants, vectors, and tensors of order two are described. The application of this linear algebra to material that appears in under- graduate engineering courses on mechanics is illustrated by discussions of concepts like the area and mass moments of inertia, Mohr’s circles, and the vector cross and triple scalar prod- ucts. The notation, as far as possible, will be a matrix notation that is easily entered into exist- ing symbolic computational programs like Maple, Mathematica, Matlab, and Mathcad. The desire to represent the components of three-dimensional fourth-order tensors that appear in anisotropic elasticity as the components of six-dimensional second-order tensors and thus rep- resent these components in matrices of tensor components in six dimensions leads to the non- traditional part of this appendix. This is also one of the nontraditional aspects in the text of the book, but a minor one. This is described in §A.11, along with the rationale for this approach. A.2. DEFINITION OF SQUARE, COLUMN, AND ROW MATRICES An r-by-c matrix, M, is a rectangular array of numbers consisting of r rows and c columns: ¯MM..
    [Show full text]
  • 28. Exterior Powers
    28. Exterior powers 28.1 Desiderata 28.2 Definitions, uniqueness, existence 28.3 Some elementary facts 28.4 Exterior powers Vif of maps 28.5 Exterior powers of free modules 28.6 Determinants revisited 28.7 Minors of matrices 28.8 Uniqueness in the structure theorem 28.9 Cartan's lemma 28.10 Cayley-Hamilton Theorem 28.11 Worked examples While many of the arguments here have analogues for tensor products, it is worthwhile to repeat these arguments with the relevant variations, both for practice, and to be sensitive to the differences. 1. Desiderata Again, we review missing items in our development of linear algebra. We are missing a development of determinants of matrices whose entries may be in commutative rings, rather than fields. We would like an intrinsic definition of determinants of endomorphisms, rather than one that depends upon a choice of coordinates, even if we eventually prove that the determinant is independent of the coordinates. We anticipate that Artin's axiomatization of determinants of matrices should be mirrored in much of what we do here. We want a direct and natural proof of the Cayley-Hamilton theorem. Linear algebra over fields is insufficient, since the introduction of the indeterminate x in the definition of the characteristic polynomial takes us outside the class of vector spaces over fields. We want to give a conceptual proof for the uniqueness part of the structure theorem for finitely-generated modules over principal ideal domains. Multi-linear algebra over fields is surely insufficient for this. 417 418 Exterior powers 2. Definitions, uniqueness, existence Let R be a commutative ring with 1.
    [Show full text]
  • 5 the Dirac Equation and Spinors
    5 The Dirac Equation and Spinors In this section we develop the appropriate wavefunctions for fundamental fermions and bosons. 5.1 Notation Review The three dimension differential operator is : ∂ ∂ ∂ = , , (5.1) ∂x ∂y ∂z We can generalise this to four dimensions ∂µ: 1 ∂ ∂ ∂ ∂ ∂ = , , , (5.2) µ c ∂t ∂x ∂y ∂z 5.2 The Schr¨odinger Equation First consider a classical non-relativistic particle of mass m in a potential U. The energy-momentum relationship is: p2 E = + U (5.3) 2m we can substitute the differential operators: ∂ Eˆ i pˆ i (5.4) → ∂t →− to obtain the non-relativistic Schr¨odinger Equation (with = 1): ∂ψ 1 i = 2 + U ψ (5.5) ∂t −2m For U = 0, the free particle solutions are: iEt ψ(x, t) e− ψ(x) (5.6) ∝ and the probability density ρ and current j are given by: 2 i ρ = ψ(x) j = ψ∗ ψ ψ ψ∗ (5.7) | | −2m − with conservation of probability giving the continuity equation: ∂ρ + j =0, (5.8) ∂t · Or in Covariant notation: µ µ ∂µj = 0 with j =(ρ,j) (5.9) The Schr¨odinger equation is 1st order in ∂/∂t but second order in ∂/∂x. However, as we are going to be dealing with relativistic particles, space and time should be treated equally. 25 5.3 The Klein-Gordon Equation For a relativistic particle the energy-momentum relationship is: p p = p pµ = E2 p 2 = m2 (5.10) · µ − | | Substituting the equation (5.4), leads to the relativistic Klein-Gordon equation: ∂2 + 2 ψ = m2ψ (5.11) −∂t2 The free particle solutions are plane waves: ip x i(Et p x) ψ e− · = e− − · (5.12) ∝ The Klein-Gordon equation successfully describes spin 0 particles in relativistic quan- tum field theory.
    [Show full text]
  • 2 Lecture 1: Spinors, Their Properties and Spinor Prodcuts
    2 Lecture 1: spinors, their properties and spinor prodcuts Consider a theory of a single massless Dirac fermion . The Lagrangian is = ¯ i@ˆ . (2.1) L ⇣ ⌘ The Dirac equation is i@ˆ =0, (2.2) which, in momentum space becomes pUˆ (p)=0, pVˆ (p)=0, (2.3) depending on whether we take positive-energy(particle) or negative-energy (anti-particle) solutions of the Dirac equation. Therefore, in the massless case no di↵erence appears in equations for paprticles and anti-particles. Finding one solution is therefore sufficient. The algebra is simplified if we take γ matrices in Weyl repreentation where µ µ 0 σ γ = µ . (2.4) " σ¯ 0 # and σµ =(1,~σ) andσ ¯µ =(1, ~ ). The Pauli matrices are − 01 0 i 10 σ = ,σ= − ,σ= . (2.5) 1 10 2 i 0 3 0 1 " # " # " − # The matrix γ5 is taken to be 10 γ5 = − . (2.6) " 01# We can use the matrix γ5 to construct projection operators on to upper and lower parts of the four-component spinors U and V . The projection operators are 1 γ 1+γ Pˆ = − 5 , Pˆ = 5 . (2.7) L 2 R 2 Let us write u (p) U(p)= L , (2.8) uR(p) ! where uL(p) and uR(p) are two-component spinors. Since µ 0 pµσ pˆ = µ , (2.9) " pµσ¯ 0(p) # andpU ˆ (p) = 0, the two-component spinors satisfy the following (Weyl) equations µ µ pµσ uR(p)=0,pµσ¯ uL(p)=0. (2.10) –3– Suppose that we have a left handed spinor uL(p) that satisfies the Weyl equation.
    [Show full text]
  • Matrix Determinants
    MATRIX DETERMINANTS Summary Uses ................................................................................................................................................. 1 1‐ Reminder ‐ Definition and components of a matrix ................................................................ 1 2‐ The matrix determinant .......................................................................................................... 2 3‐ Calculation of the determinant for a matrix ................................................................. 2 4‐ Exercise .................................................................................................................................... 3 5‐ Definition of a minor ............................................................................................................... 3 6‐ Definition of a cofactor ............................................................................................................ 4 7‐ Cofactor expansion – a method to calculate the determinant ............................................... 4 8‐ Calculate the determinant for a matrix ........................................................................ 5 9‐ Alternative method to calculate determinants ....................................................................... 6 10‐ Exercise .................................................................................................................................... 7 11‐ Determinants of square matrices of dimensions 4x4 and greater ........................................
    [Show full text]
  • The Tensor of Inertia C Alex R
    Lecture 14 Wedneday - February 22, 2006 Written or last updated: February 23, 2006 P442 – Analytical Mechanics - II The Tensor of Inertia c Alex R. Dzierba We will work out some specific examples of problems using moments of inertia. Example 1 y R M m = M/4 x A Figure 1: A disk and a point mass Figure 1 shows a thin uniform disk of mass M and radius R in the x, y plane. The z axis is out of the paper. A point mass m = M/4 is attached to the edge of the disk as shown. The inertia tensor of the disk alone about its center of mass is: 1 0 0 MR2 0 1 0 4 0 0 2 (A) Find the inertia tensor of the disk alone about the point A. (B) Find the inertia tensor of the point mass alone about the point A. (C) For the combined tensor from the above two parts – find the principal moments. SOLUTION First look at the disk alone. When we go from the center of mass of the disk to point A the moment of 2 2 2 2 inertia about the z axis goes from Izz = MR /2 to MR /2 + MR = 3MR /2 by the parallel axis theorem. The moment of inertia about the y axis clearly does not change when we go from the center of mass of the 2 disk to point A so that remains as Iyy = MR /4. But the perpendicular axis theorem holds for a lamina so 2 Ixx + Iyy = Izz or Ixx = 5MR /4.
    [Show full text]
  • Mathematics 552 Algebra II Spring 2017 the Exterior Algebra of K
    Mathematics 552 Algebra II Spring 2017 The exterior algebra of K-modules and the Cauchy-Binet formula Let K be a commutative ring, and let M be a K-module. Recall that the tensor ⊗i algebra T (M) = ⊕i=0M is an associative K-algebra and that if M is free of finite rank ⊗k m with basis v1; : : : ; vm then T (M) is a graded free K module with basis for M given ⊗k by the collection of vi1 ⊗ vi2 ⊗ · · · vik for 1 ≤ it ≤ m. Hence M is a free K-module of rank mk. We checked in class that the tensor algebra was functorial, in that when f : M ! N is a K-module homomorphism, then the induced map f ⊗i : M ⊗i ! N ⊗i gives a homomorphism of K-algebras T (f): T (M) ! T (N) and that this gives a functor from K-modules to K-algebras. The ideal I ⊂ T (M) generated by elements of the form x ⊗ x for x 2 M enables us to construct an algebra Λ(M) = T (M)=I. Since (v+w)⊗(v+w) = v⊗v+v⊗w+w⊗v+w⊗w we have that (modulo I) v ⊗ w = −w ⊗ v. The image of M ⊗i in Λ(M) is denoted Λi(M), the i-th exterior power of M. The product in Λ(M) derived from the product on T (M) is usually called the wedge product : v ^ w is the image of v ⊗ w in T (M)=I. Since making tensor algebra of modules is functorial, so is making the exterior algebra.
    [Show full text]