Novel Mechanistic Targets of Forkhead Box Q1 Transcription Factor in Human Breast Cancer Cells

Total Page:16

File Type:pdf, Size:1020Kb

Novel Mechanistic Targets of Forkhead Box Q1 Transcription Factor in Human Breast Cancer Cells bioRxiv preprint doi: https://doi.org/10.1101/2020.05.26.117176; this version posted May 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Novel mechanistic targets of Forkhead box Q1 transcription factor in human breast cancer cells Su-Hyeong Kim*,1, Eun-Ryeong Hahm*,1, Krishna B. Singh*, and Shivendra V. Singh*,¶,2 From the *Department of Pharmacology & Chemical Biology, and ¶UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania Running Title: Role of FoxQ1 in breast cancer 2To whom correspondence should be addressed: 2.32A Hillman Cancer Center Research Pavilion, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15213. Phone: 412-623-3263; Fax: 412-623-7828; E-mail: [email protected] Keywords: Breast Cancer, FoxQ1, Cell Cycle, Interleukin-1α, Interleukin-8 The transcription factor forkhead box Q1 analysis. FoxQ1 overexpression resulted (FoxQ1), which is overexpressed in in downregulation of genes associated different solid tumors, has emerged as a with cell cycle checkpoints, M phase, and key player in the pathogenesis of breast cellular response to stress/external stimuli cancer by regulating epithelial- as evidenced from the Reactome pathway mesenchymal transition, maintenance of analysis. Consequently, FoxQ1 cancer-stem like cells, and metastasis. overexpression resulted in S, G2M and However, the mechanism underlying mitotic arrest in basal-like SUM159 and oncogenic function of FoxQ1 is still not HMLE cells, but not in luminal-type fully understood. In this study, we MCF-7 cells. There were differences in compared the RNA-seq data from FoxQ1 expression of cell cycle-associated overexpressing SUM159 cells with that of proteins between FoxQ1 overexpressing empty vector-transfected control (EV) SUM159 and MCF-7 cells. Finally, we cells to identify novel mechanistic targets show for the first time that FoxQ1 is a of this transcription factor. Consistent direct transcriptional regulator of with published results in basal-like interleukin (IL)-1α, IL-8, and vascular subtype, immunohistochemistry revealed endothelial growth factor in breast cancer upregulation of FoxQ1 protein in cells. Chromatin immunoprecipitation luminal-type human breast cancer tissue revealed FoxQ1 occupancy at the microarrays when compared to normal promoters of IL-1α, IL-8, and VEGF. In mammary tissues. Many previously conclusion, the present study reports reported transcriptional targets of FoxQ1 novel mechanistic targets of FoxQ1 in (e.g., E-cadherin, N-cadherin, fibronectin human breast cancer cells. 1, etc.) were verified from the RNA-Seq challenging aspect in clinical management Introduction of breast cancer relates to molecular Breast cancer remains an alarming heterogeneity of the disease that is health concern for women worldwide characterized by distinct gene expression reflected by more than 40,000 deaths each signatures and overexpression of driver year in the United States alone (1). A oncogenic proteins (2-5). Majority of the 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.26.117176; this version posted May 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. invasive mammary ductal carcinomas are immortalized by hTERT and SV40 large T broadly grouped into four subtypes, antigen (HMLER) also promoted stem-like including luminal A type [estrogen receptor phenotype characterized by increased positive (ER+3), progesterone receptor mammosphere multiplicity (8). Importantly, positive (PR+), and human epidermal suppression of FoxQ1 expression in MDA- growth factor receptor 2 positive (HER2+)], MB-231 cells resulted in increased active luminal B type (ER+/PR+/HER2-), HER2- caspase-3 level in response to treatment with enriched, and basal-like (2,3). Nearly 75% several chemotherapy drugs, including 5- of basal-like breast tumors are triple- fluorouracil, taxol, and camptothecin (8). negative due to lack of ER, PR, and HER2 Transcriptional inactivation of E-cadherin expression (6). Further characterization of by FoxQ1 overexpression was also the disease subtype-independent oncogenic demonstrated in this study (8). dependencies in breast cancer is necessary to Subsequently, platelet-derived growth factor identify novel druggable targets to broaden receptor α/β were identified as additional therapeutic options for different subtypes of downstream targets of FoxQ1 in promotion breast cancer. of breast cancer stem cell-like phenotype as well as chemoresistance (9). We have also The transcription factor forkhead box shown previously that FoxQ1 promotes Q1 (FoxQ1) has recently emerged as a key breast cancer stem-like phenotype in a player in the pathogenesis of breast cancer luminal-type (MCF-7) and a basal-like (7-9). Zhang et al. (7) were the first to (SUM159) cell line by causing direct demonstrate a role for FoxQ1 in epithelial- transcriptional repression of the tumor mesenchymal transition (EMT) in breast suppressor Dachshund homolog 1 (DACH1) cancer metastasis using a cross-species gene (10). expression profiling strategy. Forced expression of FoxQ1 in a human mammary Published studies thus far clearly epithelial cell line (HMLE) and EpRas cells indicate that FoxQ1 regulates expression of increased their ability to migrate and invade multiple cancer-relevant genes to promote in vitro, and these effects were reversible by cell invasion/migration, stem-like knockdown of this protein in 4T1 mouse phenotype, and chemotherapy resistance in mammary carcinoma cells (7). Moreover, vitro and metastasis in vivo in breast cancer FoxQ1 overexpressing EpRas cells exhibited cell lines, but the possibility of additional increased propensity for pulmonary functionally important targets of this metastasis in vivo (7). Promotion of the transcription factor can’t be fully ignored. EMT phenotype by FoxQ1 overexpression To address this question, we compared was due to direct repression of E-cadherin RNA-Seq data from FoxQ1 overexpressing protein expression (7). In another study, SUM159 (hereafter abbreviated as FoxQ1 FoxQ1 expression was shown to correlate cells) cells with that of empty vector with high-grade basal-like breast cancers transfected control cells (hereafter and associated with poor clinical outcomes abbreviated as EV cells) to identify its (8). RNA interference of FoxQ1 in a highly additional mechanistic targets. The present invasive basal-like human breast cancer cell study reveals novel downstream targets of line (MDA-MB-231) attenuated EMT FoxQ1 in breast cancer including cell cycle phenotype and decreased its invasion ability control, interleukin (IL)-1α, IL-8, and (8). Ectopic expression of FoxQ1 in a vascular endothelial growth factor (VEGF). human mammary epithelial cell line 2 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.26.117176; this version posted May 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Results Volcano plot in Fig. 1D depicts distribution of differentially expressed genes between FoxQ1 protein is overexpressed in luminal- FoxQ1 overexpressing SUM159 cells and type human breast cancers compared to EV cells with a threshold cut-off of 1.3-fold normal mammary tissues change in expression and at an adjusted p We have shown previously that the value of < 0.05 (Fig. 1D). The heatmaps of level of FoxQ1 protein and mRNA is three replicates of each group exhibiting relatively higher in basal-like human breast highly consistent transcriptional changes are cancer cell lines (e.g., MDA-MB-231) in shown in Fig. 1E. The Venn diagram shown comparison with a normal mammary in Fig. 1F shows unique and overlapping epithelial cell line (MCF-10A) or luminal- gene expression between FoxQ1 type cells (e.g., MCF-7 and MDA-MB-361) overexpressing SUM159 cells and EV cells. (10). Moreover, basal-like human breast cancers exhibited higher level of FoxQ1 Kyoto encyclopedia of genes and genomes protein when compared to normal mammary (KEGG) pathway analysis tissues (10). Initially, we compared the The top 5 pathways with upregulated expression of FoxQ1 gene expression in genes from the KEGG analysis included white versus black breast cancer patients and pathways in cancer (84 genes), mitogen- between ductal and lobular carcinomas in activated protein kinase signaling (56 breast cancer TCGA dataset. The expression genes), regulation of actin cytoskeleton (49 of FoxQ1 was marginally but significantly genes), focal adhesion (50 genes), and axon higher in the tumors of black women when guidance (37 genes) (Fig. 2A). The top 5 compared to white women (Fig. 1A). On the pathways with downregulated genes from other hand, the expression of FoxQ1 was the KEGG pathway analysis were cell cycle comparable between ductal and lobular (41 genes), oocyte meiosis (38 genes), breast cancers (Fig. 1A). In this study, we progesterone-mediated oocyte maturation also examined the expression of FoxQ1 (29 genes), lysine degradation (18 genes), protein in tissue microarrays consisting of and protein processing in endoplasmic luminal-type breast cancers and normal reticulum (46 genes) (Fig. 2B). mammary tissues. Fig. 1B shows immunohistochemical staining for FoxQ1 in The gene ontology (GO) and Reactome representative normal mammary tissues and pathway analyses
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.
    [Show full text]
  • Serum Albumin OS=Homo Sapiens
    Protein Name Cluster of Glial fibrillary acidic protein OS=Homo sapiens GN=GFAP PE=1 SV=1 (P14136) Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 Cluster of Isoform 3 of Plectin OS=Homo sapiens GN=PLEC (Q15149-3) Cluster of Hemoglobin subunit beta OS=Homo sapiens GN=HBB PE=1 SV=2 (P68871) Vimentin OS=Homo sapiens GN=VIM PE=1 SV=4 Cluster of Tubulin beta-3 chain OS=Homo sapiens GN=TUBB3 PE=1 SV=2 (Q13509) Cluster of Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 (P60709) Cluster of Tubulin alpha-1B chain OS=Homo sapiens GN=TUBA1B PE=1 SV=1 (P68363) Cluster of Isoform 2 of Spectrin alpha chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTAN1 (Q13813-2) Hemoglobin subunit alpha OS=Homo sapiens GN=HBA1 PE=1 SV=2 Cluster of Spectrin beta chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTBN1 PE=1 SV=2 (Q01082) Cluster of Pyruvate kinase isozymes M1/M2 OS=Homo sapiens GN=PKM PE=1 SV=4 (P14618) Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 Clathrin heavy chain 1 OS=Homo sapiens GN=CLTC PE=1 SV=5 Filamin-A OS=Homo sapiens GN=FLNA PE=1 SV=4 Cytoplasmic dynein 1 heavy chain 1 OS=Homo sapiens GN=DYNC1H1 PE=1 SV=5 Cluster of ATPase, Na+/K+ transporting, alpha 2 (+) polypeptide OS=Homo sapiens GN=ATP1A2 PE=3 SV=1 (B1AKY9) Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens GN=DPYSL2 PE=1 SV=1 Cluster of Alpha-actinin-1 OS=Homo sapiens GN=ACTN1 PE=1 SV=2 (P12814) 60 kDa heat shock protein, mitochondrial OS=Homo
    [Show full text]
  • The Forkhead-Box Family of Transcription Factors: Key Molecular Players in Colorectal Cancer Pathogenesis Paul Laissue
    Laissue Molecular Cancer (2019) 18:5 https://doi.org/10.1186/s12943-019-0938-x REVIEW Open Access The forkhead-box family of transcription factors: key molecular players in colorectal cancer pathogenesis Paul Laissue Abstract Colorectal cancer (CRC) is the third most commonly occurring cancer worldwide and the fourth most frequent cause of death having an oncological origin. It has been found that transcription factors (TF) dysregulation, leading to the significant expression modifications of genes, is a widely distributed phenomenon regarding human malignant neoplasias. These changes are key determinants regarding tumour’s behaviour as they contribute to cell differentiation/proliferation, migration and metastasis, as well as resistance to chemotherapeutic agents. The forkhead box (FOX) transcription factor family consists of an evolutionarily conserved group of transcriptional regulators engaged in numerous functions during development and adult life. Their dysfunction has been associated with human diseases. Several FOX gene subgroup transcriptional disturbances, affecting numerous complex molecular cascades, have been linked to a wide range of cancer types highlighting their potential usefulness as molecular biomarkers. At least 14 FOX subgroups have been related to CRC pathogenesis, thereby underlining their role for diagnosis, prognosis and treatment purposes. This manuscript aims to provide, for the first time, a comprehensive review of FOX genes’ roles during CRC pathogenesis. The molecular and functional characteristics of most relevant FOX molecules (FOXO, FOXM1, FOXP3) have been described within the context of CRC biology, including their usefulness regarding diagnosis and prognosis. Potential CRC therapeutics (including genome-editing approaches) involving FOX regulation have also been included. Taken together, the information provided here should enable a better understanding of FOX genes’ function in CRC pathogenesis for basic science researchers and clinicians.
    [Show full text]
  • List of Down-Regulated Transcripts
    Supplementary Table 1: List of down-regulated transcripts (Fold Change>1.7 and p<0.05). List of the transcipts downregulated by Tpr-Met in P27 cachectic gastrocnemius muscles. Shown are the transcripts gene annotation: Mus Musculus Entrez Gene ID, official symbol from NCBI, average (AVG) Log2 Ratio derived from Illumina microarrays (3 replicates/condition), fold change and p-value computations, Log2 ratio over AVG Log2 controls and full definition of the genes. All genes modulated with a fold change > 1.7 and p-value<0.05 are included. AVG Entrez Gene Fold Symbol Log2 T-test Ctrl Ctrl Ctrl TM TM TM Definition ID Change Ratio - - - - 26908 Eif2s3y 3.598 12.1 0.000 0.146 0.248 0.102 3.712 3.571 -3.510 eukaryotic translation initiation factor 2, subunit 3, structural gene Y-linked (Eif2s3y), mRNA. - - - 13628 Eef1a2 1.333 2.5 0.011 -0.444 0.261 0.183 1.503 0.950 -1.546 eukaryotic translation elongation factor 1 alpha 2 (Eef1a2), mRNA. - - - 13628 Eef1a2 1.298 2.5 0.031 -0.383 0.275 0.108 1.632 0.605 -1.656 eukaryotic translation elongation factor 1 alpha 2 (Eef1a2), mRNA. - - - 56222 Cited4 1.268 2.4 0.029 -0.466 0.035 0.431 1.109 0.889 -1.805 Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 4 (Cited4), mRNA. - - - 18810 Plec1 1.246 2.4 0.022 -0.440 0.327 0.113 1.303 0.779 -1.657 plectin 1 (Plec1), transcript variant 10, mRNA. - - - 20741 Spnb1 1.238 2.4 0.016 -0.384 0.314 0.071 1.129 0.902 -1.684 spectrin beta 1 (Spnb1), mRNA.
    [Show full text]
  • FOXQ1 Controls the Induced Differentiation of Melanocytic Cells
    Cell Death & Differentiation (2018) 25:1040–1049 https://doi.org/10.1038/s41418-018-0066-y ARTICLE FOXQ1 controls the induced differentiation of melanocytic cells 1,7 1 1 1 1 Archis Bagati ● Anna Bianchi-Smiraglia ● Sudha Moparthy ● Kateryna Kolesnikova ● Emily E. Fink ● 1 1 1 1 1 1 Masha Kolesnikova ● Matthew V. Roll ● Peter Jowdy ● David W. Wolff ● Anthony Polechetti ● Dong Hyun Yun ● 1 1 1 1 1 Brittany C. Lipchick ● Leslie M. Paul ● Brian Wrazen ● Kalyana Moparthy ● Shaila Mudambi ● 2 3 4 1 4 1 Galina E. Morozevich ● Sofia G. Georgieva ● Jianmin Wang ● Gal Shafirstein ● Song Liu ● Eugene S. Kandel ● 2 5 1,6 1 Albert E. Berman ● Neil F. Box ● Gyorgy Paragh ● Mikhail A. Nikiforov Received: 9 October 2017 / Revised: 26 December 2017 / Accepted: 11 January 2018 / Published online: 20 February 2018 © ADMC Associazione Differenziamento e Morte Cellulare 2018 Abstract Oncogenic transcription factor FOXQ1 has been implicated in promotion of multiple transformed phenotypes in carcinoma cells. Recently, we have characterized FOXQ1 as a melanoma tumor suppressor that acts via repression of N-cadherin gene, and invasion and metastasis. Here we report that FOXQ1 induces differentiation in normal and transformed melanocytic cells at least partially via direct transcriptional activation of MITF gene, melanocytic lineage-specific regulator of differentiation. Importantly, we demonstrate that pigmentation induced in cultured melanocytic cells and in mice by 1234567890();,: activation of cAMP/CREB1 pathway depends in large part on FOXQ1. Moreover, our data reveal that FOXQ1 acts as a critical mediator of BRAFV600E-dependent regulation of MITF levels, thus providing a novel link between two major signal transduction pathways controlling MITF and differentiation in melanocytic cells.
    [Show full text]
  • Supplementary Data Vigneswaran Et Al Supplementary Data
    Vigneswaran et al Supplementary Data Vigneswaran et al Supplementary Data Figure S1: Yki is required for EGFR-PI3K-driven glial neoplasia in Drosophila (A) Optical projections of whole brain-nerve cord complexes from 3rd instar larvae approximately 130 hrs old. Dorsal view; anterior up. CD8-GFP (green) labels glial cell bodies. Compared to repo>dEGFRλ;dp110CAAX, warts knockdown (repo>wartsdsRNA; dEGFRλ;dp110CAAX) increased neoplastic brain overgrowth and yki knockdown (repo>ykidsRNA;dEGFRλ;dp110CAAX) decreased neoplastic brain overgrowth. (B) 3 µm optical projections of brain hemispheres, age-matched 3rd instar larvae. Frontal sections; anterior up; midline to left. Repo (red) labels glial cell nuclei; CD8-GFP (green) labels glial cell bodies; anti-HRP (blue) counter-stains for neurons and neuropil. (middle) repo>dEGFRλ;dp110CAAX showed increased glial cell numbers (red nuclei) compared to (upper left) wild-type. Compared to repo>dEGFRλ;dp110CAAX, (right) warts knockdown increased neoplastic glial cell numbers (red nuclei), whereas (lower left) yki knockdown reduced neoplastic glial cell numbers (red nuclei). (C, D) Low levels of Yki protein (red) was observed in wild-type central brain glia (white arrows, left panel in C) compared to high levels of cytoplasmic and nuclear Yki protein in dEGFRλ;dp110CAAX neoplastic glia (white arrows, left panel in D); Repo (blue) labels glial cell nuclei; CD8-GFP (green) labels glial cell bodies. Vigneswaran et al Supplementary Data Figure S2: YAP/TAZ expression confined to RTK-amplified tuMor cells and Maintained in patient-derived xenografts (A) On the left, immunohistochemical (IHC) staining in representative normal brain parenchyma in the cortex where YAP expression and TAZ expression was limited to vascular cells and was not detectable in normal neuronal and glial cells.
    [Show full text]
  • SUPPLEMENTARY APPENDIX Inflammation Regulates Long Non-Coding RNA-PTTG1-1:1 in Myeloid Leukemia
    SUPPLEMENTARY APPENDIX Inflammation regulates long non-coding RNA-PTTG1-1:1 in myeloid leukemia Sébastien Chateauvieux, 1,2 Anthoula Gaigneaux, 1° Déborah Gérard, 1 Marion Orsini, 1 Franck Morceau, 1 Barbora Orlikova-Boyer, 1,2 Thomas Farge, 3,4 Christian Récher, 3,4,5 Jean-Emmanuel Sarry, 3,4 Mario Dicato 1 and Marc Diederich 2 °Current address: University of Luxembourg, Faculty of Science, Technology and Communication, Life Science Research Unit, Belvaux, Luxemburg. 1Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg; 2College of Pharmacy, Seoul National University, Gwanak-gu, Seoul, Korea; 3Cancer Research Center of Toulouse, UMR 1037 INSERM/ Université Toulouse III-Paul Sabatier, Toulouse, France; 4Université Toulouse III Paul Sabatier, Toulouse, France and 5Service d’Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopôle, Toulouse, France Correspondence: MARC DIEDERICH - [email protected] doi:10.3324/haematol.2019.217281 Supplementary data Inflammation regulates long non-coding RNA-PTTG1-1:1 in myeloid leukemia Sébastien Chateauvieux1,2, Anthoula Gaigneaux1*, Déborah Gérard1, Marion Orsini1, Franck Morceau1, Barbora Orlikova-Boyer1,2, Thomas Farge3,4, Christian Récher3,4,5, Jean-Emmanuel Sarry3,4, Mario Dicato1 and Marc Diederich2 1 Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, 2540 Luxembourg, Luxemburg; 2 College of Pharmacy, Seoul National University, 1 Gwanak-ro,
    [Show full text]
  • CAR-Null, Cyp3a-Null, and Cyp2b9/10/13-Null Mice
    UC Berkeley UC Berkeley Previously Published Works Title Compensatory changes in CYP expression in three different toxicology mouse models: CAR- null, Cyp3a-null, and Cyp2b9/10/13-null mice. Permalink https://escholarship.org/uc/item/2h40v9s9 Journal PloS one, 12(3) ISSN 1932-6203 Authors Kumar, Ramiya Mota, Linda C Litoff, Elizabeth J et al. Publication Date 2017 DOI 10.1371/journal.pone.0174355 Peer reviewed eScholarship.org Powered by the California Digital Library University of California RESEARCH ARTICLE Compensatory changes in CYP expression in three different toxicology mouse models: CAR-null, Cyp3a-null, and Cyp2b9/10/13-null mice Ramiya Kumar1, Linda C. Mota2, Elizabeth J. Litoff1, John P. Rooney3, W. Tyler Boswell1, Elliott Courter1, Charles M. Henderson1, Juan P. Hernandez4, J. Christopher Corton3, David D. Moore4, William S. Baldwin1,2* a1111111111 a1111111111 1 Biological Sciences, Clemson University, Clemson, SC, United States of America, 2 Environmental Toxicology, Clemson University, Pendleton, SC, United States of America, 3 NHEERL, US-EPA, Research a1111111111 Triangle Park, NC, United States of America, 4 Molecular and Cellular Biology, Baylor College of Medicine, a1111111111 Houston, TX, United States of America a1111111111 * [email protected] Abstract OPEN ACCESS Citation: Kumar R, Mota LC, Litoff EJ, Rooney JP, Targeted mutant models are common in mechanistic toxicology experiments investigating Boswell WT, Courter E, et al. (2017) Compensatory the absorption, metabolism, distribution, or elimination (ADME) of chemicals from individu- changes in CYP expression in three different als. Key models include those for xenosensing transcription factors and cytochrome P450s toxicology mouse models: CAR-null, Cyp3a-null, and Cyp2b9/10/13-null mice.
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7
    [Show full text]
  • FOXQ1 Is Overexpressed in Laryngeal Carcinoma and Affects Cell Growth, Cell Cycle Progression and Cell Invasion
    ONCOLOGY LETTERS 10: 2499-2504, 2015 FOXQ1 is overexpressed in laryngeal carcinoma and affects cell growth, cell cycle progression and cell invasion JIE ZHANG1, WEI LI1, SONG DAI2, XUHUI TAI2, JIANPING JIA2 and XING GUO1 1Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001; 2Department of Otolaryngology, The 463 Hospital of PLA, Shenyang, Liaoning 110007, P.R. China Received September 8, 2014; Accepted June 11, 2015 DOI: 10.3892/ol.2015.3530 Abstract. Forkhead box Q1 (FOXQ1) is a forkhead transcrip- the country's Northeast region (4). Significant predisposing tion factor that is involved in numerous biological processes and factors to the development and progression of LSCC, include has been shown to participate in tumorigenesis. However, the alcohol abuse and tobacco (5). Early stage LSCC may be clinical significance of the expression of this protein in laryn- effectively treated with surgery or radiotherapy (6). When geal carcinoma, and the mechanisms underlying its regulation diagnosed at an advanced stage, this disease usually requires in this disease remain unclear. The aim of present study was a combination of treatment modalities. However, although to measure the expression of FOXQ1 in laryngeal carcinoma, such combined therapy has improved local control and and to examine its effect on tumorigenesis. In the present study, overall quality of life, the local recurrence rate varies from reverse transcription‑quantitative polymerase chain reaction and 10-50%, depending on tumor stage and the overall survival western blotting were employed to measure FOXQ1 expression rate has not improved significantly over two decades (7,8). in laryngeal carcinoma tissue samples, small interfering RNA Therefore, it is necessary to identify novel biomarkers for specific to FOXQ1, was transfected into Hep2 cells and its effect use in the diagnosis of LSCC.
    [Show full text]
  • New Partners Identified by Mass Spectrometry Assay Reveal Functions of NCAM2 in Neural Cytoskeleton Organization
    International Journal of Molecular Sciences Article New Partners Identified by Mass Spectrometry Assay Reveal Functions of NCAM2 in Neural Cytoskeleton Organization Antoni Parcerisas 1,2,3,*,† , Alba Ortega-Gascó 1,2,† , Marc Hernaiz-Llorens 1,2 , Maria Antonia Odena 4, Fausto Ulloa 1,2, Eliandre de Oliveira 4, Miquel Bosch 3 , Lluís Pujadas 1,2 and Eduardo Soriano 1,2,* 1 Department of Cell Biology, Physiology and Immunology, University of Barcelona and Institute of Neurosciences, 08028 Barcelona, Spain; [email protected] (A.O.-G.); [email protected] (M.H.-L.); [email protected] (F.U.); [email protected] (L.P.) 2 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain 3 Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain; [email protected] 4 Plataforma de Proteòmica, Parc Científic de Barcelona (PCB), 08028 Barcelona, Spain; [email protected] (M.A.O.); [email protected] (E.d.O.) * Correspondence: [email protected] (A.P.); [email protected] (E.S.) † A.P. and A.O.-G. contributed equally. Abstract: Neuronal cell adhesion molecule 2 (NCAM2) is a membrane protein with an important role in the morphological development of neurons. In the cortex and the hippocampus, NCAM2 is essential for proper neuronal differentiation, dendritic and axonal outgrowth and synapse forma- tion. However, little is known about NCAM2 functional mechanisms and its interactive partners Citation: Parcerisas, A.; during brain development. Here we used mass spectrometry to study the molecular interactome Ortega-Gascó, A.; Hernaiz-Llorens, of NCAM2 in the second postnatal week of the mouse cerebral cortex.
    [Show full text]