2.1 GENERAL This Part of the Specification Clearly Defines The

Total Page:16

File Type:pdf, Size:1020Kb

2.1 GENERAL This Part of the Specification Clearly Defines The 2.1 GENERAL This part of the specification clearly defines the class and quality of materials to be installed and standards of workmanship to be undertaken and shall be strictly observed in the absence of specific details defined in this or other parts of this Specification or shown on the drawings. PPP:::\\\EEEssstttaaattteeesss DDDaaatttaaa\\\CCCuuurrrrrreeennnttt___PPPrrrooojjjeeeccctttsss\\\FFFOOOLLLDDDEEERRR --- SSSTTTAAANNNDDDAAARRRDDDSSS___NNNPPPFFF\\\FFFOOOLLLDDDEEERRR___MMMeeeccchhhaaannniiicccaaalll SSSeeerrrvvviiiccceeesss MMM&&&WWW SSSpppeeeccciiifffiiicccaaatttiiiooonnn___DDDoooccc 222\\\CCClll---222---000111...dddoooccc IIIssssssuuueee 111___111111///111111///000333 --- 111 --- 2.2 BOILER PLANT COMMERCIAL & INDUSTRIAL BOILER PLANT General Boilers and their firing equipment shall be of a standard design and shall conform to the relevant British Standards or EN Standards, and the duties indicated on the schedules and as further specified in Part 3 of this specification. Each boiler shall be supplied complete with all safety controls, the necessary fittings and equipment for automatic control, a set of flue and tube cleaning tools, and be mounted on a base constructed in accordance with the Manufacturer’s details and requirements. The Manufacturer shall provide firing equipment that matches the boiler to provide the stated duties. The space allocated to allow for the correct functioning and for maintenance to be carried out shall be confirmed with the Manufacturer. Sizing, arrangement and compatibility of the flues shall be confirmed with the Boiler Manufacturer. Any discrepancies shall be advised to the Engineer. Materials & British Standards As indicated in Part 3 of this specification and schedules, the boilers shall be manufactured from:- • Cast iron, copper, steel or stainless steel for LTHW (up to 95ºC) and HWS generators. • Cast iron, steel or stainless steel for MTHW (95ºC up to 120ºC) • From steel only for HTHW (pressurised above 120ºC up to 150ºC) and steam installations. • LTHW and MTHW steel boilers shall also be built to BS 855 or BS 2790 as applicable. • LTHW and MTHW cast iron boilers shall be to BS 779. Cast iron and boilers shall only be used up to 3.1 Bar pressure. NOTE: The use of BS 855 is restricted to steam boilers of rated output 45kW to 150kW with maximum operating pressure of 2 Bar and to hot water boilers of rated output 45kW to 3MW with maximum operating pressure of 4.5 Bar and maximum operating temperature of 125ºC. In cases where the above limits are exceeded, BS 2790 will be applicable. Firing Equipment The boilers shall have oil fuel automatic burners; gas burners with automatic forced draught or atmospheric burners; or automatic dual fired oil/gas burners (as defined in Part 3) and arranged to shut down in the event of failure to ignite or loss of pilot light. The efficiency of the matched boiler/burner combination unit shall be based on the gross calorific value of the fuel, and shall be a minimum value over the full firing range as follows:- 82% for oil. 81% for gas up to 1.3 MW rating. 82% for gas above 1.3 MW rating. The efficiency testing for factory assembled “packaged” units shall be carried out on site in accordance with BS 845:Part 2 and test certificates supplied where specified in Part 3 of this specification. On/off burners to be used up to 50kW unless otherwise specified in Part 3 or if a particular make of boiler has a requirement for two stage low fire start. PPP:::\\\EEEssstttaaattteeesss DDDaaatttaaa\\\CCCuuurrrrrreeennnttt___PPPrrrooojjjeeeccctttsss\\\FFFOOOLLLDDDEEERRR --- SSSTTTAAANNNDDDAAARRRDDDSSS___NNNPPPFFF\\\FFFOOOLLLDDDEEERRR___MMMeeeccchhhaaannniiicccaaalll SSSeeerrrvvviiiccceeesss MMM&&&WWW SSSpppeeeccciiifffiiicccaaatttiiiooonnn___DDDoooccc 222\\\CCClll---222---000222...dddoooccc IIIssssssuuueee 111___DDDaaattteee 111111///111111000333 --- 111 --- 2.2 BOILER PLANT Metering equipment for gas and oil firing shall be provided in the fuel supply to the burner if specified in Part 3. Combustion conditions test points shall comprise suitable connections for the insertion of portable instrument probes for measurement at the boiler exit in the case of all fuels to measure flue gas temperature, flue gas oxygen, carbon dioxide and carbon monoxide content and for oil additionally include for connections for smoke measurement. Remote Control Each boiler shall be provided with volt free contacts (which will be enabled from elsewhere and form part of the stop/start circuit, with exception of steam boilers), a set of volt free contacts that shall make when the boiler is firing and a volt free contact that shall make on any of the boiler alarms - as indicated in the schedules. Insulation, All Boilers Water backed surfaces shall be externally insulated with not less than 75mm thickness of mineral wool to BS 3958:Part 5 with “K” value of 0.05W/M² at 100ºC mean temperature, and clad with removable metal sheets or panels. Surface temperatures of cladding not to be greater than 50ºC on parts which must be touched, nor greater than 80ºC on parts which could be touched accidentally. Hot flue gas surfaces to be insulated to reduce heat loss and contact temperature. Nameplate, All Boilers All boilers shall have a nameplate fixed to the boiler, indicating:- • Manufacturer’s name and identification mark. • Inspecting Authority’s mark. • Hydraulic test pressure. • Date of hydraulic test. • Design pressure. • BS Number/EN Number. • Rated continuous output, number of sections (if cast iron) and fuel. • Serial No. of boiler. Tests, All Boilers The tests shall demonstrate that the performance criteria have been met, and shall include the following which are to be conducted on site at the conclusion of commissioning. All tests to be witnessed and the results recorded:- • Efficiency Test. • Combustion Test. • Boiler Rating Test. • Turn Down Test. • Noise Criteria Test. • Composition of Exhaust Gas Test. Tests shall be made to ensure that the controls operate as intended and if systems or components malfunction they shall return to a fail-safe condition. PPP:::\\\EEEssstttaaattteeesss DDDaaatttaaa\\\CCCuuurrrrrreeennnttt___PPPrrrooojjjeeeccctttsss\\\FFFOOOLLLDDDEEERRR --- SSSTTTAAANNNDDDAAARRRDDDSSS___NNNPPPFFF\\\FFFOOOLLLDDDEEERRR___MMMeeeccchhhaaannniiicccaaalll SSSeeerrrvvviiiccceeesss MMM&&&WWW SSSpppeeeccciiifffiiicccaaatttiiiooonnn___DDDoooccc 222\\\CCClll---222---000222...dddoooccc IIIssssssuuueee 111___DDDaaattteee 111111///111111000333 --- 222 --- 2.2 BOILER PLANT Water Treatment, All Boilers Pre-treatment plant shall be provided all as indicated in the schedules or in Part 3 of this specification. Site Installation & Testing of Boiler & Firing Equipment The boilers shall be erected on prepared foundations and commissioned by the Boiler Manufacturer and thoroughly cleaned out of all debris, grease etc. before filling with water as BS 2486 and then subjected to a site hydraulic test (and on steam boilers a boil out if specified in schedule). Protection against internal corrosion should be provided if the boiler is not to be used for some time, as specified in BS 2486. NOTE: Steam systems to be filled from a full boiler feed tank by the Boiler Commissioning Engineer. HOT WATER BOILERS Mountings & Fittings (a) Mountings & Fittings for LTHW & MTHW Boilers up to 3MW Output and/or 4.5 Bar Each boiler shall have screwed and/or flanged connections to BS 21 and BS 4504 and be delivered with all connections blanked or capped off. These connections shall include flow and return tappings, open vent, safety valve, drain cock and instruments listed below:- • Emptying/Drain Cock - Bronze gland pattern with hose union and malleable iron handle to BS 2874. • Thermometer - Bezzel type calibrated 0ºC to 120ºC or mercury in steel type, calibrated 0ºC to 120ºC with divisions at 1ºC intervals and numbered at 10ºC intervals with bold figures. • Altitude or Pressure Gauge - Calibrated in both bar and metre head, to approximately twice the working pressure of the system over 3 MW and adjustable red dial pointer set at normal working pressure or head of the system generally to comply with BS 1780:Part 2. Complete with lever handle, cock and siphon. • Flame Observation Port • Safety Valve - To BS 6759, enclosed spring loaded pattern fitted with padlock and galvanised steel (medium grade) discharge pipe run clear of any insulation to terminate 150mm from floor level at the side of the boiler. • Each boiler shall have access provided where operations may be carried out more than 2m above firing floor level and include for gauges to be clearly visible from firing floor. • Level controls and alarms shall meet the requirements of HSE Guidance Note PM5. (b) Mountings & Fittings for Hot Water Boilers that exceed 3 MW Output and/or 4.5 Bar • Each boiler shall have flanged connections to BS 4504 and be delivered with all connections blanked or capped off. • Connections on the boilers should include; flanged flow and return tappings, safety valve, drain cock and instruments listed above or in schedules. • Emptying/Drain Cock - Bronze gland pattern with hose union and malleable iron handle to BS 2874. PPP:::\\\EEEssstttaaattteeesss DDDaaatttaaa\\\CCCuuurrrrrreeennnttt___PPPrrrooojjjeeeccctttsss\\\FFFOOOLLLDDDEEERRR --- SSSTTTAAANNNDDDAAARRRDDDSSS___NNNPPPFFF\\\FFFOOOLLLDDDEEERRR___MMMeeeccchhhaaannniiicccaaalll SSSeeerrrvvviiiccceeesss MMM&&&WWW SSSpppeeeccciiifffiiicccaaatttiiiooonnn___DDDoooccc 222\\\CCClll---222---000222...dddoooccc IIIssssssuuueee 111___DDDaaattteee 111111///111111000333 --- 333 --- 2.2 BOILER
Recommended publications
  • Technology for Now and the Future
    Shell TechXplorer Shell Digest - 2020 2020 TECHNOLOGY FOR NOW AND THE FUTURE Unmanned aerial systems bring business value Testing lubricants for heavy-duty biodiesel engines Advanced battery storage for a low-carbon future INTRODUCTION EXECUTIVE EDITORS Welcome to Shell TechXplorer Digest, a publication Evren Unsal and Gregory Greenwell that showcases the breadth and depth of scientifi c research and technology applications within Shell by presenting a selection of articles originally published BOARD OF ADVISORS in Shell TechXplorer. Selda Gunsel (TechXplorer Champion) Shell TechXplorer was created to report advances in the development and deployment of key technologies Mariela Araujo to as many interested people as possible within Shell. Commercial delivery subsurface Most of the articles are written by the Shell scientists, engineers and technicians who have worked on Jack Emmen these technologies. Technology for capital projects Shell TechXplorer is a strictly internal-only magazine, Caroline Hern however. Shell TechXplorer Digest, in contrast, provides Geoscience a medium through which the authors can communicate their achievements to a wider readership. Robert Mainwaring Downstream products Editorial services RSK Group Ltd, UK Ajay Mehta New Energies Editorial email address [email protected] Joe Powell Chemical engineering Design and layout MCW, Rotterdam Bhaskar Ramachandran Michael de Jong Integrated gas – engineering projects Anneke van der Heijden Downstream manufacturing Frans van der Vlugt Reservoir engineering About the colour coding The articles in this publication are grouped according to whether they contribute most to Shellʼs Core Upstream, Leading Transition or Emerging Power strategic themes. Core Upstream DEEP WATER SHALES CONVENTIONAL OIL AND GAS Leading Transition INTEGRATED GAS OIL PRODUCTS CHEMICALS Cover image Shell’s diverse businesses have a portfolio of technologies Emerging Power across all stages of maturity, from basic research and development to commercial deployment.
    [Show full text]
  • Manajemen Perawatan Pada Boiler Utilitas Batu Bara Pt. Petrokimia Gresik
    MAGANG INDUSTRI – VM 191667 MANAJEMEN PERAWATAN PADA BOILER UTILITAS BATU BARA PT. PETROKIMIA GRESIK YUSRIL REZA ROSYID 10211710010001 Dosen Pembimbing Giri Nugroho, ST., M.Sc 19791029 201212 1 002 Teknologi Rekayasa Konversi Energi Departemen Teknik Mesin Industri Fakultas Vokasi Institut Teknologi Sepuluh Nopember Surabaya, 2021 MAGANG INDUSTRI – VM 191667 MANAJEMEN PERAWATAN PADA BOILER UTILITAS BATU BARA PT. PETROKIMIA GRESIK YUSRIL REZA ROSYID 10211710010001 Dosen Pembimbing Giri Nugroho, ST., M.Sc 19791029 201212 1 002 Teknologi Rekayasa Konversi Energi Departemen Teknik Mesin Industri Fakultas Vokasi Institut Teknologi Sepuluh Nopember Surabaya, 2021 LAPORAN MAGANG PT PETROKIMIA GRESIK LEMBAR PENGESAHAN Yang bertanda tangan dibawah ini Nama : Iwan Febrianto, ST. NIP : T494874 Jabatan : Kepala Bagian VP Jasa Operasi dan Pemeliharaan Menerangkan bahwa mahasiswa Nama : Yusril Reza Rosyid NRP 10211710010001 Prodi : Teknologi Rekayasa Konversi Energi Telah menyelesaikan Magang Industri di Nama Perusahaan : PT. Petrokimia Gresik Alamat Perusahaan : Jl. A Yani, Ngipik, Karangpoh, Kec. Gresik, Kabupaten Gresik, Jawa Timur 61151 Bidang : Pemeliharaan III Waktu Pelaksanaan : 01 Agustus – 30 November 2020 Surabaya, 30 November 2020 Iwan Febrianto, ST. NIP. T494874 Departemen Teknik Mesin Industri i Fakultas Vokasi Institut Teknologi Sepuluh Nopember Surabaya LAPORAN MAGANG PT PETROKIMIA GRESIK LEMBAR PENGESAHAN Departemen Teknik Mesin Industri ii Fakultas Vokasi Institut Teknologi Sepuluh Nopember Surabaya LAPORAN MAGANG PT PETROKIMIA GRESIK
    [Show full text]
  • OCR Document
    Boiler Water Quality Requirements and Associated Steam Quality for Industrial/Commercial and Institutional Boilers ABMA …. representing the best of the boiler industry Boiler Water Quality Requirements and Associated Steam Quality for Industrial/Commercial and Institutional Boilers 2005 American Boiler Manufacturers Association 8221 Old Courthouse Road, Suite 207 Vienna, Virginia 22182 http://www.abma.com 2 Copyright © 2005 By American Boiler Manufacturers Association All Rights Reserved 3 TABLE OF CONTENTS CHAPTER DESCRIPTION PAGE INTRODUCTION 6 BACKGROUND 7 SAFETY PRECAUTIONS AND WARNINGS 8 I INSTALLATION AND START-UP 9 Preface 9 Installation and Start-up 9 Operating Manuals 9 Pre-start System & Component Checkout 9 Boil Out of New Unit 10 System Clean Out 12 Steam Systems 12 Hot Water Systems 14 Arrangements for Flushing Hot Water Heating Systems 15 How to Clean a Hot Water Heating System 17 Boiler Operation after Cleaning 17 Installation and Start-up Checklist 17 Temporary Use 18 Operator Skills/Responsibilities 18 Make-Up for Hot Water Boilers 19 Chemical and Mechanical Cleaning 19 II FEEDWATER SYSTEMS 20 Feedwater System 20 Softeners 20 Dealkalizers 20 Deaerators 20 Condensate Receivers 21 Demineralizers 21 Reverse Osmosis Equipment 21 Internal Treatment Equipment 21 Filters 21 Installation of Chemical Treatment Equipment 22 Maintenance 22 Feedwater Requirements for Firetube Boilers 23 Feedwater Requirements for Watertube Boilers 23 4 III TESTING 24 General 24 Steam Boiler Systems 25 Make-up 25 Feedwater 25 Boiler Water 25 Condensate
    [Show full text]
  • Master Exhibit O Genereal Mech. Service Guide 041206
    General Mechanical Maintenance Guideline Exhibit K Scope of Work Reviewed By: Approved By: Version [VERSION NUMBER] Date[DATE] Author [AUTHOR NAME] 1 Table of Contents 1) Heating a) Boilers i. Oil Fired ii. Gas Fired iii.Coal Fired iv. Modular b) Forced Air Units i. Oil Fired ii. Gas Fired iii.Electric c) Heat Pumps i. Continuous Loop ii. Self-Contained d) Direct Radiant Heaters i. Baseboard ii. Package Units iii.Duct Heaters iv. Trace Heaters v. Convector e) Water heaters 2) Cooling a) Chillers i. Air Cooled ii. Absorption b) Cooling Towers c) Package Units d) Split System e) Room AC Units 3) Air Distribution a) Air Handling Units b) Fans i. Ventilating ii. Exhaust c) Dampers d) Filters e) Ductwork f) Distribution Boxes/Induction Units/Diffuser Grills 4) Miscellaneous Equipment a) Humidifier b) Heat Exchangers c) Tank i. Expansion ii. Oil Storage Tanks iii. CW Storage Tanks d) Pumps e) Valves f) Control i. Alarms/Monitoring g) HVAC Utility Supply i. Oil 2 ii. Gas iii.Electricity h) Pneumatics System Flues..................................................................................... Compressors/Condensors 3 Legend of Servicing Frequencies a) These specifications include the frequency in which certain tasks should ideally be accomplished. They are as follows: A Annually M Monthly Q Quarterly SA Semi-Annually 1. HEATING HEATERS - SAFETY Cleaning and Maintenance Due to possible difficulties of access, cleaning and maintenance should only be done by a trained person. When applicable, isolate unit(s) from electrical supply by removing fuses or locking main switch in OFF position. Always refer to the manufacturer’s instructions/recommendations before undertaking any cleaning or maintenance.
    [Show full text]
  • Power Engineering Training Systems Courseware
    PART A2 PPOWEROWER EENGINEERINGNGINEERING FOOURTHURTH CLLASSASS EDDITIONITION 22.5.5 PRINTED - JUNE 2010 Fourth Class Part A2 Edition 2.5 June 2010 Published by PanGlobal Training Systems Ltd. Publisher of Power Engineering Training Systems Courseware The material in this series is aligned with Fourth Class Syllabus, dated July 31, 2002. For more info visit http://www.sopeec.org/Syllabus/SyllabusFourthClass.pdf This material copyright © Power Engineering Training Systems, a division of PanGlobal Training Systems 2006, 2008. All rights are reserved. No part of this material may be reproduced in whole or in part without the prior writ en permission of the copyright holder. Address all inquiries to: PanGlobal Training Systems 1301 – 16 Ave. NW, Calgary, AB, Canada. T2M 0L4 At ent on: Director of Operat ons We would like to acknowledge the contribut ons of Fred Ohlmann, Gerry Parker, & Wilmer Doerksen for their authoring, Lorne Shewfelt for his technical edit ng and the Power Engineering instructors of NAIT & BCIT for their reviews. We also acknowledge the guidance provided by the joint IPECC/SOPEEC 4th Class review commit ee. Power Engineering 4th Class Project Team: Andy Shorthouse, Dan Violini, Jennifer Landree, Kyla Brassard, Deb Ross, Terry Lazenby & Scot MacNaughton This curriculum is endorsed by the Canadian Inst tute of Power Engineers (IPE). Cover image courtesy of EnCana Corporat on. The image is a SAGD facility at EnCana’s Christ na Lake Operat on, located in Northeast Alberta. LEGAL NOTICE The informat on, fi gures and procedures presented in this book are provided as general training and background informat on, and should not be taken as specifi c operat ng pract ce for any specifi c piece of equipment or in any individual plant implementat on.
    [Show full text]
  • Türkçe-‹Ngilizce Absorbe Yüzeyi - Ani Hareket Mekanizmas›
    Türkçe-‹ngilizce absorbe yüzeyi - ani hareket mekanizmas› absorbe yüzeyi, yutucu alan absorber area alçak bas›nç low pressure aç› angle alçak bas›nç emniyet flalteri low pressure safety cut-out aç›k tip kompresör open type compressor alçak bas›nç fan› low pressure fan aç›klay›c› resim clarification drawing alçak bas›nç kontrolü low pressure control aç›kl›k, aral›k opening alçak bas›nçl› buhar low pressure steam aç›kta, korunmas›z exposed (adj) alçak bas›nçl› buhar kazan› low pressure boiler aç›sal oran angle factor alçak bas›nçl› buharl› ›s›tma low pressure heating aç-kapa kontrolü on-off control alçak bas›nçl› klima sistemi low-pressure air conditioning system açma yüzeyi aperture area alçak bas›nçl› s›cak su ›s›tma low-pressure hot water heating açma, kapama vanas› isolating valve alet, cihaz, teçhizat appliance adam deli¤i (bak›m için) manhole alet, tak›m tool adam deli¤i (bak›m için) manway(see manhole) alev flame adaptive kontrol adaptive control alev-duman borulu kazan fire tube boiler ad›m, kademe step alev alma noktas› flash point adreslenebilir addressable alev borusu fire tube adyabatik isethalpic (adj.) alev kontrolü flame failure device adyabatik, yal›t›lm›fl, ›s› geçirmez adiabatic (adj) alev noktas› (alevlenme noktas›) fire point a¤ gözü geniflli¤i mesh width alev tepmesi flame impingement a¤ gözü, a¤,flebeke mesh alev tutucu, alev engelleyen flame separation a¤›rl›k weight alevlenebilir flammable (adj) a¤›rl›k merkezi centre of gravity alfanümerik alphanumeric (adj) a¤›rl›kla çal›flan vana weight-loaded valve alg›lanmayan ›s›,
    [Show full text]
  • Electrode & Electric Resistance Steam Generators & Hot Water
    Technical Information Document Electrode and Electric Resistance Steam Generators and Hot Water Heaters for low carbon process heating Technical Information Document 2019 Electrode and electric steam generators Technical Information for low carbon process heating Document Introduction An electric steam boiler produces steam using electricity as fuel rather than fossil or biomass fuels. Electrically-generated steam or hot water suits many process applications including food manufacturing and materials manufacturing. These boilers can also be found in commercial buildings like hospitals and aged-care facilities. The benefits of electric steam and water boilers include simple and easy operation and considerably lower capital and installation costs. Electrode and electric steam generators are nearly 100% efficient and can closely follow variable loads. They can also have relatively-low upfront capital costs and low operations and maintenance (O&M) costs – especially compared to solid-fuelled boilers. This means that despite their ‘fuel’ costs being higher per unit than traditional fuels, in some situations their total operating costs can be comparable to, or lower than, other boiler options especially if operating hours are low. Simplicity, small size, and ease of use can also make electric boilers a practical choice for commercial facilities. Another important feature and potential significant benefit of electric boilers is that they can be located much closer to where the steam is needed. This further lowers capital costs by minimising the amount of steam distribution piping. Reducing or eliminating piping heat-losses lowers operating costs. Hazards from flues, fuel tanks and fuel lines are also eliminated giving a significant safety and space-saving benefit.
    [Show full text]
  • Electrode Boiler Model CEJS
    Electrode Boiler Model CEJS Installation, Operation, and Maintenance 750-272 02/2013 ! WARNINGDANGER DO NOT OPERATE, SERVICE, OR REPAIR THIS EQUIPMENT UNLESS YOU FULLY UNDERSTAND ALL APPLICABLE SECTIONS OF THIS MANUAL. DO NOT ALLOW OTHERS TO OPERATE, SERVICE, OR REPAIR THIS EQUIPMENT UNLESS THEY FULLY UNDERSTAND ALL APPLICABLE SECTIONS OF THIS MANUAL. FAILURE TO FOLLOW ALL APPLICABLE WARNINGS AND INSTRUCTIONS MAY RESULT IN SEVERE PERSONAL INJURY OR DEATH. TO: Owners, Operators and/or Maintenance Personnel This operating manual presents information that will help to properly operate and care for the equipment. Study its con- tents carefully. The unit will provide good service and continued operation if proper operating and maintenance instruc- tions are followed. No attempt should be made to operate the unit until the principles of operation and all of the components are thoroughly understood. Failure to follow all applicable instructions and warnings may result in severe personal injury or death. It is the responsibility of the owner to train and advise not only his or her personnel, but the contractors' personnel who are servicing, repairing or operating the equipment, in all safety aspects. Cleaver-Brooks equipment is designed and engineered to give long life and excellent service on the job. The electrical and mechanical devices supplied as part of the unit were chosen because of their known ability to perform; however, proper operating techniques and maintenance procedures must be followed at all times. Although these components af- ford a high degree of protection and safety, operation of equipment is not to be considered free from all dangers and hazards inherent in handling and firing of fuel.
    [Show full text]