Supplementary Table 2

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Table 2 Supplementary Table 2 - Gene variations in GAGA samples Single nucleotide variants - nonsynonymous GAGA1 Gene Symbol Chr Pos Ref Cons AA Change GAGA1-pri MYO18B chr22 26286832 A M Q1475P GAGA1 SC-xenograft ZCCHC16 chrX 111698639 C S S228X GAGA1-pri, GAGA1 SC-xenograft ABCC8 chr11 17485061 C Y R168H GAGA1-pri, GAGA1 SC-xenograft ADNP chr20 49510190 T Y N354S GAGA1-pri, GAGA1 SC-xenograft ALDH1A3 chr15 101427836 G T W88C GAGA1-pri, GAGA1 SC-xenograft ALPK3 chr15 85382286 A M E329A GAGA1-pri, GAGA1 SC-xenograft ARF5 chr7 127231099 A M E138A GAGA1-pri, GAGA1 SC-xenograft C1QL3 chr10 16556645 A R V217A GAGA1-pri, GAGA1 SC-xenograft CDH10 chr5 24487971 A R L723P GAGA1-pri, GAGA1 SC-xenograft CHRNA6 chr8 42612179 A W I89N GAGA1-pri, GAGA1 SC-xenograft CIT chr12 120128017 T C D2042G GAGA1-pri, GAGA1 SC-xenograft CPB1 chr3 148558692 A M E135A GAGA1-pri, GAGA1 SC-xenograft CRELD2 chr22 50316956 A G T304A GAGA1-pri, GAGA1 SC-xenograft CSMD2 chr1 34254282 C M V488F GAGA1-pri, GAGA1 SC-xenograft DDX58 chr9 32488143 C M V338F GAGA1-pri, GAGA1 SC-xenograft FAM180B chr11 47609771 C Y L131F GAGA1-pri, GAGA1 SC-xenograft FLNA chrX 153582802 A R L1788P GAGA1-pri, GAGA1 SC-xenograft FPR1 chr19 52250091 A M F53V GAGA1-pri, GAGA1 SC-xenograft GFM1 chr3 158369910 C S P239A GAGA1-pri, GAGA1 SC-xenograft GIN1 chr5 102433384 T K K247N GAGA1-pri, GAGA1 SC-xenograft GNPTAB chr12 102158500 T K K732T GAGA1-pri, GAGA1 SC-xenograft GPR112 chrX 135430205 A W E1447V GAGA1-pri, GAGA1 SC-xenograft GRIN2B chr12 13724768 A R V714A GAGA1-pri, GAGA1 SC-xenograft GYPA chr4 145039876 A R S88P GAGA1-pri, GAGA1 SC-xenograft HMGB4 chr1 34330171 A R T127A GAGA1-pri, GAGA1 SC-xenograft IL1RAP chr3 190373907 G K K525N GAGA1-pri, GAGA1 SC-xenograft JAKMIP1 chr4 6083373 T W E355V GAGA1-pri, GAGA1 SC-xenograft KIF2B chr17 51900539 A W I49F GAGA1-pri, GAGA1 SC-xenograft MARCH7 chr2 160605039 C S P413R GAGA1-pri, GAGA1 SC-xenograft MAST4 chr5 66461677 G S G2224R GAGA1-pri, GAGA1 SC-xenograft OLFM4 chr13 53624842 T K L490R GAGA1-pri, GAGA1 SC-xenograft OR2L13 chr1 248263489 A R K271R GAGA1-pri, GAGA1 SC-xenograft OR56A3 chr11 5968596 A R D7G GAGA1-pri, GAGA1 SC-xenograft OR8H2 chr11 55873269 T W F251I GAGA1-pri, GAGA1 SC-xenograft PCDH11X chrX 91090687 C S Q62E GAGA1-pri, GAGA1 SC-xenograft PDZD8 chr10 119042971 C Y M1091I GAGA1-pri, GAGA1 SC-xenograft PNPLA1 chr6 36260842 T Y L148P GAGA1-pri, GAGA1 SC-xenograft POGLUT1 chr3 119199006 G R E189K GAGA1-pri, GAGA1 SC-xenograft POLH chr6 43550073 A W D6V GAGA1-pri, GAGA1 SC-xenograft PROL1 chr4 71275389 G A G115E GAGA1-pri, GAGA1 SC-xenograft RPS6KA6 chrX 83359515 A M C536G GAGA1-pri, GAGA1 SC-xenograft SFMBT2 chr10 7247860 A M V454G GAGA1-pri, GAGA1 SC-xenograft SIL1 chr5 138282864 T W E443V GAGA1-pri, GAGA1 SC-xenograft SLC17A9 chr20 61595640 T K F295V GAGA1-pri, GAGA1 SC-xenograft SLC1A6 chr19 15064947 C Y S455N GAGA1-pri, GAGA1 SC-xenograft SMAD3 chr15 67477148 A T N319Y GAGA1-pri, GAGA1 SC-xenograft SMARCA2 chr9 2097430 A W R1013X GAGA1-pri, GAGA1 SC-xenograft SPRR4 chr1 152944518 A M K51T GAGA1-pri, GAGA1 SC-xenograft STAC3 chr12 57640682 C Y A170T GAGA1-pri, GAGA1 SC-xenograft TENM4 chr11 78419444 G R R1391W GAGA1-pri, GAGA1 SC-xenograft THSD7B chr2 138163225 T Y M817T GAGA1-pri, GAGA1 SC-xenograft TMF1 chr3 69077107 T W K901X GAGA1-pri, GAGA1 SC-xenograft TNPO3 chr7 128610260 G T P847H GAGA1-pri, GAGA1 SC-xenograft TRDMT1 chr10 17199620 T W E236V GAGA1-pri, GAGA1 SC-xenograft TTN chr2 179544746 A R V9908A GAGA1-pri, GAGA1 SC-xenograft UHRF1BP1L chr12 100482777 A W F313I GAGA1-pri, GAGA1 SC-xenograft USP31 chr16 23160144 C G E150Q GAGA1-pri, GAGA1 SC-xenograft VCAN chr5 82816692 T W L856H GAGA1-pri, GAGA1 SC-xenograft WFDC3 chr20 44418583 G K A11E GAGA1-pri, GAGA1 SC-xenograft WT1 chr11 32450142 C Y G156R GAGA1-pri, GAGA1 SC-xenograft ZNF526 chr19 42729057 G R V168I GAGA1-pri, GAGA1 SC-xenograft ZNF530 chr19 58118590 A R K566R Insertions/deletions (Indels) Genes Chr Start End Type GAGA1-pri, GAGA1 sc-xenograft SH2D4B chr10 82331241 82331242 -A GAGA1-pri, GAGA1 sc-xenograft PHLDB2 chr3 111680997 1.12E+08 -TG Copy Number Variants (CNVs) Genes KDM6A SMAD2 FGFR2 MYC KRAS CDKN2A (exon 27-29) GAGA1-pri HD - - amplified HD HD GAGA1-pri, GAGA1 SC-xenograft HD - - amplified HD HD Single nucleotide variants - nonsynonymous GAGA2 Gene Symbol Chr Pos Ref Cons AA Change GAGA2 primary ASB10 chr7 150884559 C Y R84H GAGA2 primary C6orf170 chr6 121624769 C M K358N GAGA2 primary CDH10 chr5 24509843 C M G363V GAGA2 primary CELF3 chr1 151681771 C Y V111I GAGA2 primary CNTN5 chr11 100169966 G K G820C GAGA2 primary COL23A1 chr5 177669107 C Y R506Q GAGA2 primary COL5A1 chr9 137701059 C T R1133X GAGA2 primary COL6A3 chr2 238257270 G R R2306C GAGA2 primary DCAF8L1 chrX 27997690 C Y E588K GAGA2 primary DNAJC28 chr21 34861220 G R R161C GAGA2 primary GPR148 chr2 131487412 C M L230I GAGA2 primary HS3ST4 chr16 25704231 A R S165G GAGA2 primary KCNJ11 chr11 17409491 G R R50W GAGA2 primary KL chr13 33638070 G R R929H GAGA2 primary LCE6A chr1 152816180 C Y R62C GAGA2 primary NTRK1 chr1 156849903 T Y I720T GAGA2 primary PRDM16 chr1 3321424 C Y R336C GAGA2 primary PRPF6 chr20 62614510 A R K61R GAGA2 primary PRRT4 chr7 127991302 C Y G770R GAGA2 primary SLC22A3 chr6 160858039 G R A362T GAGA2 primary SRCAP chr16 30750244 C M N2961K GAGA2 primary TAF1 chrX 70627422 A W 3' splice site GAGA2 primary TLL2 chr10 98192647 C Y R146Q GAGA2 primary TP53 chr17 7577094 G A R282W GAGA2 primary TRIM37 chr17 57119222 A M L569V GAGA2 primary WDR73 chr15 85189556 T K I126L GAGA2 primary ZFP1 chr16 75200754 G K M34I GAGA2 primary ZHX3 chr20 39831239 G R A773V Copy Number Variants (CNVs) Genes FGFR2 MYC KRAS GAGA2 primary amplified - - Single nucleotide variants - nonsynonymous GAGA3 Gene Symbol Chr Pos Ref Cons AA Change GAGA3-primary C14orf104 chr14 50100537 G R A444V GAGA3-pri, IP-xenograft, SC-xenograft ABTB2 chr11 34192538 C Y R307H GAGA3-pri, IP-xenograft, SC-xenograft AC135724.1 chr17 29708969 G R G63R GAGA3-pri, IP-xenograft, SC-xenograft ANK2 chr4 114244917 G R R947H GAGA3-pri, IP-xenograft, SC-xenograft AOX1 chr2 201531429 T Y V1188A GAGA3-pri, IP-xenograft, SC-xenograft ARHGEF17 chr11 73020890 G R D403N GAGA3-pri, IP-xenograft, SC-xenograft BAP1 chr3 52436336 G A R720C GAGA3-pri, IP-xenograft, SC-xenograft BAP1 chr3 52438566 G A R385X GAGA3-pri, IP-xenograft, SC-xenograft C16orf62 chr16 19710947 G R G924S GAGA3-pri, IP-xenograft, SC-xenograft C1orf125 chr1 179437770 C Y S664F GAGA3-pri, IP-xenograft, SC-xenograft CBLB chr3 105572318 C T R120Q GAGA3-pri, IP-xenograft, SC-xenograft CCDC8 chr19 46915167 C M D301Y GAGA3-pri, IP-xenograft, SC-xenograft CEP152 chr15 49054726 C M E808D GAGA3-pri, IP-xenograft, SC-xenograft CHPF chr2 220408100 C Y G54D GAGA3-pri, IP-xenograft, SC-xenograft CHRNA4 chr20 61981907 T Y T286A GAGA3-pri, IP-xenograft, SC-xenograft DOCK10 chr2 225672675 T Y K1180E GAGA3-pri, IP-xenograft, SC-xenograft ELF3 chr1 201983060 C A F303L GAGA3-pri, IP-xenograft, SC-xenograft EML5 chr14 89171869 T Y D630G GAGA3-pri, IP-xenograft, SC-xenograft ESPNL chr2 239025586 C Y R300W GAGA3-pri, IP-xenograft, SC-xenograft GALNT13 chr2 155102432 G R R265H GAGA3-pri, IP-xenograft, SC-xenograft IKZF3 chr17 37922642 C Y A311T GAGA3-pri, IP-xenograft, SC-xenograft JPH2 chr20 42815327 C Y D7N GAGA3-pri, IP-xenograft, SC-xenograft KCTD17 chr22 37457593 C Y P250S GAGA3-pri, IP-xenograft, SC-xenograft KLHL1 chr13 70549861 C Y A191T GAGA3-pri, IP-xenograft, SC-xenograft LDHBP2 chrX 75555581 C Y D187N GAGA3-pri, IP-xenograft, SC-xenograft MAGEA6 chrX 151869975 G S W222S GAGA3-pri, IP-xenograft, SC-xenograft MED12 chrX 70360552 G R V2038I GAGA3-pri, IP-xenograft, SC-xenograft MIA2 chr14 39716763 T W L329I GAGA3-pri, IP-xenograft, SC-xenograft MSH6 chr2 48027958 G K E946X GAGA3-pri, IP-xenograft, SC-xenograft NEGR1 chr1 72241942 C Y V150I GAGA3-pri, IP-xenograft, SC-xenograft NKAP chrX 119072768 A W L131X GAGA3-pri, IP-xenograft, SC-xenograft NRK chrX 105167275 G K A926S GAGA3-pri, IP-xenograft, SC-xenograft OR4A5 chr11 51411635 A R I254T GAGA3-pri, IP-xenograft, SC-xenograft PCDH17 chr13 58208370 G S E564Q GAGA3-pri, IP-xenograft, SC-xenograft PCDH19 chrX 99663057 G R T180M GAGA3-pri, IP-xenograft, SC-xenograft PCDHB3 chr5 140480967 C Y P245L GAGA3-pri, IP-xenograft, SC-xenograft PODXL2 chr3 127379998 C Y T376M GAGA3-pri, IP-xenograft, SC-xenograft PTPRC chr1 198721859 G T G1154V GAGA3-pri, IP-xenograft, SC-xenograft PXDN chr2 1680705 C Y R281Q GAGA3-pri, IP-xenograft, SC-xenograft RECQL4 chr8 145739012 G R R715W GAGA3-pri, IP-xenograft, SC-xenograft RHOA chr3 49412946 C T S26N GAGA3-pri, IP-xenograft, SC-xenograft RNF213 chr17 78280995 G R R832Q GAGA3-pri, IP-xenograft, SC-xenograft SCFD1 chr14 31091564 C Y A7V GAGA3-pri, IP-xenograft, SC-xenograft SERPINA9 chr14 94936170 G K S21Y GAGA3-pri, IP-xenograft, SC-xenograft SETX chr9 135202894 C M R1364I GAGA3-pri, IP-xenograft, SC-xenograft SIPA1 chr11 65413940 C Y R479C GAGA3-pri, IP-xenograft, SC-xenograft SLC24A3 chr20 19673903 C M S442X GAGA3-pri, IP-xenograft, SC-xenograft SNX15 chr11 64802562 C Y S135F GAGA3-pri, IP-xenograft, SC-xenograft SSPO chr7 149484875 G K A1233S GAGA3-pri, IP-xenograft, SC-xenograft TMEM2 chr9 74345045 G S T633S GAGA3-pri, IP-xenograft, SC-xenograft TRIM5 chr11 5686046 C Y S492N GAGA3-pri, IP-xenograft, SC-xenograft YME1L1 chr10 27408224 C M M579I GAGA3-pri, IP-xenograft, SC-xenograft ZACN chr17 74078558 G R V355I GAGA3-pri, IP-xenograft ACSBG1 chr15 78471961 G R A472V GAGA3-pri, IP-xenograft AHNAK chr11 62289721 C Y W4056X GAGA3-pri, IP-xenograft ALDH1A1 chr9 75520939 G K C456X GAGA3-pri, IP-xenograft
Recommended publications
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • HMGB1 in Health and Disease R
    Donald and Barbara Zucker School of Medicine Journal Articles Academic Works 2014 HMGB1 in health and disease R. Kang R. C. Chen Q. H. Zhang W. Hou S. Wu See next page for additional authors Follow this and additional works at: https://academicworks.medicine.hofstra.edu/articles Part of the Emergency Medicine Commons Recommended Citation Kang R, Chen R, Zhang Q, Hou W, Wu S, Fan X, Yan Z, Sun X, Wang H, Tang D, . HMGB1 in health and disease. 2014 Jan 01; 40():Article 533 [ p.]. Available from: https://academicworks.medicine.hofstra.edu/articles/533. Free full text article. This Article is brought to you for free and open access by Donald and Barbara Zucker School of Medicine Academic Works. It has been accepted for inclusion in Journal Articles by an authorized administrator of Donald and Barbara Zucker School of Medicine Academic Works. Authors R. Kang, R. C. Chen, Q. H. Zhang, W. Hou, S. Wu, X. G. Fan, Z. W. Yan, X. F. Sun, H. C. Wang, D. L. Tang, and +8 additional authors This article is available at Donald and Barbara Zucker School of Medicine Academic Works: https://academicworks.medicine.hofstra.edu/articles/533 NIH Public Access Author Manuscript Mol Aspects Med. Author manuscript; available in PMC 2015 December 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Mol Aspects Med. 2014 December ; 0: 1–116. doi:10.1016/j.mam.2014.05.001. HMGB1 in Health and Disease Rui Kang1,*, Ruochan Chen1, Qiuhong Zhang1, Wen Hou1, Sha Wu1, Lizhi Cao2, Jin Huang3, Yan Yu2, Xue-gong Fan4, Zhengwen Yan1,5, Xiaofang Sun6, Haichao Wang7, Qingde Wang1, Allan Tsung1, Timothy R.
    [Show full text]
  • DNA Supercoiling with a Twist Edwin Kamau Louisiana State University and Agricultural and Mechanical College, [email protected]
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2005 DNA supercoiling with a twist Edwin Kamau Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Kamau, Edwin, "DNA supercoiling with a twist" (2005). LSU Doctoral Dissertations. 999. https://digitalcommons.lsu.edu/gradschool_dissertations/999 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. DNA SUPERCOILING WITH A TWIST A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences By Edwin Kamau B.S. Horticulture, Egerton University, Kenya, 1996, May, 2005 DEDICATIONS I would like to dedicate this dissertation to my son, Ashford Kimani Kamau. Your age marks the life of my graduate school career. I have been a weekend dad, broke and with enormous financial responsibilities; it kills me to see how sometimes you cry your heart out on Sunday evening when our weekend time together is over. I miss you too every moment, you have encouraged me to be a better person, a better dad so that I can make you proud. At your tender age, I have learned a lot from you. We will soon spend all the time in the world we need together; travel, sports, music, pre-historic discoveries and adventures; the road is wide open.
    [Show full text]
  • The Forkhead-Box Family of Transcription Factors: Key Molecular Players in Colorectal Cancer Pathogenesis Paul Laissue
    Laissue Molecular Cancer (2019) 18:5 https://doi.org/10.1186/s12943-019-0938-x REVIEW Open Access The forkhead-box family of transcription factors: key molecular players in colorectal cancer pathogenesis Paul Laissue Abstract Colorectal cancer (CRC) is the third most commonly occurring cancer worldwide and the fourth most frequent cause of death having an oncological origin. It has been found that transcription factors (TF) dysregulation, leading to the significant expression modifications of genes, is a widely distributed phenomenon regarding human malignant neoplasias. These changes are key determinants regarding tumour’s behaviour as they contribute to cell differentiation/proliferation, migration and metastasis, as well as resistance to chemotherapeutic agents. The forkhead box (FOX) transcription factor family consists of an evolutionarily conserved group of transcriptional regulators engaged in numerous functions during development and adult life. Their dysfunction has been associated with human diseases. Several FOX gene subgroup transcriptional disturbances, affecting numerous complex molecular cascades, have been linked to a wide range of cancer types highlighting their potential usefulness as molecular biomarkers. At least 14 FOX subgroups have been related to CRC pathogenesis, thereby underlining their role for diagnosis, prognosis and treatment purposes. This manuscript aims to provide, for the first time, a comprehensive review of FOX genes’ roles during CRC pathogenesis. The molecular and functional characteristics of most relevant FOX molecules (FOXO, FOXM1, FOXP3) have been described within the context of CRC biology, including their usefulness regarding diagnosis and prognosis. Potential CRC therapeutics (including genome-editing approaches) involving FOX regulation have also been included. Taken together, the information provided here should enable a better understanding of FOX genes’ function in CRC pathogenesis for basic science researchers and clinicians.
    [Show full text]
  • FOXQ1 Controls the Induced Differentiation of Melanocytic Cells
    Cell Death & Differentiation (2018) 25:1040–1049 https://doi.org/10.1038/s41418-018-0066-y ARTICLE FOXQ1 controls the induced differentiation of melanocytic cells 1,7 1 1 1 1 Archis Bagati ● Anna Bianchi-Smiraglia ● Sudha Moparthy ● Kateryna Kolesnikova ● Emily E. Fink ● 1 1 1 1 1 1 Masha Kolesnikova ● Matthew V. Roll ● Peter Jowdy ● David W. Wolff ● Anthony Polechetti ● Dong Hyun Yun ● 1 1 1 1 1 Brittany C. Lipchick ● Leslie M. Paul ● Brian Wrazen ● Kalyana Moparthy ● Shaila Mudambi ● 2 3 4 1 4 1 Galina E. Morozevich ● Sofia G. Georgieva ● Jianmin Wang ● Gal Shafirstein ● Song Liu ● Eugene S. Kandel ● 2 5 1,6 1 Albert E. Berman ● Neil F. Box ● Gyorgy Paragh ● Mikhail A. Nikiforov Received: 9 October 2017 / Revised: 26 December 2017 / Accepted: 11 January 2018 / Published online: 20 February 2018 © ADMC Associazione Differenziamento e Morte Cellulare 2018 Abstract Oncogenic transcription factor FOXQ1 has been implicated in promotion of multiple transformed phenotypes in carcinoma cells. Recently, we have characterized FOXQ1 as a melanoma tumor suppressor that acts via repression of N-cadherin gene, and invasion and metastasis. Here we report that FOXQ1 induces differentiation in normal and transformed melanocytic cells at least partially via direct transcriptional activation of MITF gene, melanocytic lineage-specific regulator of differentiation. Importantly, we demonstrate that pigmentation induced in cultured melanocytic cells and in mice by 1234567890();,: activation of cAMP/CREB1 pathway depends in large part on FOXQ1. Moreover, our data reveal that FOXQ1 acts as a critical mediator of BRAFV600E-dependent regulation of MITF levels, thus providing a novel link between two major signal transduction pathways controlling MITF and differentiation in melanocytic cells.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Rats and Axolotls Share a Common Molecular Signature After Spinal Cord Injury Enriched in Collagen-1
    Rats and axolotls share a common molecular signature after spinal cord injury enriched in collagen-1 Athanasios Didangelos1, Katalin Bartus1, Jure Tica1, Bernd Roschitzki2, Elizabeth J. Bradbury1 1Wolfson CARD King’s College London, United Kingdom. 2Centre for functional Genomics, ETH Zurich, Switzerland. Running title: spinal cord injury in rats and axolotls Correspondence: A Didangelos: [email protected] SUPPLEMENTAL FIGURES AND LEGENDS Supplemental Fig. 1: Rat 7 days microarray differentially regulated transcripts. A-B: Protein-protein interaction networks of upregulated (A) and downregulated (B) transcripts identified by microarray gene expression profiling of rat SCI (4 sham versus 4 injured spinal cord samples) 7 days post-injury. Microarray expression data and experimental information is publicly available online (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45006) and is also summarised in Supplemental Table 1. Protein-protein interaction networks were performed in StringDB using the full range of protein interaction scores (0.15 – 0.99) to capture maximum evidence of proteins’ interactions. Networks were then further analysed for betweeness centrality and gene ontology (GO) annotations (BinGO) in Cytoscape. Node colour indicates betweeness centrality while edge colour and thickness indicate interaction score based on predicted functional links between nodes (green: low values; red: high values). C-D: The top 10 upregulated (C) or downregulated (D) transcripts sorted by betweeness centrality score in protein-protein interaction networks shown in A & B. E-F: Biological process GO analysis was performed on networks of upregulated and downregulated genes using BinGO in Cytoscape. Graphs indicate the 20 most significant GO categories and the number of genes in each category.
    [Show full text]
  • CAR-Null, Cyp3a-Null, and Cyp2b9/10/13-Null Mice
    UC Berkeley UC Berkeley Previously Published Works Title Compensatory changes in CYP expression in three different toxicology mouse models: CAR- null, Cyp3a-null, and Cyp2b9/10/13-null mice. Permalink https://escholarship.org/uc/item/2h40v9s9 Journal PloS one, 12(3) ISSN 1932-6203 Authors Kumar, Ramiya Mota, Linda C Litoff, Elizabeth J et al. Publication Date 2017 DOI 10.1371/journal.pone.0174355 Peer reviewed eScholarship.org Powered by the California Digital Library University of California RESEARCH ARTICLE Compensatory changes in CYP expression in three different toxicology mouse models: CAR-null, Cyp3a-null, and Cyp2b9/10/13-null mice Ramiya Kumar1, Linda C. Mota2, Elizabeth J. Litoff1, John P. Rooney3, W. Tyler Boswell1, Elliott Courter1, Charles M. Henderson1, Juan P. Hernandez4, J. Christopher Corton3, David D. Moore4, William S. Baldwin1,2* a1111111111 a1111111111 1 Biological Sciences, Clemson University, Clemson, SC, United States of America, 2 Environmental Toxicology, Clemson University, Pendleton, SC, United States of America, 3 NHEERL, US-EPA, Research a1111111111 Triangle Park, NC, United States of America, 4 Molecular and Cellular Biology, Baylor College of Medicine, a1111111111 Houston, TX, United States of America a1111111111 * [email protected] Abstract OPEN ACCESS Citation: Kumar R, Mota LC, Litoff EJ, Rooney JP, Targeted mutant models are common in mechanistic toxicology experiments investigating Boswell WT, Courter E, et al. (2017) Compensatory the absorption, metabolism, distribution, or elimination (ADME) of chemicals from individu- changes in CYP expression in three different als. Key models include those for xenosensing transcription factors and cytochrome P450s toxicology mouse models: CAR-null, Cyp3a-null, and Cyp2b9/10/13-null mice.
    [Show full text]
  • Lack of Rybp in Mouse Embryonic Stem Cells Impairs Cardiac Differentiation O
    Page 1 of 43 1 Lack of Rybp in Mouse Embryonic Stem Cells Impairs Cardiac Differentiation O. Ujhelly1, V. Szabo2, G. Kovacs2, F. Vajda2, S. Mallok4, J. Prorok5, K. Acsai6, Z. Hegedus3, S. Krebs4, A. Dinnyes1,7 and M. K. Pirity2 * 1 BioTalentum Ltd, H-2100 Gödöllö, Hungary 2 Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Hungary 3 Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Hungary 4 Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany 5 Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary 6 MTA-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary 7 Molecular Animal Biotechnology Laboratory, Szent Istvan University, Gödöllö, Hungary * Author for correspondence at Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Hungary Stem Cells and Development Ring1 and Yy1 Binding Protein (Rybp) has been implicated in transcriptional regulation, apoptotic signaling and as a member of the polycomb repressive complex 1 has important function in regulating pluripotency and differentiation of embryonic stem cells. Earlier, we have proven that Rybp plays essential role in mouse embryonic and central nervous system development. This work identifies Rybp, as a critical regulator of heart development. Rybp is readily detectable in the developing mouse heart from day 8.5 of embryonic development. Prominent Rybp expression persists during all embryonic stages and Rybp marks differentiated cell types of the heart. By utilizing rybp null embryonic stem cells (ESCs) in an in vitro cardiac Lack of Rybp in Mouse Embryonic Stem Cells Impairs Cardiac Differentiation (doi: 10.1089/scd.2014.0569) differentiation assay we found that rybp null ESCs do not form rhythmically beating cardiomyocytes.
    [Show full text]
  • Table SII. Significantly Differentially Expressed Mrnas of GSE23558 Data Series with the Criteria of Adjusted P<0.05 And
    Table SII. Significantly differentially expressed mRNAs of GSE23558 data series with the criteria of adjusted P<0.05 and logFC>1.5. Probe ID Adjusted P-value logFC Gene symbol Gene title A_23_P157793 1.52x10-5 6.91 CA9 carbonic anhydrase 9 A_23_P161698 1.14x10-4 5.86 MMP3 matrix metallopeptidase 3 A_23_P25150 1.49x10-9 5.67 HOXC9 homeobox C9 A_23_P13094 3.26x10-4 5.56 MMP10 matrix metallopeptidase 10 A_23_P48570 2.36x10-5 5.48 DHRS2 dehydrogenase A_23_P125278 3.03x10-3 5.40 CXCL11 C-X-C motif chemokine ligand 11 A_23_P321501 1.63x10-5 5.38 DHRS2 dehydrogenase A_23_P431388 2.27x10-6 5.33 SPOCD1 SPOC domain containing 1 A_24_P20607 5.13x10-4 5.32 CXCL11 C-X-C motif chemokine ligand 11 A_24_P11061 3.70x10-3 5.30 CSAG1 chondrosarcoma associated gene 1 A_23_P87700 1.03x10-4 5.25 MFAP5 microfibrillar associated protein 5 A_23_P150979 1.81x10-2 5.25 MUCL1 mucin like 1 A_23_P1691 2.71x10-8 5.12 MMP1 matrix metallopeptidase 1 A_23_P350005 2.53x10-4 5.12 TRIML2 tripartite motif family like 2 A_24_P303091 1.23x10-3 4.99 CXCL10 C-X-C motif chemokine ligand 10 A_24_P923612 1.60x10-5 4.95 PTHLH parathyroid hormone like hormone A_23_P7313 6.03x10-5 4.94 SPP1 secreted phosphoprotein 1 A_23_P122924 2.45x10-8 4.93 INHBA inhibin A subunit A_32_P155460 6.56x10-3 4.91 PICSAR P38 inhibited cutaneous squamous cell carcinoma associated lincRNA A_24_P686965 8.75x10-7 4.82 SH2D5 SH2 domain containing 5 A_23_P105475 7.74x10-3 4.70 SLCO1B3 solute carrier organic anion transporter family member 1B3 A_24_P85099 4.82x10-5 4.67 HMGA2 high mobility group AT-hook 2 A_24_P101651
    [Show full text]
  • DNMT Inhibitors Increase Methylation at Subset of Cpgs in Colon
    bioRxiv preprint doi: https://doi.org/10.1101/395467; this version posted August 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title: DNMT inhibitors increase methylation at subset of CpGs in colon, bladder, lymphoma, 2 breast, and ovarian, cancer genome 3 Running title: Decitabine/azacytidine increases DNA methylation 4 Anil K Giri1, Tero Aittokallio1,2 5 1Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland. 6 2Department of Mathematics and Statistics, University of Turku, Turku, Finland. 7 Correspondence to 8 Dr. Anil K Giri 9 Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland. 10 Email: [email protected] 11 Financial disclosure: This work was funded by the Academy of Finland (grants 269862, 292611, 12 310507 and 313267), Cancer Society of Finland, and the Sigrid Juselius Foundation. 13 Ethical disclosure: This study is an independent analysis of existing data available in the public 14 domain and does not involve any animal or human samples that have been collected by the authors 15 themselves. 16 Author contribution: AKG conceptualized, analyzed the data and wrote the manuscript. TA 17 critically revised and edited the manuscript. The authors report no conflict of interest. 18 19 Word count: 20 Figure number: 5 21 Table number: 1 22 23 Abstract 24 Background: DNA methyltransferase inhibitors (DNMTi) decitabine and azacytidine are approved 25 therapies for acute myeloid leukemia and myelodysplastic syndrome.
    [Show full text]