Volume 4, Chapter 1-3: Aquatic Wetland: Marchantiophyta, Order

Total Page:16

File Type:pdf, Size:1020Kb

Volume 4, Chapter 1-3: Aquatic Wetland: Marchantiophyta, Order Glime, J. M. 2021. Aquatic and Wet Marchantiophyta, Order Jungermanniales: Cephaloziineae 2. Chapter 1-3. In: Glime, J. M. 1-3-1 Bryophyte Ecology. Volume 4. Habitat and Role. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 11 April 2021 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 1-3 AQUATIC AND WET MARCHANTIOPHYTA, ORDER JUNGERMANNIALES: CEPHALOZIINEAE 2 TABLE OF CONTENTS Scapaniaceae .......................................................................................................................................................................... 1-3-2 Diplophyllum ................................................................................................................................................................. 1-3-2 Diplophyllum albicans ................................................................................................................................................... 1-3-2 Diplophyllum taxifolium ................................................................................................................................................ 1-3-7 Douinia ovata................................................................................................................................................................. 1-3-9 Saccobasis polita ........................................................................................................................................................... 1-3-9 Scapania....................................................................................................................................................................... 1-3-10 Scapania aspera ........................................................................................................................................................... 1-3-10 Scapania crassiretis ..................................................................................................................................................... 1-3-11 Scapania cuspiduligera ................................................................................................................................................ 1-3-11 Scapania hyperborea ................................................................................................................................................... 1-3-13 Scapania irrigua .......................................................................................................................................................... 1-3-15 Scapania microdonta ................................................................................................................................................... 1-3-18 Scapania nemorea ........................................................................................................................................................ 1-3-19 Scapania paludicola ..................................................................................................................................................... 1-3-22 Scapania paludosa ....................................................................................................................................................... 1-3-23 Scapania ridiga ............................................................................................................................................................ 1-3-24 Scapania rufidula ......................................................................................................................................................... 1-3-25 Scapania subalpina ...................................................................................................................................................... 1-3-25 Scapania uliginosa ....................................................................................................................................................... 1-3-26 Scapania umbrosa ........................................................................................................................................................ 1-3-29 Scapania undulata ....................................................................................................................................................... 1-3-30 Distribution .......................................................................................................................................................... 1-3-30 Aquatic and Wet Habitats .................................................................................................................................... 1-3-31 Streams ................................................................................................................................................................. 1-3-32 Lakes .................................................................................................................................................................... 1-3-33 Associations ......................................................................................................................................................... 1-3-34 pH ........................................................................................................................................................................ 1-3-35 Water Relations .................................................................................................................................................... 1-3-36 Temperature ......................................................................................................................................................... 1-3-37 Photosynthetic Products ....................................................................................................................................... 1-3-37 Reproduction ........................................................................................................................................................ 1-3-37 Biochemistry ........................................................................................................................................................ 1-3-38 Pigments ............................................................................................................................................................... 1-3-38 Nutrient Relations ................................................................................................................................................ 1-3-39 Heavy Metals ....................................................................................................................................................... 1-3-40 Other Pollutants .................................................................................................................................................... 1-3-41 Disturbance .......................................................................................................................................................... 1-3-41 Role ..................................................................................................................................................................... 1-3-41 Habitat Summary ................................................................................................................................................. 1-3-41 Summary .............................................................................................................................................................................. 1-3-42 Acknowledgments ............................................................................................................................................................... 1-3-42 Literature Cited .................................................................................................................................................................... 1-3-42 1-3-2 Chapter 1-3: Aquatic and Wet Marchantiophyta, Order Jungermanniales: Cephaloziineae 2 CHAPTER 1-3 AQUATIC AND WET MARCHANTIOPHYTA, CLASS JUNGERMANNIOPSIDA, ORDER JUNGERMANNIALES: CEPHALOZIINEAE 2 Figure 1. Scapania undulata and habitat, showing its close adherence to water without necessarily being submerged. Many of the leafy liverworts treated in this chapter occupy niches that maintain moisture without submergence. Photo by Jean Faubert, with permission. Diplophyllum albicans (Figure 2, Figure 12, Figure Scapaniaceae 14-Figure 15) It is interesting that very similar mosaic infection Distribution patterns in Lophoziaceae and Scapaniaceae add strength to the molecular link between the two families (Duckett et Diplophyllum albicans (Figure 2, Figure 12, Figure al. 2006). Both are in Cephaloziineae. 14-Figure 15) is an amphi-oceanic species, but rarely penetrates away from the oceanic climate (Bakalin & Vilnet 2018). Chapter 1-3: Aquatic and Wet Marchantiophyta, Order Jungermanniales: Cephaloziineae 2 1-3-3 Other habitats are wet, but not submersed. In the Haute Ardenne rivers in Belgium, Leclercq (1977) found Diplophyllum albicans (Figure 2, Figure 12, Figure 14- Figure 15) on earthy and gravelly substrates of river banks. In the British Isles, Orange (2001) found the species on a shaded damp rock face by a wooded stream. In the Upper Bureya River of the Russian Far East, Konstantinova et al. (2002) reported it from a wet cliff and rocks at the lake shore, occurring with Blepharostoma
Recommended publications
  • Ascomyceteorg 06-05 Ascomyceteorg
    “The story so far...” An Interim Bibliography of Hans-Otto Baral for the Years 1981-2014 Martin BEMMANN Ascomycete.org, 6 (5) : 95-98. Décembre 2014 Mise en ligne le 18/12/2014 Hans-Otto Baral, aka “Zotto”, has contributed a vast amount of pa- BARAL H.-O. 1987. — Der Apikalapparat der Helotiales. Eine lichtmi- pers and digital publications which have inspired not only his aca- kroskopische Studie über Arten mit Amyloidring. Zeitschrift für demic colleagues but also the community of amateur mycologists, Mykologie, 53 (1): 119-135. whose efforts he has included in his ascomycete research for de- [http://www.dgfm-ev.de/sites/default/files/ZM531119Baral.pdf] cades, thus helping stimulate their own work. This compilation of BARAL H.-O. 1989. — Beiträge zur Taxonomie der Discomyceten I. his publications and ephemeral works to date is also intended as a Zeitschrift für Mykologie, 55 (1): 119-130. guide for all those who are unaware of its extent, and includes keys [http://www.dgfm-ev.de/sites/default/files/ZM551119Baral.pdf] and some otherwise unpublished papers shared on the DVD “In Vivo BARAL H.-O. 1989. — Beiträge zur Taxonomie der Discomyceten II. Veritas 2005”. Die Calycellina-Arten mit 4sporigen Asci. Beiträge zur Kenntnis der The form “H.-O.” Baral as opposed to “H. O.” Baral has been used Pilze Mitteleuropas, 5: 209-236. consistently throughout, though it varies in the different publica- BARAL H.-O. 1992. — Vital versus herbarium taxonomy: morphologi- tions. Only names of genera and species are set in italics even if this cal differences between living and dead cells of Ascomycetes, and deviates from the original titles.
    [Show full text]
  • Plant Evolution an Introduction to the History of Life
    Plant Evolution An Introduction to the History of Life KARL J. NIKLAS The University of Chicago Press Chicago and London CONTENTS Preface vii Introduction 1 1 Origins and Early Events 29 2 The Invasion of Land and Air 93 3 Population Genetics, Adaptation, and Evolution 153 4 Development and Evolution 217 5 Speciation and Microevolution 271 6 Macroevolution 325 7 The Evolution of Multicellularity 377 8 Biophysics and Evolution 431 9 Ecology and Evolution 483 Glossary 537 Index 547 v Introduction The unpredictable and the predetermined unfold together to make everything the way it is. It’s how nature creates itself, on every scale, the snowflake and the snowstorm. — TOM STOPPARD, Arcadia, Act 1, Scene 4 (1993) Much has been written about evolution from the perspective of the history and biology of animals, but significantly less has been writ- ten about the evolutionary biology of plants. Zoocentricism in the biological literature is understandable to some extent because we are after all animals and not plants and because our self- interest is not entirely egotistical, since no biologist can deny the fact that animals have played significant and important roles as the actors on the stage of evolution come and go. The nearly romantic fascination with di- nosaurs and what caused their extinction is understandable, even though we should be equally fascinated with the monarchs of the Carboniferous, the tree lycopods and calamites, and with what caused their extinction (fig. 0.1). Yet, it must be understood that plants are as fascinating as animals, and that they are just as important to the study of biology in general and to understanding evolutionary theory in particular.
    [Show full text]
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • Liverworts of the Wellington Area J
    Liverworts of the Wellington Area J. E. Braggins1 LIVERWORT FEATURES Liverworts are plants similar in many ways to mosses: they are usually small, and generally lack the hard supporting tissues of larger plants such as ferns. Like ferns, liverworts show alternation of generations, having separate gametophyte and sporophyte entities; unlike ferns the sporophyte is not a separate plant. As with mosses, the gametophyte generation is the dominant phase of the life cy- cle, and the sporophyte generation is permanently dependent on it. Liverworts show a greater range in general morphology and form than mosses, and as well as normal leafy plants, there are dozens of species of thalloid liverworts that lack organisation into stems and leaves. The most striking differences between mosses and liverworts are in the sporophytes where liverworts have a simple outer wall lacking the peristome of mosses, and in the capsule which usually splits into four valves to release the spores. Mixed amongst the spores are hair- like elaters, which flick and twist as they dry out, helping to throw the spores clear. The stalk that bears the capsule (the seta) remains short until the capsule is mature, then, by cell elongation, it expands rapidly to its full size. Thus, the expanded seta of a liverwort is a delicate translucent structure, not tough and wiry like a moss seta which elongates slowly by cell growth. The vegetative parts of leafy liverworts differ from mosses in details of cell shape, contents, leaf structure (liverwort leaves lack a central nerve or vein), shape (liverwort leaves are rarely markedly elongate but are often complexly lobed) and position.
    [Show full text]
  • Identification of Conifer Trees in Iowa This Publication Is Designed to Help Identify the Most Common Trees Found in Iowa
    Identification of Conifer Trees in Iowa This publication is designed to help identify the most common trees found in Iowa. It is based on vegetative characteristics including leaves, fruit, and bark. It is neither complete nor without possible oversights. Separate species are grouped by similar characteristics, mainly based on type and arrangement of leaves. These groups are; awl- or scale- like needles; single needles, flattened with rounded tips; single needles, square in cross section, with pointed tips; and needles in bundles or fasticles of two or more. Remember, vegetative character- istics are quite variable; use more than one specimen for comparison. Awl- or scale-like needles Juniperus Virginiana Eastern Red Cedar Leaves are dark green; leaves are both awl- and scale-like; cone is dark blue and berry-like. Thuja occidentalis Northern White Cedar Leaves are flattened and only of the scale type; cones have 4-6 scales; foliage is light green. Juniperus communis Common Juniper Leaves are awl shaped; cone is dark blue and berry-like. Pm-1383 | May 1996 Single needles, flattened with rounded tips Pseudotsuga menziesii Douglas Fir Needles occur on raised pegs; 3/4-11/4 inches in length; cones have 3-pointed bracts between the cone scales. Abies balsamea Abies concolor Balsam Fir White (Concolor) Fir Needles are blunt and notched at Needles are somewhat pointed, the tip; 3/4-11/2 inches in length. curved towards the branch top and 11/2-3 inches in length; silver green in color. Single needles, Picea abies Norway Spruce square in cross Needles are 1/2-1 inch long; section, with needles are dark green; foliage appears to droop or weep; cone pointed tips is 4-7 inches long.
    [Show full text]
  • Current Status of Rare and Interesting Genus Mylia Gray in India with an Account of M. Taylorii (Hook.) Gray A.K
    Status of genus Mylia Gray in India RESEARCH ARTICLE Current Status of Rare and Interesting Genus Mylia Gray in India with an Account of M. taylorii (Hook.) Gray A.K. Asthana*, Vinay Sahu, Reesa Gupta DOI: 10.18811/ijpen.v5i02.4 ABSTRACT Mylia taylorii (Hook.) Gray, a rare taxon has been collected from Singalila National Park, Darjeeling (West Bengal), in the subalpine region, on way to Phalut from Sandakphu (ca 3657 m). A detailed morpho-taxonomic and illustrated account of the Indian plants is provided. Keywords: Eastern Himalaya, India, Liverwort, Mylia, Rare. International Journal of Plant and Environment (2019) INTRODUCTION Bryology Laboratory, CSIR-National Botanical Research Institute, enus Mylia Gray was established by Gray (Nat. Arr. Brit. Pl.1: Lucknow-226001, UP, INDIA G693, 1821) and various taxonomic treatments were given to the Corresponding Author: Dr. A.K. Asthana, Bryology Labo-ratory, CSIR- genus by workers from time to time at the level of order, suborder, National Botanical Research Institute, Lucknow-226001, UP, INDIA, family and subfamily. The genus was earlier placed as a member of Phone: 0522-2297842; E-mail: [email protected] Plagiochileae of Jungermanniaceae (Jorgensen, 1934) and under How to cite this article: Asthana, A.K., Sahu, V. and Gupta, R. (2019). Plagiochilaceae (Műller, 1948, 1951-54; Inoue, 1958; Schuster, 1959). Current Status of Rare and Interesting Genus Mylia Gray in India with Later, Grolle (1963) proposed the sub-family Mylioideae under an Account of M. taylorii (Hook.) Gray. International Journal of Plant Jungermanniaceae to include the genus Mylia, which is distinctive and Environment, 5(2): 92-95.
    [Show full text]
  • The Effects of Sulphur Dioxide on Selected Hepatics" (1978)
    Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1978 The ffecE ts of Sulphur Dioxide on Selected Hepatics Steven L. Gatchel Eastern Illinois University This research is a product of the graduate program in Botany at Eastern Illinois University. Find out more about the program. Recommended Citation Gatchel, Steven L., "The Effects of Sulphur Dioxide on Selected Hepatics" (1978). Masters Theses. 3192. https://thekeep.eiu.edu/theses/3192 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. PAPF-:R CERTIFICATE #2 TO: Graduate Degree Candidates who have written formal theses. SUBJECT: Permission to reproduce theses. The University Library is receiving a ' number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied. Please sign one of the following statements: Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings. Date Author I respectfully request Booth Library of .Eastern Illinois University not allow my thesis be reproduced because---------------- Date Author pdm THE EFFECTS OF SULPHUR DIOXIDE ON SELECTED HEPATICS (TITLE} BY Steven L. Gatchel THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science IN THE GRADUATE SCHOOL, EASTERN ILLINOIS UNIVERSITY CHARLESTON, ILLINOIS 1978 I HEREBY RECOMMEND THIS THESIS BE ACCEPTED AS FULFILLING THIS PART OF THE GRADUATE DEGREE CITED ABOVE ol}-~ d2/, 19"/f DATE ADVISER I/ 'Ouue~2\ 1\l~ DATE ' ~RTMENT WHEAD THE EFFECTS OF SULPHUR DIOXIDE ON SELECTED HEPATICS BY STEVEN L.
    [Show full text]
  • Preliminary Classification of Leotiomycetes
    Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades.
    [Show full text]
  • A New Species of the Genus Jungermannia (Jungermanniales, Marchantiophyta) from the Caucasus with Notes on Taxa Delimitation and Taxonomy of Jungermannia S
    Phytotaxa 255 (3): 227–239 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2016 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.255.3.4 A new species of the genus Jungermannia (Jungermanniales, Marchantiophyta) from the Caucasus with notes on taxa delimitation and taxonomy of Jungermannia s. str. NADEZDA A. KONSTANTINOVA1 & ANNA A. VILNET1 1Polar-Alpine Botanical Garden–Institute RAS, 184256, Kirovsk, Russia, email: [email protected], [email protected] Abstract The new species Jungermannia calcicola Konstant. et Vilnet, is described based on a critical reinvestigation of morphologi- cal features and molecular analyses of trnL–trnF and trnG intron cpDNA sequences of forty samples of Jungermannia s. str. The new species is described and illustrated as well as noting its differentiation from allied species and distribution patterns. New data on some taxonomical ambiguities and on the taxa delimitation in the Jungermannia s. str. are discussed. Key words: Jungermannia calcicola sp. nov., liverworts, taxonomy, molecular systematics, distribution Introduction Jungermannia Linnaeus (1753: 1131) is one of the oldest described genera of leafy liverworts. Since its description the treatment of this genus has been drastically changed. At the end of the 20th to the beginning of the 21st centuries most bryologists accepted Jungermannia in the wide sense including Solenostoma Mitten (1865a: 51), Plectocolea (Mitten 1865b: 156) Mitten (1873: 405), Liochlaena Nees in Gottsche et al. (1845: 150). But in recent molecular phylogenetic studies Jungermannia s. lat. has been proved to be a mixture of phylogenetically unrelated taxa, some of which have been elevated to distinct families, e.g., Solenostomataceae Stotler et Crand.-Stotl.
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • Multi-Gene Phylogeny Supports Single Origin of Jungermannioid Perigynium
    Ann. Bot. Fennici 44: 450–462 ISSN 0003-3847 (print) ISSN 1797-2442 (online) Helsinki 20 December 2007 © Finnish Zoological and Botanical Publishing Board 2007 Multi-gene phylogeny supports single origin of jungermannioid perigynium Xiaolan He-Nygrén Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, FI-00014 University of Helsinki, Finland Received 23 Nov. 2006, revised version received 8 Feb. 2007, accepted 8 Feb. 2007 He-Nygrén, X. 2007: Multi-gene phylogeny supports single origin of jungermannioid perigynium. — Ann. Bot. Fennici 44: 450–462. Within the leafy liverworts, the evolution of the perigynium, the stem-derived struc- ture that protects the developing sporophytes, has been understood as merely a paral- lelism, and families that have this feature have been placed to various suborders. The present study suggests a single origin of the perigynium in the leafy liverworts and the presence of perigynium being a synapomorphy for the suborder Jungermanniineae. The phylogenetic analyses were conducted using thirty-four leafy liverworts including twelve genera bearing a perigynium, and sequence data for rbcL, rps4, trnL-F cpDNA and 26S nrDNA. Within the Jungermanniineae three monophyletic lineages are recog- nized: the Acrobolbaceae lineage, the Trichotemnomaceae–Balantiopsidaceae lineage, and the lineage consisting of Jungermanniaceae and its closest related Gymnomi- triaceae, Delavayellaceae, Geocalycaceae s. stricto, Antheliaceae, Calypogeiaceae and Gyrothyraceae. The long branches of the latter three families indicate that they are more isolated from a common jungermannioid ancestor. The family Jungermanniaceae is resolved as paraphyletic and its circumscription and relationships require further study. Key words: homology, Jungermanniineae, leafy liverworts, morphological innovation, perigynium, phylogeny, systematics Introduction rophyte.
    [Show full text]
  • Herbertus Ramosus (Herbertaceae, Marchantiophyta) – an Addition to Indian Bryoflora from Arunachal Pradesh with a Note on H
    Lindbergia 39: 1–6, 2016 ISSN 2001-5909 Accepted 12 February 2016 Herbertus ramosus (Herbertaceae, Marchantiophyta) – an addition to Indian bryoflora from Arunachal Pradesh with a note on H. sendtneri Siddhartha Singh Deo and D. K. Singh S. Singh Deo, Botanical Survey of India, Central National Herbarium, Howrah – 711 103, India. – D.K. Singh (singh_drdk@rediffmail. com), Botanical Survey of India, CGO Complex, 3rd MSO Building, F Block (5th Floor), Salt Lake Sector I, Kolkata – 700 064, India. Herbertus ramosus (Steph.) H.A.Mill. and H. sendtneri (Nees) Lindb. are described and illustrated from West Siang District of Arunachal Pradesh in the eastern Himalaya, India. This constitutes the first record ofH. ramosus in Indian bryoflora. It is easily distinguished from hitherto known Indian species of the genus by orange brown plants having falcate leaves with acute leaf lobes 23–40 cells wide at base, up to 8 cells uniseriate towards apex, strongly expanded basal leaf lamina on dorsal side, and strong grooved vitta. Identification key to the Indian species of the genus is provided and its distribution in the country is discussed. The genus Herbertus Gray is represented in India by presence of three species and one subspecies of the genus eight species and one subspecies, viz. H. aduncus (Dicks.) Herbertus in Arunachal Pradesh, viz. H. aduncus subsp. Gray subsp. aduncus, H. armitanus (Steph.) H.A.Mill., aduncus, H. armitanus, H. buchii and H. dicranus (Das H. buchii Juslén, H. ceylanicus (Steph.) Abeyw., H. dicra- and Singh 2012, Singh Deo and Singh 2013, Singh and nus (Taylor ex Gottsche et al.) Trevis., H.
    [Show full text]