Co-Localization of and Interaction Between Duck Enteritis Virus

Total Page:16

File Type:pdf, Size:1020Kb

Co-Localization of and Interaction Between Duck Enteritis Virus Feng et al. BMC Veterinary Research (2018) 14:255 https://doi.org/10.1186/s12917-018-1553-6 RESEARCHARTICLE Open Access Co-localization of and interaction between duck enteritis virus glycoprotein H and L Daishen Feng1,2†, Min Cui1,2†, Renyong Jia1,2,3* , Siyang Liu1,2, Mingshu Wang1,2,3, Dekang Zhu1,3, Shun Chen1,2,3, Mafeng Liu1,2,3, Xinxin Zhao1,2,3, Yin Wu1,2,3, Qiao Yang1,2,3, Zhongqiong Yin3 and Anchun Cheng1,2,3* Abstract Background: Duck Enteritis Virus (DEV), belonging to the α-herpesvirus subfamily, is a linear double-stranded DNA virus. Glycoprotein H and L (gH and gL), encoded by UL22 and UL1, are conserved in the family of herpesviruses. They play important roles as gH/gL dimers during viral entry into host cells through cell-cell fusion. The interaction between gH and gL has been confirmed in several human herpesviruses, such as Herpes Simplex Virus (HSV), Epstein-Barr virus (EBV) and Human Cytomegalovirus (HCMV). In this paper, we studied the interaction between DEV gH and gL. Results: Recombinant plasmids pEGFP-N-gH and pDsRED-N-gL were constructed successfully. Expressions of both DEV gH and gL were observed after incubation of COS-7 cells transfected with pEGFP-N-gH and pDsRED-N-gL plasmids after 12 h, respectively. Also, the co-localization of a proportion of the gH and gL was detected in the cytoplasm of COS-7 cells after co-transfection for 24 h. Then, pCMV-Flag-gL and pCMV-Myc-gH recombinant plasmids were constructed and co-transfected into COS-7 cells. It was showed that both gH and gL were tested with positive results through co-immunoprecipitation and Western-blotting. Conclusions: Our results demonstrated not only the co-localization of DEV gH and gL in COS-7 cells, but also the interaction between them. It will provide an insight for the further studies in terms of protein-protein interaction in DEV. Keywords: DEV, Glycoprotein H , Glycoprotein L, Interaction, Co-localization, Co-immunoprecipitation Background [5, 19, 32]. DEV, also known as Duck Plague Virus Duck Enteritis Virus (DEV) is a linear double-stranded (DPV) and Anatid Herpesvirus 1 (AnHV-1), mainly DNA virus, of the α-herpesvirus subfamily [34]. Herpes- causes acute and contagious infection to waterfowl. Until viruses, consisting of core, capsid, tegument and enve- now, the duck enteritis virus is one of the most severe lope, are a large family of the linear double-stranded diseases that seriously affect economy in the worldwide DNA group of viruses [27, 28]. It has three subfamilies duck industry [23, 39]. including α-, β- and γ- herpesvirus. The α-herpesvirus Glycoprotein H is highly conserved in the herpes- contains: Herpes Simplex Virus 1 (HSV-1), Herpes Sim- viruses. Heterodimer gH/gL, commonly formed plex Virus 2 (HSV-2), Varicella-zoster Virus (VZV), and through non-covalent linkages, is of great import- Pseudorabies Virus (PRV); β-herpesvirus: Human Cyto- ance to membrane fusion of the enveloped viruses megalovirus (HCMV), Human Herpesvirus 6 and 7 and host cells [6]. It has been studied that in the (HHV-6 and HHV-7); and γ-herpesvirus: Epstein-Barr process of HSV-1 and HCMV entry into host cells, virus (EBV) and Kaposi’s sarcoma-associated herpesvirus gB, gH and gL are three essential glycoproteins for (KSHV, also known as Human Herpesvirus 8 (HHV-8)) the cell-cell fusion [1, 2, 24, 26]. Firstly, glycopro- teins of herpesviruse bind with their specifically cel- * Correspondence: [email protected]; [email protected] lular receptors, in order to attaching to the † Daishen Feng and Min Cui contributed equally to this work. membrane of host cells [10]. Then, gB, as a fusogen, 1Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China is activated by gH/gL through interaction, therefore Full list of author information is available at the end of the article the fusogenic function of gB is promoted [23, 24, 30]. The © The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Feng et al. BMC Veterinary Research (2018) 14:255 Page 2 of 10 function of connection between gB and gH/gL, also Methods known as “core fusion machinery,” is essential for herpes- Virus and DNA extraction viruses to initiate membrane fusion [15]. For example, The DEV CHv strain (GenBank No. JQ647509.1) was the first step of EBV entry into Epithelial cells is teth- precured from Avian Disease Research Center of Si- ering gH/gL to its cellular membrane receptors, in- chuan Agricultural University. Monolayer cultures of cluding integrin αγβ5, αγβ6andαγβ8, which will duck embryo fibroblasts (DEFs) were infected with DEV change the conformation of gH/gL delicately due to CHv strain at a multiplicity of infection (MOI) of 0.1, receptor-binding. Then, the heterodimer will interact which was incubated in Dulbecco’s modified Eagle with gB and trigger its fusogenic function [5, 10, 11]. medium (DMEM) containing 10% fetal bovine serum Therefore, gH/gL is more likely a regulator in the (FBS). The use of duck embryos was approved by the process of cellular membrane fusion. Animal Ethics Committee of Sichuan Agricultural Uni- Recently, the three-dimensional crystal structures and versity (approval No. XF2014–18). Then, the cells were interaction domains of gH/gL of HSV-2 and EBV gH/gL incubated at 37 °C until a cytopathic effect (CPE) ap- have been solved [8, 26], which helped immensely in un- peared in about 80% of the cells. DNA of DEV was ex- derstanding the structure and function of gH/gL. How- tracted from the infected cell lysis using DNA Extraction ever, the functional mechanisms of gH/gL are complicated Kit for Virus (TianGen Biotech Co., LTD.). and diverse in different herpesviruses. For instance, al- though the structural conformation of gH/gL is generally Primer design and PCR amplification homologous among HSV-2, EBV and HCMV, some differ- A bioinformatics analysis of DEV CHv genome sequence ences still exist, including divided domains, interdomain (GenBank No. JQ647509.1) was performed and a pair of packing angles and fragment antigen-binding regions of primers was designed to amplify the truncate UL1 gene the neutralizing antibody [8, 10]. When gH binds gL at (UL1t). The forward primer UL1t-1F and reverse primer the N-terminal domain (H1) of HSV-2, gH/gL therefore UL1t-1R were showed in Table 1 (the underlined se- forms a boot-like heterodimer with a ∼ 60° kink between quences was restriction enzyme HindIII site). domain H2 and H3 at the C terminus [8]. Similarly, com- Two pairs of primer were designed to amplify the UL1 prising a kink between domains III and IV, the structure and UL22 gene respectively, which encode the gL and of HCMV gH/gL has the semblable boot-like heterodimer gH of DEV respectively. The two pairs of primer for as HSV-2 [8–10, 26]. Furthermore, in most human her- amplifying UL1 gene are seen in Table 1 as UL1-1F/1R pesviruses, gL requires correct enfoldment to bind with and UL1-2F/2R respectively. The other two pairs of pri- gH. HSV-1 gL is more likely a scaffolding protein than a mer for amplifying UL22 gene are also shown in Table 1 chaperone to traffic gH and promotes its surface expres- as UL22-1F/1R and UL22-2F/2R respectively. The DEV sion, then gH anchors gL to the cell surface [12, 20, 33]. CHv DNA was used as template. The PCR was per- During membrane fusion, the fusogenic potential of formed with 10 μL mixture as reactions containing 5 μL HSV-1 gB is activated through interaction with gH/gL, be- PrimeSTAR (premix) DNA polymerase, 0.2 μL each of fore the alteration of gH/gL is initiated by gD [1, 4]. In primer at the concentration of around 5 nmol/OD, short, the main function of HSV gH/gL is activating gB 0.4 μL DNA template at the concentration of 280 ng/μL, through direct interaction during entry of host cells. and 4.2 μLH2O. Then, the PCR amplification was per- Although the structure and function of gH/gL in some formed in pre-denaturation at 98 °C for 2 min, denatur- human herpesviruses have been studied to some extent, ation at 98 °C for 10s, annealing at 55 °C for 30s, for example the interaction regions of gH and gL of extension at 72 °C for 30s, and final extension at 72 °C HSV-2 and EBV have been studied and published already for 10 min after 30 cycle repeats. [8, 26], there is insignificant research data in the study of DEV gH and gL until now. According to the existence of Plasmid construction gH/gL dimers in other herpesviruses, the hypothesis that Expression vectors pET-32a(+), pEGFP-C, pDsRED-N, DEV gH would interact with gL was proposed in this pCMV-Flag and pCMV-Myc were available in the la- paper. In this study, the two expression plasmids, boratory. After digested with both EcoRI and HindIII re- pEGFP-N-gH and pDsRED-N-gL, were co-transfected striction enzymes respectively, the truncate DEV UL1 into COS-7 cells to analyze the co-localization of DEV gH gene and vector pET-32a(+) were both linked to the and gL.
Recommended publications
  • Method for Detecting Antibody Against BDV (Borna Disease Virus) for Detecting a BDV Infection
    Europäisches Patentamt *EP001460426A1* (19) European Patent Office Office européen des brevets (11) EP 1 460 426 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: G01N 33/569 22.09.2004 Bulletin 2004/39 (21) Application number: 04006699.5 (22) Date of filing: 19.03.2004 (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • Yamaguchi, Kazunari, HU IE IT LI LU MC NL PL PT RO SE SI SK TR Nat.Inst.Infectious Diseases Designated Extension States: Musashimurayama-shi, Tokyo 208-0011 (JP) AL LT LV MK • Horii, Yoichiro, Faculty of Agriculture Miyazaki-shi, Miyazaki 889-2192 (JP) (30) Priority: 20.03.2003 JP 2003078898 • Takahama, Yoichi, Sysmex Corporation 26.03.2003 JP 2003086490 Kobe-shi, Hyogo 651-0073 (JP) 26.03.2003 JP 2003086491 • Nagai, Shinya, Sysmex Corporation Kobe-shi, Hyogo 651-0073 (JP) (71) Applicant: Sysmex Corporation Kobe-shi, Hyogo 651-0073 (JP) (74) Representative: HOFFMANN - EITLE Patent- und Rechtsanwälte Arabellastrasse 4 81925 München (DE) (54) Method for detecting antibody against BDV (Borna disease virus) for detecting a BDV infection (57) With respect to immunoglobulins that are performing the examination of an antibody to Borna dis- raised against an exogenous antigen, when the class ease virus (may be referred to as "BDV") as an example switching from IgM to IgG necessitates a long period of of such an exogenous antigen in a more accurate man- time, detect of IgM antibody alone, or concurrent detect ner, and a method for detecting anti-BDV antibody in of the IgM antibodies and IgG antibodies to the exoge- which such a polypeptide is used are provided.
    [Show full text]
  • Duck Viral Enteritis (Duck Plague) in North American Waterfowl
    DUCK VIRAL ENTERITIS (DUCK PLAGUE) IN NORTH AMERICAN WATERFOWL By Louis N. Locke,l Louis Leibovitz,2 Carlton M. Herman, 1 and John W. Walker3 Duck Viral Enteritis (DVE) was first recognized in North America in January 1967, when an outbreak occured in a commercial flock of white Pekin ducks in Suffolk County, Long Island, New York (Leibovitz & Hwang, 1968b). Originally described as a disease of domestic ducks in the Netherlands, DVE has since been reported from I ndia and Belgium. It is also believed to have occurred in China and France (Jansen, 1968). This paper briefly reviews the status of DVE among wild waterfowl in North America and describes some of the characteristic lesions associated with this disease. The paper also mentions some of the work which has been undertaken to learn more about the status of DVE in North America. DVE in wild waterfowl was diagnosed on February 1, 1967, from a dead mute swan (Cygnus a/or) submitted to the Long Island Duck Research Laboratory (Leibovitz & Hwang, 1968a). This swan had been found dead the previous day on a lagoon which bordered the Baker duck farms where the first outbreak occurred in Pekins in Suffolk County, Long Island, New York. Additional cases of Duck Plague on Long Island have involved the mallard (Anas p/atyrhynchas), black duck (A. rubripes), Canada goose (Branta canadensis), greater scaup (Aythya marital, and bufflehead (Bucepha/a albea/a) (Leibovitz, 1968). Two outbreaks have occurred in muscovy ducks (Cairina Moschata), one of these in Suffolk County, and the other near Horseheads, Chemung County, New York (upstate), approximately 200 miles from the Long Island outbreaks.
    [Show full text]
  • Identification and Characterization of the Duck Enteritis Virus (DEV) US2 Gene
    Identification and characterization of the duck enteritis virus (DEV) US2 gene J. Gao1,2,3, A.C. Cheng1,2,3, M.S. Wang1,2,3, R.Y. Jia1,2,3, D.K. Zhu2,3, S. Chen1,2,3, M.F. Liu1,2,3, F. Liu3, Q. Yang1,2,3, K.F. Sun1,2,3 and X.Y. Chen2,3 1Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China 2Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China 3Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China Corresponding authors: A.C. Cheng / M.S. Wang E-mail: [email protected] / [email protected] Genet. Mol. Res. 14 (4): 13779-13790 (2015) Received April 23, 2015 Accepted July 30, 2015 Published October 28, 2015 DOI http://dx.doi.org/10.4238/2015.October.28.40 ABSTRACT. The US2 protein has been reported to contribute to duck enteritis virus (DEV) infection; however, its kinetics and localization during infection, and whether it is a component of virion, have not been previously reported. To elucidate the function of DEV US2, US2 was amplified by polymerase chain reaction (PCR) and inserted into pET-32a(+); this was expressed, the recombinant US2 protein was purified, and a polyclonal antibody generated. In addition, the kinetics and localization of the US2 gene and protein were determined by quantitative real-time fluorescent PCR, ganciclovir (GCV), and cycloheximide (CHX) treatment, western- blot, and indirect immunofluorescence assay. The packaging of US2 into DEV virions was revealed by a protease protection assay.
    [Show full text]
  • Conference 17 11 February 2009
    The Armed Forces Institute of Pathology Department of Veterinary Pathology Conference Coordinator: Todd M. Bell, DVM WEDNESDAY SLIDE CONFERENCE 2008-2009 Conference 17 11 February 2009 Conference Moderator: Dr. Fabio Del Piero, DVM, DACVP material as well as clusters of erythrocytes (Fig. 1-1). The CASE I – S0 10582 (AFIP 3113965) neoplastic cells have indistinct cell borders, large amount of eosinophilic cytoplasm, one oval to elongated nucleus with rounded poles and finely granular heterochromatin Signalment: 20-year-old, gelding, Arabian horse and 1-2 small basophilic nucleoli. The cells have moderate (Equus caballus) anisokaryosis with rare mitotic figures per HPF (40X). There are scattered hemosiderin laden macrophages History: A cecal mass was submitted for within the mass. There are multifocal areas of chronic histopathology. hemorrhages with aggregations of siderophages present in the capsule. Gross Pathology: The submitted tissue was an approximately 4x5x4 cm round, firm, nodular, dark gray, Immunohistochemistry was performed. The submitted well encapsulated mass with intact surface mucosa. On mass was strongly positive for vimentin and c-kit and cut section the mass was distinct from the mucosa, white- slightly positive for NSE. It did not stain with desmin, tan and multilobulated. smooth muscle actin and S100. Unfortunately, no history was submitted with this mass to know the reason for Laboratory Results: None removal. Histopathologic Description: The mass is a well Contributor’s Morphologic Diagnosis: Cecum: demarcated, encapsulated, multilobulated, expansile Gastrointestinal stromal tumor with peripheral hemorrhage mass located from deep tunica muscularis to the serosa and siderophages compressing the adjacent tissues and muscle layers. The mass is composed of multiple large lobules separated Contributor’s Comment: Equine gastrointestinal by a thick dense fibrous connective tissue.
    [Show full text]
  • Duck Plague Virus
    Duck plague virus Dr. Savita Kumari Department of Veterinary Microbiology Bihar Veterinary College, BASU, Patna Anatid herpesvirus 1 (Duck viral enteritis virus/ Duck plague virus) • Belongs to genus Mardivirus, subfamily Alphaherpesvirinae and family Herpesviridae • Field strains of this virus display differences in virulence • DVE virus may undergo latency like other herpesviruses, and the trigeminal ganglion seems to be a latency site for the virus • Recovered birds may carry the virus in its latent form, and viral reactivation may be the cause of outbreaks in susceptible wild and domestic ducks • Causes Duck viral enteritis, also called duck plague .. • Occurs worldwide among domestic and wild ducks, geese, swans and other waterfowl • The infection has not been reported in other avian species, mammals or humans • In domestic ducks and ducklings, DVE has been reported in birds ranging from 7 days of age to mature breeders • In ducklings 2–7 weeks of age, losses may be lower than in older birds . • Migratory waterfowl contribute to spread within and between continents • Ingestion of contaminated water is believed to be the major mode of transmission • The virus may also be transmitted by contact • Viral replication begins in the digestive track and moves to bursa of Fabricius, thymus, spleen and liver • Incubation period is 3-7 days Huge economic losses Due to: – acute nature of the disease – increased morbidity and mortality (5%-100%) – condemnations of carcasses – decreased egg production and hatchability Clinical symptoms • Sudden
    [Show full text]
  • RNA-Seq Comparative Analysis of Peking Ducks Spleen Gene
    Liu et al. Vet Res (2017) 48:47 DOI 10.1186/s13567-017-0456-z RESEARCH ARTICLE Open Access RNA‑seq comparative analysis of Peking ducks spleen gene expression 24 h post‑infected with duck plague virulent or attenuated virus Tian Liu1,2, Anchun Cheng1,2,3*, Mingshu Wang1,2,3*, Renyong Jia1,2,3, Qiao Yang1,2,3, Ying Wu1,2,3, Kunfeng Sun1,2,3, Dekang Zhu2,3, Shun Chen1,2,3, Mafeng Liu1,2,3, XinXin Zhao1,2,3 and Xiaoyue Chen2,3 Abstract Duck plague virus (DPV), a member of alphaherpesvirus sub-family, can cause signifcant economic losses on duck farms in China. DPV Chinese virulent strain (CHv) is highly pathogenic and could induce massive ducks death. Attenu- ated DPV vaccines (CHa) have been put into service against duck plague with billions of doses in China each year. Researches on DPV have been development for many years, however, a comprehensive understanding of molecular mechanisms underlying pathogenicity of CHv strain and protection of CHa strain to ducks is still blank. In present study, we performed RNA-seq technology to analyze transcriptome profling of duck spleens for the frst time to iden- tify diferentially expressed genes (DEGs) associated with the infection of CHv and CHa at 24 h. Comparison of gene expression with mock ducks revealed 748 DEGs and 484 DEGs after CHv and CHa infection, respectively. Gene path- way analysis of DEGs highlighted valuable biological processes involved in host immune response, cell apoptosis and viral invasion. Genes expressed in those pathways were diferent in CHv infected duck spleens and CHa vaccinated duck spleens.
    [Show full text]
  • Viruses Status January 2013 FOEN/FOPH 2013 1
    Classification of Organisms. Part 2: Viruses Status January 2013 FOEN/FOPH 2013 1 Authors: Prof. Dr. Riccardo Wittek, Dr. Karoline Dorsch-Häsler, Julia Link > Classification of Organisms Part 2: Viruses The classification of viruses was first published in 2005 and revised in 2010. Classification of Organisms. Part 2: Viruses Status January 2013 FOEN/FOPH 2013 2 Name Group Remarks Adenoviridae Aviadenovirus (Avian adenoviruses) Duck adenovirus 2 TEN Duck adenovirus 2 2 PM Fowl adenovirus A 2 Fowl adenovirus 1 (CELO, 112, Phelps) 2 PM Fowl adenovirus B 2 Fowl adenovirus 5 (340, TR22) 2 PM Fowl adenovirus C 2 Fowl adenovirus 10 (C-2B, M11, CFA20) 2 PM Fowl adenovirus 4 (KR-5, J-2) 2 PM Fowl adenovirus D 2 Fowl adenovirus 11 (380) 2 PM Fowl adenovirus 2 (GAL-1, 685, SR48) 2 PM Fowl adenovirus 3 (SR49, 75) 2 PM Fowl adenovirus 9 (A2, 90) 2 PM Fowl adenovirus E 2 Fowl adenovirus 6 (CR119, 168) 2 PM Fowl adenovirus 7 (YR36, X-11) 2 PM Fowl adenovirus 8a (TR59, T-8, CFA40) 2 PM Fowl adenovirus 8b (764, B3) 2 PM Goose adenovirus 2 Goose adenovirus 1-3 2 PM Pigeon adenovirus 2 PM TEN Turkey adenovirus 2 TEN Turkey adenovirus 1, 2 2 PM Mastadenovirus (Mammalian adenoviruses) Bovine adenovirus A 2 Bovine adenovirus 1 2 PM Bovine adenovirus B 2 Bovine adenovirus 3 2 PM Bovine adenovirus C 2 Bovine adenovirus 10 2 PM Canine adenovirus 2 Canine adenovirus 1,2 2 PM Caprine adenovirus 2 TEN Goat adenovirus 1, 2 2 PM Equine adenovirus A 2 Equine adenovirus 1 2 PM Equine adenovirus B 2 Equine adenovirus 2 2 PM Classification of Organisms.
    [Show full text]
  • WSC 14-15 Conf 1 Layout
    Joint Pathology Center Veterinary Pathology Services WEDNESDAY SLIDE CONFERENCE 2015-2016 C o n f e r e n c e 2 16 September 2015 cellular mass. Neoplastic cells are closely CASE I: B15-894 (JPC 4050459). packeted into tubule-like nests and cords, within a dense fibrovascular stroma. Neoplastic cells Signalment: 12-year-old, male (intact), frequently line the fibrous stroma in palisades Labrador retriever (Canis familiaris) and occasional pile to form islands. Neoplastic cells are round, to polygonal, to elongate, with History: Little clinical history was provided with indistinct cell borders, and moderate amounts of the case. The non-retained testicle was described eosinophilic, flocculent to vacuolated cytoplasm. as “small.” Nuclei are centrally located and oval to elongate, with vesicular chromatin and 1-3 basophilic Gross Pathology: Received in two formalin nucleoli. The center of packets frequently contain filled jars, labeled prostate and retained testicle, similar cells with hypereosinophilic cytoplasm, were three pieces of firm, mottled, dark brown to grey tissue, up to 2.0 x 2.0 x 0.5 cm and a 4.0 x 3.5 x 2.0 cm testicle with epididymis, respectively. Near the tail of the epididymis, the testicle contained a well demarcated, ap-proximately 2.5 cm, oval, firm, white to tan mass that compressed the adjacent parenchyma and bulged from the cut surface. Laboratory Results: None. Histopathologic Description: Testicle: Com- pressing adjacent seminiferous tubules is a variably encapsulated, Retained test and prostate, dog: 50% of the testis (arrows) is replaced by a well-demarcated poorly demarcated, densely neoplasm composed of tubules.
    [Show full text]
  • Identification and Characterization of Duck Plague Virus Glycoprotein C
    Lian et al. Virology Journal 2010, 7:349 http://www.virologyj.com/content/7/1/349 RESEARCH Open Access Identification and characterization of duck plague virus glycoprotein C gene and gene product Bei Lian1, Chao Xu1†, Anchun Cheng1,2,3*†, Mingshu Wang1,2*†, Dekang Zhu1,2, Qihui Luo2, Renyong Jia2, Fengjun Bi 2, Zhengli Chen2, Yi Zhou2, Zexia Yang2, Xiaoyue Chen1,2,3 Abstract Background: Viral envelope proteins have been proposed to play significant roles in the process of viral infection. Results: In this study, an envelope protein gene, gC (NCBI GenBank accession no. EU076811), was expressed and characterized from duck plague virus (DPV), a member of the family herpesviridae. The gene encodes a protein of 432 amino acids with a predicted molecular mass of 45 kDa. Sequence comparisons, multiple alignments and phylogenetic analysis showed that DPV gC has several features common to other identified herpesvirus gC, and was genetically close to the gallid herpervirus. Antibodies raised in rabbits against the pET32a-gC recombinant protein expressed in Escherichia coli BL21 (DE3) recognized a 45-KDa DPV-specific protein from infected duck embryo fibroblast (DEF) cells. Transcriptional and expression analysis, using real-time fluorescent quantitative PCR (FQ-PCR) and Western blot detection, revealed that the transcripts encoding DPV gC and the protein itself appeared late during infection of DEF cells. Immunofluores- cence localization further demonstrated that the gC protein exhibited substantial cytoplasm fluorescence in DPV- infected DEF cells. Conclusions: In this work, the DPV gC protein was successfully expressed in a prokaryotic expression system, and we presented the basic properties of the DPV gC product for the first time.
    [Show full text]
  • Fact Sheet: Herpesviruses and Australian Wild Birds | June 2012 | 2
    Herpesviruses and Australian wild birds Fact sheet Introductory statement Avian herpesviruses are extremely widespread and cause a large variety of diseases, including commercially significant conditions such as infectious laryngotracheitis and Marek’s disease of poultry, as well as highly fatal conditions such as Pacheco’s disease of psittacines. They are characterized by establishing latent infections which lead to periodic excretion of virus during times of stress and debilitation. This fact sheet focuses on herpesviruses in wild Australian birds, exclusive of psittacines. For information on herpesviruses in psittacines consult the “Psittacid herpesviruses and mucosal papillomas of psittacine birds in Australia” fact sheet. Aetiology Herpesviruses are enveloped DNA viruses that range in size from 120 to 200 nm. They are divided into three subfamilies. Alphaherpesviruses have a moderately wide host range, rapid growth, lyse infected cells and have the capacity to establish latent infections primarily, but not exclusively, in nerve ganglia. Betaherpesviruses have a more restricted host range, a long replicative cycle, the capacity to cause infected cells to enlarge and the ability to form latent infections in secretory glands, lymphoreticular tissue, kidneys and other tissues. Gammaherpesviruses have a narrow host range, replicate in lymphoid cells, may cause the development of tumours in infected cells and form latent infections in lymphoid tissue. All avian herpesviruses are either alphaherpesviruses or have not yet been allocated to a subfamily. Natural hosts Herpesviruses have been found in all groups of birds. However, severe disease usually only occurs when viruses specific for particular species find their way into unfamiliar species or if infected birds are immunocompromised in some way.
    [Show full text]
  • Duck Plague Virus Promotes DEF Cell Apoptosis by Activating Caspases, Increasing Intracellular ROS Levels and Inducing Cell Cycle S-Phase Arrest
    Article Duck Plague Virus Promotes DEF Cell Apoptosis by Activating Caspases, Increasing Intracellular ROS Levels and Inducing Cell Cycle S-Phase Arrest Chuankuo Zhao 1,2,3,†, MingshuWang 1,2,3,†, Anchun Cheng 1,2,3,†,*, Qiao Yang 1,2,3, Ying Wu 1,2,3, Renyong Jia 1,2,3, Dekang Zhu 2,3, Shun Chen 1,2,3, Mafeng Liu 1,2,3, XinXin Zhao 1,2,3, Shaqiu Zhang 1,2,3, Yunya Liu 1,2,3, Yanling Yu 1,2,3, Ling Zhang 1,2,3, Bin Tian 1,3, Mujeeb Ur Rehman 1,3, Leichang Pan 1,3, Xiaoyue Chen 2,3 1 Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China; [email protected] (C.Z.); [email protected] (M.W.); [email protected] (A.C.); [email protected] (Q.Y.); [email protected] (Y.W.); [email protected] (R.J.); [email protected] (S.C.); [email protected] (M.L.); [email protected] (X.X.Z.) [email protected] (S.Z.); [email protected] (Y.L.); [email protected] (Y.Y.); [email protected] (L.Z.); [email protected] (b.T.); [email protected] (M.U.R.); [email protected] (L.P.) 2 Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China; [email protected] (D.Z.); [email protected] (X.C.) 3 Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China † These authors contributed equally to this work.
    [Show full text]
  • Studies on Inclusion Body Disease (Herpesvirus Infection) of Falcons David Lee Graham Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1973 Studies on inclusion body disease (herpesvirus infection) of falcons David Lee Graham Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Animal Sciences Commons, and the Veterinary Medicine Commons Recommended Citation Graham, David Lee, "Studies on inclusion body disease (herpesvirus infection) of falcons " (1973). Retrospective Theses and Dissertations. 6198. https://lib.dr.iastate.edu/rtd/6198 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. Tfie sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]