ISSN 1050-5164 (print) ISSN 2168-8737 (online) THE ANNALS of APPLIED

AN OFFICIAL JOURNAL OF THE INSTITUTE OF MATHEMATICAL

Articles The length of the longest common subsequence of two independent mallows permutations KE JIN 1311 Determinantofsamplecorrelationmatrixwithapplication...... TIEFENG JIANG 1356 Annealed limit theorems for the on random regular graphs. . . VAN HAO CAN 1398 Approximating geodesics via random points...... ERIK DAVIS AND SUNDER SETHURAMAN 1446 Freidlin–Wentzell LDP in path space for McKean–Vlasov equations and the functional iterated logarithm law GONÇALO DOS REIS,WILLIAM SALKELD AND JULIAN TUGAUT 1487 A constrained Langevin approximation for chemical reaction networks SAUL C. LEITE AND RUTH J. WILLIAMS 1541 On a Wasserstein-type distance between solutions to stochastic differential equations JOCELYNE BION–NADAL AND DENIS TALAY 1609 Numerical method for FBSDEs of McKean–Vlasov type JEAN-FRANÇOIS CHASSAGNEUX,DAN CRISAN AND FRANÇOIS DELARUE 1640 Second-order BSDE under monotonicity condition and liquidation problem under uncertainty...... ALEXANDRE POPIER AND CHAO ZHOU 1685 Supermarket model on graphs AMARJIT BUDHIRAJA,DEBANKUR MUKHERJEE AND RUOYU WU 1740 Effective Berry–Esseen and concentration bounds for Markov chains with a spectral gap BENOÎT KLOECKNER 1778 The nested Kingman coalescent: Speed of coming down from infinity AIRAM BLANCAS,TIM ROGERS,JASON SCHWEINSBERG AND ARNO SIRI-JÉGOUSSE 1808 Condensation in critical Cauchy Bienaymé–Galton–Watson trees IGOR KORTCHEMSKI AND LOÏC RICHIER 1837 Entropy-controlledLast-PassagePercolation...... QUENTIN BERGER AND NICCOLÒ TORRI 1878 The left-curtain martingale coupling in the presence of atoms DAV I D G. HOBSON AND DOMINYKAS NORGILAS 1904 Upper bounds for the function solution of the homogeneous 2D Boltzmann equation with hardpotential...... VLAD BALLY 1929

Vol. 29, No. 3—June 2019 THE ANNALS OF APPLIED PROBABILITY Vol. 29, No. 3, pp. 1311–1961 June 2019 INSTITUTE OF

(Organized September 12, 1935)

The purpose of the Institute is to foster the development and dissemination of the theory and applications of statistics and probability.

IMS OFFICERS

President: Xiao-Li Meng, Department of Statistics, Harvard University, Cambridge, Massachusetts 02138-2901, USA

President-Elect: Susan Murphy, Department of Statistics, Harvard University, Cambridge, Massachusetts 02138- 2901, USA

Past President: Alison Etheridge, Department of Statistics, University of Oxford, Oxford, OX1 3LB, United King- dom

Executive Secretary: Edsel Peña, Department of Statistics, University of South Carolina, Columbia, South Car- olina 29208-001, USA

Treasurer: Zhengjun Zhang, Department of Statistics, University of Wisconsin, Madison, Wisconsin 53706-1510, USA

Program Secretary: Ming Yuan, Department of Statistics, Columbia University, New York, NY 10027-5927, USA

IMS EDITORS

The Annals of Statistics. Editors: Richard J. Samworth, Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WB, UK. Ming Yuan, Department of Statistics, Columbia Uni- versity, New York, NY 10027, USA

The Annals of Applied Statistics. Editor-in-Chief : Karen Kafadar, Department of Statistics, University of Virginia, Heidelberg Institute for Theoretical Studies, Charlottesville, VA 22904-4135, USA

The Annals of Probability. Editor: Amir Dembo, Department of Statistics and Department of Mathematics, Stan- ford University, Stanford, California 94305, USA

The Annals of Applied Probability. Editors: François Delarue, Laboratoire J. A. Dieudonné, Université de Nice Sophia-Antipolis, France-06108 Nice Cedex 2. Peter Friz, Institut für Mathematik, Technische Universität Berlin, 10623 Berlin, Germany and Weierstrass-Institut für Angewandte Analysis und Stochastik, 10117 Berlin, Germany

Statistical Science. Editor: Cun-Hui Zhang, Department of Statistics, Rutgers University, Piscataway, New Jersey 08854, USA

The IMS Bulletin. Editor: Vlada Limic, UMR 7501 de l’Université de Strasbourg et du CNRS, 7 rue René Descartes, 67084 Strasbourg Cedex, France

The Annals of Applied Probability [ISSN 1050-5164 (print); ISSN 2168-8737 (online)], Volume 29, Number 3, June 2019. Published bimonthly by the Institute of Mathematical Statistics, 3163 Somerset Drive, Cleveland, Ohio 44122, USA. Periodicals postage paid at Cleveland, Ohio, and at additional mailing offices.

POSTMASTER: Send address changes to The Annals of Applied Probability, Institute of Mathematical Statistics, Dues and Subscriptions Office, 9650 Rockville Pike, Suite L 2310, Bethesda, Maryland 20814-3998, USA.

Copyright © 2019 by the Institute of Mathematical Statistics Printed in the United States of America The Annals of Applied Probability 2019, Vol. 29, No. 3, 1311–1355 https://doi.org/10.1214/17-AAP1351 © Institute of Mathematical Statistics, 2019

THE LENGTH OF THE LONGEST COMMON SUBSEQUENCE OF TWO INDEPENDENT MALLOWS PERMUTATIONS1

BY KE JIN University of Delaware

The Mallows measure is a probability measure on Sn where the probabil- ity of a permutation π is proportional to ql(π) with q>0 being a parameter and l(π) the number of inversions in π. We prove a weak law of large num- bers for the length of the longest common subsequences of two independent permutations drawn from the Mallows measure, when q is a function of n and n(1 − q) has limit in R as n →∞.

REFERENCES

ABELLO, J. (1991). The weak Bruhat order of S consistent sets, and Catalan numbers. SIAM J. Discrete Math. 4 1–16. MR1090284 BAIK,J.,DEIFT,P.andJOHANSSON, K. (1999). On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12 1119–1178. BHATNAGAR,N.andPELED, R. (2015). Lengths of monotone subsequences in a Mallows permu- tation. Probab. Theory Related Fields 161 719–780. CHVÁTAL,V.andSANKOFF, D. (1975). Longest common subsequences of two random sequences. J. Appl. Probab. 12 306–315. MR0405531 CRITCHLOW, D. E. (1985). Metric Methods for Analyzing Partially Ranked Data. Lecture Notes in Statistics 34. Springer, Berlin. MR0818986 DANCÍKˇ , V. (1994). Expected length of longest common subsequences. Ph.D. dissertation, Univ. Warwick. DANCÍKˇ ,V.andPATERSON, M. (1995). Upper bounds for the expected length of a longest common subsequence of two binary sequences. Random Structures Algorithms 6 449–458. MR1368846 DEKEN, J. G. (1979). Some limit results for longest common subsequences. Discrete Math. 26 17– 31. DEUSCHEL,J.-D.andZEITOUNI, O. (1995). Limiting curves for i.i.d. records. Ann. Probab. 23 852–878. MR1334175 FLIGNER,M.A.andVERDUCCI, J. S. (1993). Probability Models and Statistical Analyses for Ranking Data. Lecture Notes in Statistics 80. Springer, Berlin. HAMMERSLEY, J. (1972). A few seedlings of research. In Proc. of the Sixth Berkeley Symp. Math. Statist. and Probability, Vol. 1 345–394. Univ. California Press, Berkeley, CA. MR0405665 HOPPEN,C.,KOHAYAKAWA,Y.,MOREIRA,C.G.,RÁTH,B.andSAMPAIO, R. M. (2013). Limits of permutation sequences. J. Combin. Theory Ser. B 103 93–113. HOUDRÉ,C.andISLAK¸ , Ü. (2014). A for the length of the longest common subsequence in random words. Available at: arXiv:1408.1559. JIN, K. (2017). The limit of the empirical measure of the product of two independent Mallows permutations. Available at: arXiv:1702.00140.

MSC2010 subject classifications. 60F05, 60B15, 05A05. Key words and phrases. Longest common subsequence, longest increasing subsequence, Mal- lows measure. KENYON,R.,KRAL,D.,RADIN,C.andWINKLER, P. (2015). Permutations with fixed pattern densities. Available at: arXiv:1506.02340. KEROV,S.andVERSHIK, A. (1977). Asymptotic behavior of the Plancherel measure of the sym- metric group and the limit form of Young tableaux. Sov. Math. Dokl. 18 527–531. LINDVALL, T. et al. (1999). On Strassen’s theorem on stochastic domination. Electron. Commun. Probab. 4 51–59. LOGAN,B.F.andSHEPP, L. A. (1977). A variational problem for random Young tableaux. Adv. Math. 26 206–222. LUEKER, G. S. (2009). Improved bounds on the average length of longest common subsequences. J. ACM 56 17. MALLOWS, C. L. (1957). Non-null ranking models. I. Biometrika 44 114–130. MR0087267 MARDEN, J. I. (1995). Analyzing and Modeling Rank Data. Monographs on Statistics and Applied Probability 64. Chapman & Hall, London. MR1346107 MUELLER,C.andSTARR, S. (2013). The length of the longest increasing subsequence of a random Mallows permutation. J. Theoret. Probab. 26 514–540. MR3055815 MUKHERJEE, S. et al. (2016). Fixed points and cycle structure of random permutations. Electron. J. Probab. 21. PEVZNER, P. (2000). Computational Molecular Biology: An Algorithmic Approach. MIT Press, Cambridge, MA. STARR, S. (2009). Thermodynamic limit for the Mallows model on S_n. Available at: arXiv:0904.0696. The Annals of Applied Probability 2019, Vol. 29, No. 3, 1356–1397 https://doi.org/10.1214/17-AAP1362 © Institute of Mathematical Statistics, 2019

DETERMINANT OF SAMPLE CORRELATION MATRIX WITH APPLICATION

BY TIEFENG JIANG1 University of Minnesota

Let x1,...,xn be independent random vectors of a common p-dimen- sional normal distribution with population correlation matrix Rn.Thesample ˆ correlation matrix Rn = (rˆij )p×p is generated from x1,...,xn such that rˆij is the Pearson correlation coefficient between the ith column and the jth  ˆ column of the data matrix (x1,...,xn) . The matrix Rn is a popular object in multivariate analysis and it has many connections to other problems. We derive a central limit theorem (CLT) for the logarithm of the determinant of ˆ Rn for a big class of Rn. The expressions of mean and the variance in the CLT are not obvious, and they are not known before. In particular, the CLT holds if p/n has a nonzero limit and the smallest eigenvalue of Rn is larger than ˆ 1/2. Besides, a formula of the moments of |Rn| and a new method of showing weak convergence are introduced. We apply the CLT to a high-dimensional statistical test.

REFERENCES

ANDERSON, T. W. (1958). An Introduction to Multivariate Statistical Analysis, 2nd ed. Wiley, New York. MR0091588 BAI,Z.andSILVERSTEIN, J. W. (2010). Spectral Analysis of Large Dimensional Random Matrices, 2nd ed. Springer, New York. MR2567175 BAO,Z.,PAN,G.andZHOU, W. (2012). Tracy–Widom law for the extreme eigenvalues of sample correlation matrices. Electron. J. Probab. 17 1–32. BARTLETT, M. S. (1954). A note on multiplying factors for various chi-squared approximations. J. R. Stat. Soc. Ser. B. Stat. Methodol. 16 296–298. BILLINGSLEY, P. (1986). Probability and Measure, 2nd ed. Wiley, New York. MR0830424 BROCKWELL,P.J.andDAV I S , R. A. (2002). Introduction to and Forecasting. Springer, New York. CAI,T.,FAN,J.andJIANG, T. (2013). Distributions of angles in random packing on spheres. J. Mach. Learn. Res. 14 1837–1864. CAI,T.,LIANG,T.andZHOU, H. (2015). Law of log determinant of sample covariance matrix and optimal estimation of differential entropy for high-dimensional Gaussian distributions. J. Multi- variate Anal. 137 161–172. CHOW,Y.S.andTEICHER, H. (1988). : Independence, Interchangeability, Mar- tingales, 2nd ed. Springer, New York. MR0953964 DEMBO,A.andZEITOUNI, O. (1998). Large Deviations Techniques and Applications, 2nd ed. Applications of Mathematics (New York) 38. Springer, New York. MR1619036

MSC2010 subject classifications. 60B20, 60F05. Key words and phrases. Central limit theorem, sample correlation matrix, smallest eigenvalue, multivariate normal distribution, generating function. DONG,Z.,JIANG,T.andLI, D. (2012). Circular law and arc law for truncation of random unitary matrix. J. Math. Phys. 53 Article ID 013301. MR2919538 EATON, M. L. (1983). Multivariate Statistics: A Vector Space Approach. Wiley, New York. MR0716321 HANSON,D.L.andWRIGHT, F. T. (1971). A bound on tail for quadratic forms in independent random variables. Ann. Math. Stat. 42 1079–1083. MR0279864 HORN,R.A.andJOHNSON, C. R. (1985). Matrix Analysis. Cambridge Univ. Press, Cambridge. MR0832183 JIANG, T. (2004a). The asymptotic distributions of the largest entries of sample correlation matrices. Ann. Appl. Probab. 14 865–880. MR2052906 JIANG, T. (2004b). The limiting distributions of eigenvalues of sample correlation matrices. Sankhya¯ 66 35–48. JIANG,T.andQI, Y. (2015). Likelihood ratio tests for high-dimensional normal distributions. Scand. J. Stat. 42 988–1009. MR3426306 JIANG,T.andYANG, F. (2013). Central limit theorems for classical likelihood ratio tests for high- dimensional normal distributions. Ann. Statist. 41 2029–2074. MR3127857 LI,D.,LIU,W.andROSALSKY, A. (2010). Necessary and sufficient conditions for the asymptotic distribution of the largest entry of a sample correlation matrix. Probab. Theory Related Fields 148 5–35. MR2653220 LI,D.andROSALSKY, A. (2006). Some strong limit theorems for the largest entries of sample correlation matrices. Ann. Appl. Probab. 16 423–447. MR2209348 MORRISON, D. F. (2004). Multivariate Statistical Methods, 4th ed. Duxbury Press, Pacific Grove, CA. MUIRHEAD, R. J. (1982). Aspects of Multivariate Statistical Theory. Wiley, New York. NGUYEN,H.H.andVU, V. (2014). Random matrices: Law of the determinant. Ann. Probab. 42 146–167. MR3161483 RUDELSON,M.andVERSHYNIN, R. (2013). Hanson–Wright inequality and sub-Gaussian concen- tration. Electron. Commun. Probab. 18 Article ID 82. MR3125258 SMALE, S. (2000). Mathematical problems for the next century. In Mathematics: Frontiers and Perspectives (V. Arnold, M. Atiyah, P. Lax and B. Mazur, eds.) 271–294. Amer. Math. Soc., Providence, RI. MR1754783 TAO,T.andVU, V. (2012). A central limit theorem for the determinant of a Wigner matrix. Adv. Math. 231 74–101. MR2935384 WILKS, S. S. (1932). Certain generalizations in the analysis of variance. Biometrika 24 471–494. YURINSKII˘, V. V. (1976). Exponential inequalities for sums of random vectors. J. Multivariate Anal. 6 473–499. MR0428401 ZHOU, W. (2007). Asymptotic distribution of the largest off-diagonal entry of correlation matrices. Trans. Amer. Math. Soc. 359 5345–5363. MR2327033 The Annals of Applied Probability 2019, Vol. 29, No. 3, 1398–1445 https://doi.org/10.1214/17-AAP1377 © Institute of Mathematical Statistics, 2019

ANNEALED LIMIT THEOREMS FOR THE ISING MODEL ON RANDOM REGULAR GRAPHS

BY VAN HAO CAN Vietnam Academy of Science and Technology

In a recent paper, Giardinà et al. [ALEA Lat. Am. J. Probab. Math. Stat. 13 (2016) 121–161] have proved a law of large number and a central limit theorem with respect to the annealed measure for the magnetization of the Ising model on some random graphs, including the random 2-regular graph. In this paper, we present a new proof of their results which applies to all ran- dom regular graphs. In addition, we prove the existence of annealed pressure in the case of configuration model random graphs.

REFERENCES

[1] ALBERT,R.andBARABÁSI, A.-L. (2002). Statistical mechanics of complex networks. Rev. Modern Phys. 74 47–97. MR1895096 [2] BASAK,A.andDEMBO, A. (2017). Ferromagnetic Ising measures on large locally tree-like graphs. Ann. Probab. 45 780–823. MR3630287 [3] BIANCONI, G. (2012). Superconductor-insulator transition on annealed complex networks. Phys. Rev. E 85 061113. [4] CAMIA,F.,GARBAN,C.andNEWMAN, C. M. (2015). Planar Ising magnetization field I. Uniqueness of the critical scaling limit. Ann. Probab. 43 528–571. MR3305999 [5] CAN, V. H. (2017). Critical behavior of the annealed Ising model on random regular graphs. J. Stat. Phys. 169 480–503. MR3711608 [6] DEMBO,A.andMONTANARI, A. (2010). Ising models on locally tree-like graphs. Ann. Appl. Probab. 20 565–592. MR2650042 [7] DEMBO,A.andMONTANARI, A. (2010). Gibbs measures and phase transitions on sparse random graphs. Braz. J. Probab. Stat. 24 137–211. MR2643563 [8] DEMBO,A.,MONTANARI,A.,SLY,A.andSUN, N. (2014). The replica symmetric solution for Potts models on d-regular graphs. Comm. Math. Phys. 327 551–575. MR3183409 [9] DEMBO,A.andZEITOUNI, O. (2010). Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability 38. Springer, Berlin. MR2571413 [10] DOMMERS,S.,DEN HOLLANDER,F.,JOVANOVSKI,O.andNARDI, F. R. (2017). Metasta- bility for Glauber dynamics on random graphs. Ann. Appl. Probab. 27 2130–2158. MR3693522 [11] DOMMERS,S.,GIARDINÀ,C.,GIBERTI,C.,VA N D E R HOFSTAD,R.andPRIORIELLO, M. L. (2016). Ising critical behavior of inhomogeneous Curie–Weiss models and an- nealed random graphs. Comm. Math. Phys. 348 221–263. MR3551266 [12] DOMMERS,S.,GIARDINÀ,C.andVA N D E R HOFSTAD, R. (2014). Ising critical exponents on random trees and graphs. Comm. Math. Phys. 328 355–395. MR3196989 [13] DOROGOVTSEV,S.N.,GOLTSEV,A.V.andMENDES, J. F. F. (2002). Ising model on net- works with an arbitrary distribution of connections. Phys. Rev. E 66 016104.

MSC2010 subject classifications. Primary 05C80, 60F5; secondary 82B20. Key words and phrases. Ising model, random graphs, central limit theorems, annealed measure. [14] ELLIS, R. S. (1985). Entropy, Large Deviations, and Statistical Mechanics. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 271. Springer, New York. MR0793553 [15] ELLIS,R.S.andNEWMAN, C. M. (1978). Limit theorems for sums of dependent ran- dom variables occurring in statistical mechanics. Z. Wahrsch. Verw. Gebiete 44 117–139. MR0503333 [16] GIARDINÀ,C.,GIBERTI,C.,VA N D E R HOFSTAD,R.andPRIORIELLO, M. L. (2015). Quenched central limit theorems for the Ising model on random graphs. J. Stat. Phys. 160 1623–1657. MR3382761 [17] GIARDINÀ,C.,GIBERTI,C.,VA N D E R HOFSTAD,R.andPRIORIELLO, M. L. (2016). An- nealed central limit theorems for the Ising model on random graphs. ALEA Lat. Am. J. Probab. Math. Stat. 13 121–161. MR3476210 [18] GRIMMETT, G. (2006). The Random-Cluster Model. Grundlehren der Mathematischen Wis- senschaften [Fundamental Principles of Mathematical Sciences] 333. Springer, Berlin. MR2243761 [19] ISING, E. (1924). Beitrag zur Theorie des Ferro- und Paramagnetismus. Ph.D. thesis, Univ. Hamburg. [20] MONTANARI,A.,MOSSEL,E.andSLY, A. (2012). The weak limit of Ising models on locally tree-like graphs. Probab. Theory Related Fields 152 31–51. MR2875752 [21] MOSSEL,E.andSLY, A. (2013). Exact thresholds for Ising–Gibbs samplers on general graphs. Ann. Probab. 41 294–328. MR3059200 [22] ROBBINS, H. (1955). A remark on Stirling’s formula. Amer. Math. Monthly 62 26–29. MR0069328 [23] VA N D E R HOFSTAD, R. Random graphs and complex networks. Available at: http://www.win. tue.nl/~rhofstad/NotesRGCN.html. The Annals of Applied Probability 2019, Vol. 29, No. 3, 1446–1486 https://doi.org/10.1214/18-AAP1414 © Institute of Mathematical Statistics, 2019

APPROXIMATING GEODESICS VIA RANDOM POINTS1

BY ERIK DAVIS AND SUNDER SETHURAMAN University of Arizona

⊂ Rd Given a cost functional F on paths γ in a domain D , in the form = 1 ˙ F(γ) 0 f(γ(t),γ(t))dt, it is of interest to approximate its minimum cost and geodesic paths. Let X1,...,Xn be points drawn independently from D according to a distribution with a density. Form a random geometric graph on the points where Xi and Xj are connected when 0 < |Xi − Xj | <ε,andthe length scale ε = εn vanishes at a suitable rate. For a general class of functionals F , associated to Finsler and other dis- tances on D, using a probabilistic form of Gamma convergence, we show that the minimum costs and geodesic paths, with respect to types of approxi- mating discrete cost functionals, built from the random geometric graph, con- verge almost surely in various senses to those corresponding to the continuum cost F , as the number of sample points diverges. In particular, the geodesic path convergence shown appears to be among the first results of its kind.

REFERENCES

[1] ADAMS,R.A.andFOURNIER, J. J. F. (2003). Sobolev Spaces, 2nd ed. Pure and Applied Mathematics (Amsterdam) 140. Elsevier/Academic Press, Amsterdam. MR2424078 [2] AGRANOVICH, M. S. (2015). Sobolev Spaces, Their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains. Springer, Cham. MR3287270 [3] ALAMGIR,M.andVON LUXBURG, U. (2012). Shortest path distance in random k- nearest neighbor graphs. In Proc.29th Int. Conf. on . Available at arXiv:1206.6381. [4] ÁLVAREZ PAIVA, J. C. (2006). Some problems on Finsler geometry. In Handbook of Differen- tial Geometry. Vol. II 1–33. Elsevier/North-Holland, Amsterdam. MR2194667 [5] AUFFINGER,A.,DAMRON,M.andHANSON, J. (2017). 50 Years of First-Passage Percolation. University Lecture Series 68. Amer. Math. Soc., Providence, RI. MR3729447 [6] BERN, M. et al. (1999). Emerging Challenges in Computational Topology. NSF report. Avail- able at arXiv:cs/9909001. [7] BERNSTEIN,M.,DE SILVA,V.,LANGFORD,J.andTENENBAUM, J. (2000). Graph approxi- mations to geodesics on embedded manifolds. Technical Report, Dept. Psychology, Stan- ford Univ., Stanford, CA. [8] BURAGO,D.,BURAGO,Y.andIVANOV, S. (2001). A Course in Metric Geometry. Graduate Studies in Mathematics 33. Amer. Math. Soc., Providence, RI. MR1835418 [9] BUTTAZZO,G.,GIAQUINTA,M.andHILDEBRANDT, S. (1998). One-Dimensional Varia- tional Problems: An Introduction. Oxford Lecture Series in Mathematics and Its Applica- tions 15. Oxford Univ. Press, Oxford. MR1694383

MSC2010 subject classifications. Primary 60D05; secondary 58E10, 62-07, 49J55, 49J45, 53C22, 05C82. Key words and phrases. Geodesic, shortest path, distance, consistency, random geometric graph, Gamma convergence, scaling limit, Finsler. [10] CABELLO,S.andJEJCIC, M. (2015). Shortest paths in intersection graphs of unit disks. Com- put. Geom. 48 360–367. MR3296073 [11] CRANE,K.,WEISCHEDEL,C.andWARDETZKY, M. (2013). Geodesics in heat: A new ap- proach to computing distance based on heat flow. ACM Trans. Graph. 28 106. [12] GARCIA TRILLOS, N. (2017). Gromov–Hausdorff limit of Wasserstein spaces on point clouds. Available at arXiv:1702.03464. [13] GELFAND,I.M.andSMIRNOV, M. M. (1994). Lagrangians satisfying Crofton formulas, Radon transforms, and nonlocal differentials. Adv. Math. 109 188–227. MR1304752 [14] GIESEN,J.andWAGNER, U. (2004). Shape dimension and intrinsic metric from samples of manifolds. Discrete Comput. Geom. 32 245–267. MR2074340 [15] HASHIMOTO,T.B.,SUN,Y.andJAAKKOLA, T. S. (2015). Metric recovery from directed unweighted graphs. In Proc.18th Int. Conference on AI and Stat (AISTATS) 38,JMLR: W&CP, San Diego, CA. [16] HILDEBRANDT, S. (2015). Minimizers of one-dimensional parametric variational integrals. St. Petersburg Math. J. 27 569–576. [17] HIRSCH,C.,NEUHÄUSER,D.,GLOAGUEN,C.andSCHMIDT, V. (2015). First passage per- colation on random geometric graphs and an application to shortest-path trees. Adv. in Appl. Probab. 47 328–354. MR3360380 [18] HOWARD,C.D.andNEWMAN, C. M. (1997). Euclidean models of first-passage percolation. Probab. Theory Related Fields 108 153–170. MR1452554 [19] HOWARD,C.D.andNEWMAN, C. M. (2001). Geodesics and spanning trees for Euclidean first-passage percolation. Ann. Probab. 29 577–623. MR1849171 [20] HWANG,S.J.,DAMELIN,S.B.andHERO, A. O. III (2016). Shortest path through random points. Ann. Appl. Probab. 26 2791–2823. MR3563194 [21] LAGATTA,T.andWEHR, J. (2010). A shape theorem for Riemannian first-passage percola- tion. J. Math. Phys. 51 053502, 14. MR2666980 [22] LAGATTA,T.andWEHR, J. (2014). Geodesics of random Riemannian metrics. Comm. Math. Phys. 327 181–241. MR3177936 [23] MAZ’YA, V. (2011). Sobolev Spaces with Applications to Elliptic Partial Differential Equa- tions, 2nd ed. Grundlehren der Mathematischen Wissenschaften 342. Springer, Heidel- berg. MR2777530 [24] MÉMOLI,F.andSAPIRO, G. (2005). Distance functions and geodesics on submanifolds of Rd and point clouds. SIAM J. Appl. Math. 65 1227–1260. MR2147326 [25] PAPADOPOULOS, A. (2014). Hilbert’s fourth problem. In Handbook of Hilbert Geometry (A. Papadopoulos and M. Troyanov, eds.). IRMA Lect. Math. Theor. Phys. 22 391–431. Eur. Math. Soc., Zürich. MR3329889 [26] PENROSE, M. (2003). Random Geometric Graphs. Oxford Studies in Probability 5. Oxford Univ. Press, Oxford. MR1986198 [27] PEYRÉ,G.,PÉCHAUD,M.,KERIVEN,R.,COHEN, L. et al. (2010). Geodesic methods in computer vision and graphics. Foundations and Trends in Computer Graphics and Vision 5 197–397. [28] SAJAMA and ORLITZKY, A. (2005). Estimating and computing density based distance metrics. In Proc.22nd Int. Cont. on Machine Learning, Bonn, Germany. [29] SEDGEWICK,R.andVITTER, J. S. (1986). Shortest paths in Euclidean graphs. Algorithmica 1 31–48. MR0833117 [30] SETHIAN, J. A. (1999). Fast marching methods. SIAM Rev. 41 199–235. MR1684542 [31] TAMÁSSY, L. (2008). Relation between metric spaces and Finsler spaces. Differential Geom. Appl. 26 483–494. MR2458274 [32] TENENBAUM,J.B.,DE SILVA,V.andLANGFORD, J. C. (2000). A global geometric frame- work for nonlinear dimensionality reduction. Science 290 2319–2323. [33] VON DEYLEN,S.W.,GLICKENSTEIN,D.andWARDETZKY, M. (2016). Distortion estimates for barycentric coordinates on Riemannian simplices. Available at arXiv:1610.01168. [34] YU,H.,ZHANG,J.J.andJIAO, Z. (2014). Geodesics on point clouds. Math. Probl. Eng.Art. ID 860136, 12. MR3206968 The Annals of Applied Probability 2019, Vol. 29, No. 3, 1487–1540 https://doi.org/10.1214/18-AAP1416 © Institute of Mathematical Statistics, 2019

FREIDLIN–WENTZELL LDP IN PATH SPACE FOR MCKEAN–VLASOV EQUATIONS AND THE FUNCTIONAL ITERATED LOGARITHM LAW

∗ ∗ BY GONÇALO DOS REIS ,1,WILLIAM SALKELD AND JULIAN TUGAUT† University of Edinburgh∗ and Université Jean Monnet†

We show two Freidlin–Wentzell-type Large Deviations Principles (LDP) in path space topologies (uniform and Hölder) for the solution process of McKean–Vlasov Stochastic Differential Equations (MV-SDEs) using tech- niques which directly address the presence of the law in the coefficients and altogether avoiding decoupling arguments or limits of particle systems. We provide existence and uniqueness results along with several properties for a class of MV-SDEs having random coefficients and drifts of superlinear growth. As an application of our results, we establish a functional Strassen-type result (law of iterated logarithm) for the solution process of a MV-SDE.

REFERENCES

[1] BALDI, P. (1986). Large deviations and functional iterated logarithm law for diffusion pro- cesses. Probab. Theory Related Fields 71 435–453. MR0824713 [2] BALDI,P.,BEN AROUS,G.andKERKYACHARIAN, G. (1992). Large deviations and the Strassen theorem in Hölder norm. . Appl. 42 171–180. MR1172514 [3] BEN AROUS,G.andLEDOUX, M. (1994). Grandes déviations de Freidlin–Wentzell en norme hölderienne. In Séminaire de Probabilités, XXVIII. Lecture Notes in Math. 1583 293–299. Springer, Berlin. MR1329119 [4] BENACHOUR,S.,ROYNETTE,B.,TALAY,D.andVALLOIS, P. (1998). Nonlinear self- stabilizing processes. I. Existence, invariant probability, propagation of chaos. Stochastic Process. Appl. 75 173–201. MR1632193 [5] BUCKDAHN,R.,LI,J.,PENG,S.,RAINER, C. et al. (2017). Mean-field stochastic differential equations and associated PDEs. Ann. Probab. 45 824–878. MR3630288 [6] BUDHIRAJA,A.,DUPUIS,P.andFISCHER, M. (2012). Large deviation properties of weakly interacting processes via weak convergence methods. Ann. Probab. 40 74–102. MR2917767 [7] CARMONA, R. (2016). Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications. Financial Mathematics 1. SIAM, Philadelphia, PA. MR3629171 [8] CARMONA,R.andDELARUE, F. (2018). Probabilistic Theory of Mean Field Games with Applications. I. Probability Theory and Stochastic Modelling 83. Springer, Cham. MR3752669

MSC2010 subject classifications. Primary 60F10; secondary 60G07. Key words and phrases. McKean–Vlasov equations, large deviations principle, path-space, Hölder topologies, superlinear growth, functional Strassen law. [9] CARMONA,R.andDELARUE, F. (2018). Probabilistic Theory of Mean Field Games with Applications. II. Probability Theory and Stochastic Modelling 84. Springer, Cham. MR3753660 [10] CATTIAUX,P.,GUILLIN,A.andMALRIEU, F. (2008). Probabilistic approach for granular media equations in the non-uniformly convex case. Probab. Theory Related Fields 140 19–40. MR2357669 [11] COLLET,F.,DAI PRA,P.andSARTORI, E. (2010). A simple mean field model for social interactions: Dynamics, fluctuations, criticality. J. Stat. Phys. 139 820–858. MR2639892 [12] CRISAN,D.andMCMURRAY, E. (2018). Smoothing properties of McKean–Vlasov SDEs. Probab. Theory Related Fields 171 97–148. MR3800831 [13] CRISAN,D.andXIONG, J. (2010). Approximate McKean–Vlasov representations for a class of SPDEs. Stochastics 82 53–68. MR2677539 [14] DAI PRA,P.andDEN HOLLANDER, F. (1996). McKean–Vlasov limit for interacting random processes in random media. J. Stat. Phys. 84 735–772. MR1400186 [15] DAWSON,D.A.andGÄRTNER, J. (1987). Large deviations from the McKean–Vlasov limit for weakly interacting diffusions. Stochastics 20 247–308. MR0885876 [16] DEMBO,A.andZEITOUNI, O. (2010). Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability 38. Springer, Berlin. MR2571413 [17] DEUSCHEL,J.-D.,FRIZ,P.K.,MAURELLI,M.andSLOWIK, M. (2018). The enhanced Sanov theorem and propagation of chaos. Stochastic Process. Appl. 128 2228–2269. MR3804792 [18] DOS REIS,G.,SMITH,G.andTANKOV, P. (2018). Importance sampling for McKean–Vlasov SDEs. ArXiv preprint. Available at ArXiv:1803.09320. [19] DUNFORD,N.andSCHWARTZ, J. T. (1988). Linear Operators. Part I. Wiley, New York. MR1009162 [20] EDDAHBI, M. (2000). Large deviation estimates and functional law for diffusions in modulus spaces. Random Oper. Stoch. Equ. 8 373–396. MR1797027 [21] EDDAHBI,M.andN’ZI, M. (2002). Strassen’s local law for diffusion processes under strong topologies. Acta Math. Vietnam. 27 151–163. MR1939953 [22] FREIDLIN,M.I.andWENTZELL, A. D. (2012). Random Perturbations of Dynamical Sys- tems,3rded.Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 260. Springer, Heidelberg. Translated from the 1979 Russian original by Joseph Szücs. MR2953753 [23] GANTERT, N. (1993). An inversion of Strassen’s law of the iterated logarithm for small time. Ann. Probab. 21 1045–1049. MR1217579 [24] GÄRTNER, J. (1988). On the McKean–Vlasov limit for interacting diffusions. Math. Nachr. 137 197–248. MR0968996 [25] GUASONI,P.andROBERTSON, S. (2008). Optimal importance sampling with explicit formu- las in continuous time. Finance Stoch. 12 1–19. MR2362149 [26] HERRMANN,S.,IMKELLER,P.,PAVLYUKEVICH,I.andPEITHMANN, D. (2014). Stochastic Resonance: A Mathematical Approach in the Small Noise Limit. Mathematical Surveys and Monographs 194. Amer. Math. Soc., Providence, RI. MR3155413 [27] HERRMANN,S.,IMKELLER,P.andPEITHMANN, D. (2008). Large deviations and a Kramers’ type law for self-stabilizing diffusions. Ann. Appl. Probab. 18 1379–1423. MR2434175 [28] MAO, X. (2008). Stochastic Differential Equations and Applications, 2nd ed. Horwood Pub- lishing Limited, Chichester. MR2380366 [29] MCKEAN,H.P.JR. (1966). A class of Markov processes associated with nonlinear parabolic equations. Proc. Natl. Acad. Sci. USA 56 1907–1911. MR0221595 [30] MCKEAN,H.P.JR. (1967). Propagation of chaos for a class of non-linear parabolic equations. In Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967) 41–57. Air Force Office Sci. Res., Arlington, VA. MR0233437 [31] MÉLÉARD, S. (1996). Asymptotic behaviour of some interacting particle systems; McKean– Vlasov and Boltzmann models. In Probabilistic Models for Nonlinear Partial Differen- tial Equations (Montecatini Terme, 1995). Lecture Notes in Math. 1627 42–95. Springer, Berlin. MR1431299 [32] MISHURA,Y.S.andVERETENNIKOV, A. Y. (2016). Existence and uniqueness theorems for solutions of McKean–Vlasov stochastic equations. ArXiv preprint. Available at ArXiv:1603.02212. [33] ØKSENDAL, B. (2003). Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin. [34] POPE, S. B. (2000). Turbulent Flows. Cambridge Univ. Press, Cambridge. [35] SCHEUTZOW, M. (1987). Uniqueness and nonuniqueness of solutions of Vlasov–McKean equations. J. Aust. Math. Soc. A 43 246–256. MR0896631 [36] STRASSEN, V. (1964). An invariance principle for the law of the iterated logarithm. Z. Wahrsch. Verw. Gebiete 3 211–226. MR0175194 [37] SZNITMAN, A.-S. (1991). Topics in propagation of chaos. In École D’Été de Probabilités de Saint-Flour XIX—1989. Lecture Notes in Math. 1464 165–251. Springer, Berlin. MR1108185 [38] VILLANI, C. (2009). Optimal Transport. Old and New. Grundlehren der Mathematischen Wis- senschaften [Fundamental Principles of Mathematical Sciences] 338. Springer, Berlin. MR2459454 The Annals of Applied Probability 2019, Vol. 29, No. 3, 1541–1608 https://doi.org/10.1214/18-AAP1421 © Institute of Mathematical Statistics, 2019

A CONSTRAINED LANGEVIN APPROXIMATION FOR CHEMICAL REACTION NETWORKS

BY SAUL C. LEITE1 AND RUTH J. WILLIAMS2 Universidade Federal do ABC and University of California, San Diego

Continuous-time models are often used to describe the stochastic dynamics of networks of reacting chemical species, especially in the growing field of systems biology. These Markov chain models are of- ten studied by simulating sample paths in order to generate Monte-Carlo estimates. However, discrete-event stochastic simulation of these models rapidly becomes computationally intensive. Consequently, more tractable dif- fusion approximations are commonly used in numerical computation, even for modest-sized networks. However, existing approximations either do not respect the constraint that chemical concentrations are never negative (linear noise approximation) or are typically only valid until the concentration of some chemical species first becomes zero (Langevin approximation). In this paper, we propose an approximation for such Markov chains via reflected diffusion processes that respect the fact that concentrations of chem- ical species are never negative. We call this a constrained Langevin approx- imation because it behaves like the Langevin approximation in the interior of the positive orthant, to which it is constrained by instantaneous reflection at the boundary of the orthant. An additional advantage of our approxima- tion is that it can be written down immediately from the chemical reactions. This contrasts with the linear noise approximation, which involves a two- stage procedure—first solve a deterministic reaction rate ordinary differen- tial equation, followed by a stochastic differential equation for fluctuations around those solutions. Our approximation also captures the interaction of nonlinearities in the reaction rate function with the driving noise. In simula- tions, we have found the computation time for our approximation to be at least comparable to, and often better than, that for the linear noise approximation. Under mild assumptions, we first prove that our proposed approximation is well defined for all time. Then we prove that it can be obtained as the weak limit of a sequence of jump-diffusion processes that behave like the Langevin approximation in the interior of the positive orthant and like a rescaled ver- sion of the Markov chain on the boundary of the orthant. For this limit the- orem, we adapt an invariance principle for reflected diffusions, due to Kang and Williams [Ann. Appl. Probab. 17 (2007) 741–779], and modify a result on pathwise uniqueness for reflected diffusions due to Dupuis and Ishii [Ann. Probab. 21 (1993) 554–580]. Some numerical examples illustrate the advan-

MSC2010 subject classifications. Primary 60J28, 60J60, 60F17, 92C45; secondary 60H10, 92C40. Key words and phrases. Diffusion approximation, Langevin approximation, chemical reaction networks, stochastic differential equation with reflection, scaling limit, linear noise approximation, density dependent Markov chains, jump-diffusion. tages of our approximation over direct simulation of the Markov chain or use of the linear noise approximation.

REFERENCES

[1] ANDERSON,D.F.,HIGHAM,D.J.,LEITE,S.C.andWILLIAMS, R. J. (2019). On con- strained Langevin equations and (bio)chemical reaction networks. Multiscale Model. Simul. 17 1–30. MR3895328 [2] ANDERSON,D.F.andKURTZ, T. G. (2011). Continuous time Markov chain models for chemical reaction networks. In Design and Analysis of Biomolecular Circuits (H. Koeppl, G. Setti, M. d. Bernardo and D. Densmore, eds.) 3–42. Springer, New York. [3] BOSSY,M.,GOBET,E.andTALAY, D. (2004). A symmetrized Euler scheme for an efficient approximation of reflected diffusions. J. Appl. Probab. 41 877–889. MR2074829 [4] DUPUIS,P.andISHII, H. (1990). On oblique derivative problems for fully nonlinear second- order elliptic partial differential equations on nonsmooth domains. Nonlinear Anal. 15 1123–1138. MR1082287 [5] DUPUIS,P.andISHII, H. (1993). SDEs with oblique reflection on nonsmooth domains. Ann. Probab. 21 554–580. Correction 36(5) (2008) 1992–1997. MR1207237 [6] ETHIER,S.N.andKURTZ, T. G. (2005). Markov Processes: Characterization and Conver- gence, 2nd ed. Wiley, New York. MR0838085 [7] FEINBERG, M. (1979). Lectures on chemical reaction networks. Delivered at the Math- ematics Research Center, Univ. Wisconsin-Madison. Available at https://crnt.osu.edu/ lectures-chemical-reaction-networks. [8] GILLESPIE, D. T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22 403–434. MR0503370 [9] GILLESPIE, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81 2340–2361. [10] GILLESPIE, D. T. (1992). A rigorous derivation of the chemical master equation. Phys. A 188 404–425. [11] GILLESPIE, D. T. (2000). The chemical Langevin equation. J. Chem. Phys. 113 297–306. [12] GILLESPIE, D. T. (2001). Approximate accelerated stochastic simulation of chemically react- ing systems. J. Chem. Phys. 115 1716–1733. [13] HIGHAM, D. J. (2001). An algorithmic introduction to numerical simulation of stochastic dif- ferential equations. SIAM Rev. 43 525–546. MR1872387 [14] HIGHAM, D. J. (2008). Modeling and simulating chemical reactions. SIAM Rev. 50 347–368. MR2403055 [15] JACOD,J.andSHIRYAEV, A. N. (2003). Limit Theorems for Stochastic Processes, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathemat- ical Sciences] 288. Springer, Berlin. MR1943877 [16] KANG,W.andRAMANAN, K. (2017). On the submartingale problem for reflected diffusions in domains with piecewise smooth boundaries. Ann. Probab. 45 404–468. MR3601653 [17] KANG,W.andWILLIAMS, R. J. (2007). An invariance principle for reflecting Brownian motions in domains with piecewise smooth boundaries. Ann. Appl. Probab. 17 741–779. MR2308342 [18] KARATZAS,I.andSHREVE, S. E. (1991). and , 2nd ed. Graduate Texts in Mathematics 113. Springer, New York. MR1121940 [19] KOMLÓS,J.,MAJOR,P.andTUSNÁDY, G. (1975). An approximation of partial sums of inde- pendent RV’s and the sample DF. I. Z. Wahrsch. Verw. Gebiete 32 111–131. MR0375412 [20] KURTZ, T. G. (1972). The relationship between stochastic and deterministic models for chem- ical reactions. J. Chem. Phys. 57 2976–2978. [21] KURTZ, T. G. (1976). Limit theorems and diffusion approximations for density dependent Markov chains. In Stochastic Systems: Modeling, Identification and Optimization, I (R. J.- B. Wets, ed.). Mathematical Programming Studies 5 67–78. Springer, Berlin. [22] KURTZ, T. G. (1977/78). Strong approximation theorems for density dependent Markov chains. Stochastic Process. Appl. 6 223–240. MR0464414 [23] KURTZ, T. G. (1981). Approximation of Population Processes. CBMS-NSF Regional Confer- ence Series in Applied Mathematics 36. SIAM, Philadelphia, PA. MR0610982 [24] LÉPINGLE, D. (1978). Sur le comportement asymptotique des martingales locales. In Sémi- naire de Probabilités, XII (Univ. Strasbourg, Strasbourg, 1976/1977). Lecture Notes in Math. 649 148–161. Springer, Berlin. MR0520004 [25] MANNINEN,T.,LINNE,M.andRUOHONEN, K. (2006). Developing Itô stochastic differential equation models for neuronal signal transduction pathways. Comput. Biol. Chem. 30 280– 291. DOI:10.1016/j.compbiolchem.2006.04.002. [26] MARUYAMA, G. (1955). Continuous Markov processes and stochastic equations. Rend. Circ. Mat. Palermo (2) 4 48–90. MR0071666 [27] MCADAMS,H.H.andARKIN, A. (1997). Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA 94 814–819. [28] MÉLYKÚTI, B. (2010). Theoretical advances in the modelling and interrogation of biochemical reaction systems: Alternative formulations of the chemical Langevin equation and optimal experiment design for model discrimination. Ph.D. the- sis, Dept. Statistics, Univ. Oxford. Available at: http://ora.ouls.ox.ac.uk/objects/uuid: d368c04c-b611-41b2-8866-cde16b283b0d. [29] PLATEN, E. (1999). An introduction to numerical methods for stochastic differential equations. Acta Numer. 8 197–246. MR1819646 [30] R CORE TEAM (2016). R: A Language and Environment for Statistical Computing. R Founda- tion for Statistical Computing, Vienna, Austria. [31] ROGERS,L.C.G.andWILLIAMS, D. (2000). Diffusions, Markov Processes, and Martingales. Vol.2.Itô Calculus. Cambridge Univ. Press, Cambridge. Reprint of the second (1994) edition. MR1780932 [32] SCHNOERR,D.,SANGUINETTI,G.andGRIMA, R. (2014). The complex chemical Langevin equation. J. Chem. Phys. 141 024103. DOI:10.1063/1.4885345. [33] SCHWALB,B.,TRESCH,A.,TORKLER,P.,DUEMCKE,S.andDEMEL, C. (2015). LSD: Lots of superior depictions. R package version 3.0. [34] SCOTT,M.andINGALLS, B. P. (2005). Using the linear noise approximation to character- ize molecular noise in reaction pathways. In Proceedings of the AIChE Conference on Foundations of Systems Biology in Engineering (FOSBE), Santa Barbara, California. [35] STROOCK,D.W.andVARADHAN, S. R. S. (2006). Multidimensional Diffusion Processes. Springer, Berlin. Reprint of the 1997 edition. MR2190038 [36] SZPRUCH,L.andHIGHAM, D. J. (2009/10). Comparing hitting time behavior of Markov jump processes and their diffusion approximations. Multiscale Model. Simul. 8 605–621. MR2600298 [37] TURNER,T.E.,SCHNELL,S.andBURRAGE, K. (2004). Stochastic approaches for modelling in vivo reactions. Comput. Biol. Chem. 28 165–178. [38] VA N KAMPEN, N. G. (1961). A power series expansion of the master equation. Can. J. Phys. 39 551–567. MR0128921 [39] WALLACE,E.W.J.,PETZOLD,L.R.,GILLESPIE,D.T.andSANFT, K. R. (2012). Linear noise approximation is valid over limited times for any chemical system that is sufficiently large. IET Syst. Biol. 6 102–115. [40] WANG, J. G. (1995). The asymptotic behavior of locally square integrable martingales. Ann. Probab. 23 552–585. MR1334161 [41] WILHELM, T. (2009). The smallest chemical reaction system with bistability. BMC Syst. Biol. 3 90. [42] WILKIE,J.andWONG, Y. M. (2008). Positivity preserving chemical Langevin equations. Chem. Phys. 353 132–138. [43] WILKINSON, D. J. (2006). Stochastic Modelling for Systems Biology. Chapman & Hall/CRC, Boca Raton, FL. MR2222876 The Annals of Applied Probability 2019, Vol. 29, No. 3, 1609–1639 https://doi.org/10.1214/18-AAP1423 © Institute of Mathematical Statistics, 2019

ON A WASSERSTEIN-TYPE DISTANCE BETWEEN SOLUTIONS TO STOCHASTIC DIFFERENTIAL EQUATIONS

BY JOCELYNE BION–NADAL1 AND DENIS TALAY École Polytechnique and INRIA

In this paper, we introduce a Wasserstein-type distance on the set of the probability distributions of strong solutions to stochastic differential equa- tions. This new distance is defined by restricting the set of possible coupling measures. We prove that it may also be defined by means of the value func- tion of a stochastic control problem whose Hamilton–Jacobi–Bellman equa- tion has a smooth solution, which allows one to deduce a priori estimates or to obtain numerical evaluations. We exhibit an optimal coupling measure and characterize it as a weak solution to an explicit stochastic differential equa- tion, and we finally describe procedures to approximate this optimal coupling measure. A notable application concerns the following modeling issue: given an ex- act diffusion model, how to select a simplified diffusion model within a class of admissible models under the constraint that the of the exact model is preserved as much as possible?

REFERENCES

[1] ALIPRANTIS,C.D.andBORDER, K. C. (1999). Infinite-Dimensional Analysis, 2nd ed. Springer, Berlin. MR1717083 [2] CLAISSE,J.,TALAY,D.andTAN, X. (2016). A pseudo- for controlled diffu- sion processes. SIAM J. Control Optim. 54 1017–1029. MR3488161 [3] FLEMING,W.H.andRISHEL, R. W. (1975). Deterministic and Stochastic Optimal Control. Springer, Berlin. MR0454768 [4] FLEMING,W.H.andSONER, H. M. (2006). Controlled Markov Processes and Viscosity So- lutions, 2nd ed. Stochastic Modelling and Applied Probability 25. Springer, New York. MR2179357 [5] FRIEDMAN, A. (1964). Partial Differential Equations of Parabolic Type. Prentice-Hall, Engle- wood Cliffs, NJ. MR0181836 [6] HIRIART-URRUTY,J.-B.andLEMARÉCHAL, C. (1993). Convex Analysis and Minimization Algorithms. I. Grundlehren der Mathematischen Wissenschaften 305. Springer, Berlin. MR1261420 [7] KARATZAS,I.andSHREVE, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd ed. Graduate Texts in Mathematics 113. Springer, New York. MR1121940 [8] KRYLOV, N. V. (1987). Nonlinear Elliptic and Parabolic Equations of the Second Order. Math- ematics and Its Applications (Soviet Series) 7. Reidel, Dordrecht. MR0901759 [9] KUNITA, H. (1984). Stochastic differential equations and stochastic flows of diffeomorphisms. In École D’été de Probabilités de Saint-Flour, XII—1982. Lecture Notes in Math. 1097 143–303. Springer, Berlin. MR0876080

MSC2010 subject classifications. 60J60, 93E20. Key words and phrases. Stochastic differential equations, Wasserstein distance, stochastic con- trol. [10] LADYŽENSKAJA,O.A.,SOLONNIKOV,V.A.andURAL’CEVA, N. N. (1968). Linear and Quasilinear Equations of Parabolic Type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. Amer. Math. Soc., Providence, RI. MR0241822 [11] LUNARDI, A. (1995). Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications 16. Birkhäuser, Basel. MR1329547 [12] REVUZ,D.andYOR, M. (1999). Continuous Martingales and Brownian Motion,3rded. Grundlehren der Mathematischen Wissenschaften 293. Springer, Berlin. MR1725357 [13] STROOCK,D.W.andVARADHAN, S. R. S. (1979). Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften 233. Springer, Berlin. MR0532498 The Annals of Applied Probability 2019, Vol. 29, No. 3, 1640–1684 https://doi.org/10.1214/18-AAP1429 © Institute of Mathematical Statistics, 2019

NUMERICAL METHOD FOR FBSDES OF MCKEAN–VLASOV TYPE

BY JEAN-FRANÇOIS CHASSAGNEUX,DAN CRISAN AND FRANÇOIS DELARUE Université Paris Diderot, Imperial College London and Université de Nice Sophia-Antipolis

This paper is dedicated to the presentation and the analysis of a numer- ical scheme for forward–backward SDEs of the McKean–Vlasov type, or equivalently for solutions to PDEs on the Wasserstein space. Because of the mean field structure of the equation, earlier methods for classical forward– backward systems fail. The scheme is based on a variation of the method of continuation. The principle is to implement recursively local Picard iterations on small time intervals. We establish a bound for the rate of convergence under the assumption that the decoupling field of the forward–backward SDE (or equivalently the solution of the PDE) satisfies mild regularity conditions. We also provide numerical illustrations.

REFERENCES

[1] ACHDOU,Y.,CAMILLI,F.andCAPUZZO-DOLCETTA, I. (2013). Mean field games: Conver- gence of a finite difference method. SIAM J. Numer. Anal. 51 2585–2612. MR3097034 [2] ACHDOU,Y.andCAPUZZO-DOLCETTA, I. (2010). Mean field games: Numerical methods. SIAM J. Numer. Anal. 48 1136–1162. MR2679575 [3] ACHDOU,Y.andLAURIÈRE, M. (2016). Mean field type control with congestion (II): An augmented Lagrangian method. Appl. Math. Optim. 74 535–578. MR3575615 [4] ACHDOU,Y.andPEREZ, V. (2012). Iterative strategies for solving linearized discrete mean field games systems. Netw. Heterog. Media 7 197–217. MR2928376 [5] ACHDOU,Y.andPORRETTA, A. (2016). Convergence of a finite difference scheme to weak solutions of the system of partial differential equations arising in mean field games. SIAM J. Numer. Anal. 54 161–186. MR3452251 [6] ALANKO, S. (2015). Regression-Based Monte Carlo Methods for Solving Nonlinear PDEs. ProQuest LLC, Ann Arbor, MI. Ph.D. thesis, New York Univ. MR3419247 [7] BAYRAKTAR,E.,BUDHIRAJA,A.andCOHEN, A. (2018). Rate control under heavy traffic with strategic servers. Ann. Probab. To appear. [8] BENAMOU,J.-D.andCARLIER, G. (2015). Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations. J. Optim. Theory Appl. 167 1–26. MR3395203 [9] BENDER,C.andZHANG, J. (2008). Time discretization and Markovian iteration for coupled FBSDEs. Ann. Appl. Probab. 18 143–177. MR2380895

MSC2010 subject classifications. 60H10, 65C30, 91A13. Key words and phrases. McKean–Vlasov, master equation, forward–backward SDE, mean field games, numerical approximation. [10] BENSOUSSAN,A.,FREHSE,J.andYAM, P. (2013). Mean Field Games and Mean Field Type Control Theory. Springer, New York. MR3134900 [11] BENSOUSSAN,A.,FREHSE,J.andYAM, S. C. P. (2015). The master equation in mean field theory. J. Math. Pures Appl.(9)103 1441–1474. MR3343705 [12] BENSOUSSAN,A.,FREHSE,J.andYAM, S. C. P. (2017). On the interpretation of the Master Equation. Stochastic Process. Appl. 127 2093–2137. MR3652408 [13] BUCKDAHN,R.,LI,J.,PENG,S.andRAINER, C. (2017). Mean-field stochastic differential equations and associated PDEs. Ann. Probab. 45 824–878. MR3630288 [14] CARDALIAGUET, P. (2012). Notes from P. L. Lions’ lectures at the Collège de France. Notes. Available at https://www.ceremade.dauphine.fr/~cardalia/MFG100629.pdf. [15] CARDALIAGUET,P.,DELARUE,F.,LASRY,J.-M.andLIONS, P.-L. (2015). The mas- ter equation and the convergence problem in mean field games. Preprint. Available at arXiv:1509.02505. [16] CARDALIAGUET,P.andHADIKHANLOO, S. (2017). Learning in mean field games: The ficti- tious play. ESAIM Control Optim. Calc. Var. 23 569–591. MR3608094 [17] CARMONA,R.andDELARUE, F. (2013). Probabilistic analysis of mean-field games. SIAM J. Control Optim. 51 2705–2734. MR3072222 [18] CARMONA,R.andDELARUE, F. (2018). Probabilistic Theory of Mean Field Games with Ap- plications. I. Mean Field FBSDEs, Control, and Games. Probability Theory and Stochas- tic Modelling 83. Springer, Cham. MR3752669 [19] CARMONA,R.andDELARUE, F. (2018). Probabilistic Theory of Mean Field Games. Vol. II. Mean Field Games with Common Noise and Master Equations. Probability Theory and Stochastic Modelling 84. Springer, Cham. [20] CARMONA,R.,DELARUE,F.andLACHAPELLE, A. (2013). Control of McKean–Vlasov dy- namics versus mean field games. Math. Financ. Econ. 7 131–166. MR3045029 [21] CHASSAGNEUX,J.-F.,CRISAN,D.andDELARUE, F. (2014). A Probabilistic approach to classical solutions of the master equation for large population equilibria. Preprint. Avail- able at arXiv:1411.3009. [22] DELARUE,F.andMENOZZI, S. (2006). A forward-backward stochastic algorithm for quasi- linear PDEs. Ann. Appl. Probab. 16 140–184. MR2209339 [23] DELARUE,F.andMENOZZI, S. (2008). An interpolated stochastic algorithm for quasi-linear PDEs. Math. Comp. 77 125–158. MR2353946 [24] GUÉANT, O. (2012). New numerical methods for mean field games with quadratic costs. Netw. Heterog. Media 7 315–336. MR2928382 [25] HADIKHANLOO, S. (2017). Learning in anonymous nonatomic games with applications to first-order mean field games. Preprint. Available at arXiv:1704.00378. [26] LACHAPELLE,A.,SALOMON,J.andTURINICI, G. (2010). Computation of mean field equi- libria in economics. Math. Models Methods Appl. Sci. 20 567–588. MR2647032 [27] LIONS, P. L. (2014). Estimées nouvelles pour les équations quasilinéaires. Seminar in Applied Mathematics at the Collège de France. Available at http://www.college-de-france.fr/site/ pierre-louis-lions/seminar-2014-11-14-11h15.htm. [28] MA,J.,PROTTER,P.andYONG, J. M. (1994). Solving forward-backward stochastic differen- tial equations explicitly—A four step scheme. Probab. Theory Related Fields 98 339–359. MR1262970 [29] PHAM,H.andWEI, X. (2018). Bellman equation and viscosity solutions for mean-field stochastic control problem. ESAIM Control Optim. Calc. Var. 24 437–461. MR3843191 [30] POPOV,B.andTOMOV, V. (2015). Central schemes for mean field games. Commun. Math. Sci. 13 2177–2194. MR3399921 The Annals of Applied Probability 2019, Vol. 29, No. 3, 1685–1739 https://doi.org/10.1214/18-AAP1435 © Institute of Mathematical Statistics, 2019

SECOND-ORDER BSDE UNDER MONOTONICITY CONDITION AND LIQUIDATION PROBLEM UNDER UNCERTAINTY

BY ALEXANDRE POPIER1 AND CHAO ZHOU2 Le Mans Université and National University of Singapore

In this work, we investigate an optimal liquidation problem under Knigh- tian uncertainty. We obtain the value function and an optimal control charac- terised by the solution of a second-order BSDE with monotone generator and with a singular terminal condition.

REFERENCES

[1] ALFONSI,A.andSCHIED, A. (2010). Optimal trade execution and absence of price manipu- lations in limit order book models. SIAM J. Financial Math. 1 490–522. MR2669402 [2] ALFONSI,A.,SCHIED,A.andSLYNKO, A. (2012). Order book resilience, price manipulation, and the positive portfolio problem. SIAM J. Financial Math. 3 511–533. MR2968044 [3] ALMGREN, R. (2012). Optimal trading with stochastic liquidity and volatility. SIAM J. Finan- cial Math. 3 163–181. MR2968031 [4] ALMGREN,R.andCHRISS, N. (2001). Optimal execution of portfolio transactions. J. Risk 3 5–40. [5] ANKIRCHNER,S.,JEANBLANC,M.andKRUSE, T. (2014). BSDEs with singular terminal condition and a control problem with constraints. SIAM J. Control Optim. 52 893–913. MR3180837 [6] BANK,P.andVOSS, M. (2018). Linear quadratic stochastic control problems with stochastic terminal constraint. SIAM J. Control Optim. 56 672–699. MR3769694 [7] BERTSEKAS,D.P.andSHREVE, S. E. (1978). Stochastic Optimal Control: The Discrete Time Case. Mathematics in Science and Engineering 139. Academic Press, New York. MR0511544 [8] BOUCHARD,B.,POSSAMAÏ,D.andTAN, X. (2016). A general Doob–Meyer–Mertens de- composition for g-supermartingale systems. Electron. J. Probab. 21 Paper No. 36, 21. MR3508683 [9] BOUCHARD,B.,POSSAMAÏ,D.,TAN,X.andZHOU, C. (2018). A unified approach to apri- ori estimates for supersolutions of BSDEs in general filtrations. Ann. Inst. Henri Poincaré Probab. Stat. 54 154–172. MR3765884 [10] BRIAND,P.andCARMONA, R. (2000). BSDEs with polynomial growth generators. J. Appl. Math. Stoch. Anal. 13 207–238. MR1782682 [11] BRIAND,P.,DELYON,B.,HU,Y.,PARDOUX,E.andSTOICA, L. (2003). Lp solutions of backward stochastic differential equations. Stochastic Process. Appl. 108 109–129. MR2008603 [12] DELLACHERIE,C.andMEYER, P.-A. (1978). Probabilities and Potential. North-Holland Mathematics Studies 29. North-Holland, Amsterdam. MR0521810

MSC2010 subject classifications. 60H10, 60H30, 93E20. Key words and phrases. Optimal stochastic control, second-order backward stochastic differential equation, monotone generator, singular terminal condition. [13] DOOB, J. L. (2001). Classical Potential Theory and Its Probabilistic Counterpart. Classics in Mathematics. Springer, Berlin. Reprint of the 1984 edition. MR1814344 [14] EL KAROUI,N.andHUANG, S.-J. (1997). A general result of existence and uniqueness of backward stochastic differential equations. In Backward Stochastic Differential Equa- tions (Paris, 1995–1996). Pitman Res. Notes Math. Ser. 364 27–36. Longman, Harlow. MR1752673 [15] FORSYTH,P.A.,KENNEDY,J.S.,TSE,S.T.andWINDCLIFF, H. (2012). Optimal trade execution: A mean approach. J. Econom. Dynam. Control 36 1971– 1991. MR2982963 [16] GATHERAL,J.andSCHIED, A. (2011). Optimal trade execution under geometric Brownian motion in the Almgren and Chriss framework. Int. J. Theor. Appl. Finance 14 353–368. MR2804102 [17] GRAEWE,P.,HORST,U.andQIU, J. (2015). A non-Markovian liquidation problem and back- ward SPDEs with singular terminal conditions. SIAM J. Control Optim. 53 690–711. MR3319844 [18] GRAEWE,P.,HORST,U.andSÉRÉ, E. (2018). Smooth solutions to portfolio liquidation problems under price-sensitive market impact. Stochastic Process. Appl. 128 979–1006. MR3758345 [19] HORST,U.andNAUJOKAT, F. (2014). When to cross the spread? Trading in two-sided limit order books. SIAM J. Financial Math. 5 278–315. MR3206984 [20] JACOD,J.andSHIRYAEV, A. N. (2003). Limit Theorems for Stochastic Processes, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathemat- ical Sciences] 288. Springer, Berlin. MR1943877 [21] KALLENBERG, O. (2002). Foundations of Modern Probability, 2nd ed. Probability and Its Applications (New York). Springer, New York. MR1876169 [22] KARANDIKAR, R. L. (1995). On pathwise stochastic integration. Stochastic Process. Appl. 57 11–18. MR1327950 [23] KAZI-TANI,N.,POSSAMAÏ,D.andZHOU, C. (2015). Second-order BSDEs with jumps: Formulation and uniqueness. Ann. Appl. Probab. 25 2867–2908. MR3375890 [24] KLIMSIAK, T. (2012). Reflected BSDEs with monotone generator. Electron. J. Probab. 17 no. 107, 25. MR3015691 [25] KLIMSIAK, T. (2013). BSDEs with monotone generator and two irregular reflecting barriers. Bull. Sci. Math. 137 268–321. MR3043077 [26] KLIMSIAK, T. (2015). Reflected BSDEs on filtered probability spaces. Stochastic Process. Appl. 125 4204–4241. MR3385601 [27] KRATZ,P.andSCHÖNEBORN, T. (2015). Portfolio liquidation in dark pools in continuous time. Math. Finance 25 496–544. MR3358592 [28] KRUSE,T.andPOPIER, A. (2016). BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration. Stochastics 88 491–539. MR3473849 [29] KRUSE,T.andPOPIER, A. (2016). Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting. Stochastic Process. Appl. 126 2554–2592. MR3522293 [30] KRUSE,T.andPOPIER, A. (2017). Lp-solution for BSDEs with jumps in the case p<2: Cor- rections to the paper ‘BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration’ [MR3473849]. Stochastics 89 1201–1227. MR3742328 [31] LEPELTIER,J.-P.,MATOUSSI,A.andXU, M. (2005). Reflected backward stochastic differen- tial equations under monotonicity and general increasing growth conditions. Adv. in Appl. Probab. 37 134–159. MR2135157 [32] MATOUSSI,A.,POSSAMAÏ,D.andZHOU, C. (2015). Robust utility maximization in nondom- inated models with 2BSDE: The uncertain volatility model. Math. Finance 25 258–287. MR3321250 [33] PARDOUX, É. (1999). BSDEs, weak convergence and homogenization of semilinear PDEs. In Nonlinear Analysis, Differential Equations and Control (Montreal, QC, 1998). NATO Sci. Ser. CMath. Phys. Sci. 528 503–549. Kluwer Academic, Dordrecht. MR1695013 [34] PARDOUX,E.andRA¸˘ SCANU, A. (2014). Stochastic Differential Equations, Backward SDEs, Partial Differential Equations. Stochastic Modelling and Applied Probability 69. Springer, Cham. MR3308895 [35] POPIER, A. (2016). Limit behaviour of BSDE with jumps and with singular terminal condition. ESAIM Probab. Stat. 20 480–509. MR3581831 [36] POSSAMAÏ, D. (2013). Second order backward stochastic differential equations under a mono- tonicity condition. Stochastic Process. Appl. 123 1521–1545. MR3027889 [37] POSSAMAÏ,D.,TAN,X.andZHOU, C. (2018). Stochastic control for a class of nonlinear kernels and applications. Ann. Probab. 46 551–603. MR3758737 [38] SCHIED, A. (2013). A control problem with fuel constraint and Dawson–Watanabe superpro- cesses. Ann. Appl. Probab. 23 2472–2499. MR3127942 [39] SONER,H.M.,TOUZI,N.andZHANG, J. (2011). Quasi-sure stochastic analysis through aggregation. Electron. J. Probab. 16 1844–1879. MR2842089 [40] SONER,H.M.,TOUZI,N.andZHANG, J. (2012). Wellposedness of second order backward SDEs. Probab. Theory Related Fields 153 149–190. MR2925572 [41] SONER,H.M.,TOUZI,N.andZHANG, J. (2013). Dual formulation of second order target problems. Ann. Appl. Probab. 23 308–347. MR3059237 [42] STROOCK,D.W.andVARADHAN, S. R. S. (1979). Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathemat- ical Sciences] 233. Springer, Berlin. MR0532498 The Annals of Applied Probability 2019, Vol. 29, No. 3, 1740–1777 https://doi.org/10.1214/18-AAP1437 © Institute of Mathematical Statistics, 2019

SUPERMARKET MODEL ON GRAPHS

BY AMARJIT BUDHIRAJA1,DEBANKUR MUKHERJEE2 AND RUOYU WU University of North Carolina, Chapel Hill, Brown University and University of Michigan

We consider a variation of the supermarket model in which the servers can communicate with their neighbors and where the neighborhood relation- ships are described in terms of a suitable graph. Tasks with unit-exponential service time distributions arrive at each vertex as independent Poisson pro- cesses with rate λ, and each task is irrevocably assigned to the shortest queue among the one it first appears and its d − 1 randomly selected neighbors. This model has been extensively studied when the underlying graph is a clique in which case it reduces to the well-known power-of-d scheme. In particular, results of Mitzenmacher (1996) and Vvedenskaya et al. (1996) show that as the size of the clique gets large, the occupancy process associated with the queue-lengths at the various servers converges to a deterministic limit de- scribed by an infinite system of ordinary differential equations (ODE). In this work, we consider settings where the underlying graph need not be a clique and is allowed to be suitably sparse. We show that if the minimum degree approaches infinity (however slowly) as the number of servers N approaches infinity, and the ratio between the maximum degree and the minimum de- gree in each connected component approaches 1 uniformly, the occupancy process converges to the same system of ODE as the classical supermarket model. In particular, the asymptotic behavior of the occupancy process is in- sensitive to the precise network topology. We also study the case where the graph sequence is random, with the Nth graph given as an Erdos–Rényi˝ ran- dom graph on N vertices with average degree c(N). Annealed convergence of the occupancy process to the same deterministic limit is established under the condition c(N) →∞, and under a stronger condition c(N)/ln N →∞, con- vergence (in probability) is shown for almost every realization of the .

REFERENCES

[1] AGHAJANI,R.andRAMANAN, K. (2017). The hydrodynamic limit of a randomized load balancing network. Available at arXiv:1707.02005. [2] AZAR,Y.,BRODER,A.Z.,KARLIN,A.R.andUPFAL, E. (1994). Balanced allocations. In Proc. STOC ’94 593–602. [3] BHAMIDI,S.,BUDHIRAJA,A.andWU, R. (2018). Weakly interacting particle systems on inhomogeneous random graphs. Stochastic Process. Appl. To appear. Available at arXiv:1612.00801.

MSC2010 subject classifications. Primary 60F17, 60K25, 68M20; secondary 60J27, 60K35. Key words and phrases. Load balancing on network, power-of-d scheme, functional limit theo- rems, many-server asymptotics, asymptotic decoupling, McKean–Vlasov process. [4] BRAMSON,M.,LU,Y.andPRABHAKAR, B. (2012). Asymptotic independence of queues under randomized load balancing. Queueing Syst. 71 247–292. MR2943660 [5] BRAMSON,M.,LU,Y.andPRABHAKAR, B. (2013). Decay of tails at equilibrium for FIFO join the shortest queue networks. Ann. Appl. Probab. 23 1841–1878. MR3114919 [6] BUDHIRAJA,A.andFRIEDLANDER, E. (2017). Diffusion approximations for load balancing mechanisms in cloud storage systems. Available at arXiv:1706.09914. [7] CHUNG,F.andLU, L. (2006). Complex Graphs and Networks. CBMS Regional Conference Series in Mathematics 107. Amer. Math. Soc., Providence, RI. MR2248695 [8] DELATTRE,S.,GIACOMIN,G.andLUÇON, E. (2016). A note on dynamical models on ran- dom graphs and Fokker–Planck equations. J. Stat. Phys. 165 785–798. MR3568168 [9] ESCHENFELDT,P.C.andGAMARNIK, D. (2017). Supermarket queueing system in the heavy traffic regime. Short queue dynamics. Available at arXiv:1610.03522. [10] FRICKER,C.andGAST, N. (2016). Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity. EURO J. Transp. Logist. 5 261–291. [11] GAST, N. (2015). The power of two choices on graphs: The pair-approximation is accurate. In Proc. MAMA Workshop 2015 69–71. [12] GRAHAM, C. (2005). Functional central limit theorems for a large network in which cus- tomers join the shortest of several queues. Probab. Theory Related Fields 131 97–120. MR2105045 [13] KENTHAPADI,K.andPANIGRAHY, R. (2006). Balanced allocation on graphs. In Proceed- ings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms 434–443. ACM, New York. MR2368840 [14] KOLOKOLTSOV, V. N. (2010). Nonlinear Markov Processes and Kinetic Equations. Cambridge Tracts in Mathematics 182. Cambridge Univ. Press, Cambridge. MR2680971 [15] KURTZ,T.G.andXIONG, J. (1999). Particle representations for a class of nonlinear SPDEs. Stochastic Process. Appl. 83 103–126. MR1705602 [16] LUCZAK,M.J.andMCDIARMID, C. (2006). On the maximum queue length in the supermar- ket model. Ann. Probab. 34 493–527. MR2223949 [17] LUCZAK,M.J.andNORRIS, J. (2005). Strong approximation for the supermarket model. Ann. Appl. Probab. 15 2038–2061. MR2152252 [18] MITZENMACHER, M. (2001). The power of two choices in randomized load balancing. IEEE Trans. Parallel Distrib. Syst. 12 1094–1104. [19] MITZENMACHER,M.,PRABHAKAR,B.andSHAH, D. (2002). Load balancing with memory. In Proc. FOCS ’02 799–808. [20] MITZENMACHER, M. D. (1996). The power of two choices in randomized load balancing. Ph.D. thesis, Univ. California, Berkeley. [21] MUKHERJEE,D.,BORST,S.C.andVAN LEEUWAARDEN, J. S. H. (2018). Asymptotically optimal load balancing topologies. Proc. ACM Meas. Anal. Comput. Syst. 2 1–29. [22] MUKHERJEE,D.,BORST,S.C.,VA N LEEUWAARDEN,J.S.H.andWHITING, P. A. (2018). Universality of power-of-d load balancing in many-server systems. Stoch. Syst. To appear. Available at arXiv:1612.00723. [23] PERES,Y.,TALWAR,K.andWIEDER, U. (2015). Graphical balanced allocations and the (1 + β)-choice process. Random Structures Algorithms 47 760–775. MR3418914 [24] SZNITMAN, A.-S. (1991). Topics in propagation of chaos. In École D’Été de Probabilités de Saint-Flour XIX—1989. Lecture Notes in Math. 1464 165–251. Springer, Berlin. MR1108185 [25] TSITSIKLIS,J.N.andXU, K. (2012). On the power of (even a little) resource pooling. Stoch. Syst. 2 1–66. MR2960735 [26] TSITSIKLIS,J.N.andXU, K. (2017). Flexible queueing architectures. Oper. Res. 65 1398– 1413. MR3710053 [27] TURNER, S. R. E. (1998). The effect of increasing routing choice on resource pooling. Probab. Engrg. Inform. Sci. 12 109–124. MR1492143 [28] VAN DER BOOR,M.,BORST,S.C.,VA N LEEUWAARDEN,J.S.H.andMUKHERJEE,D. (2018). Scalable load balancing in networked systems: Universality properties and stochastic coupling methods. In Proc. ICM ’18. [29] VVEDENSKAYA,N.D.,DOBRUSHIN,R.L.andKARPELEVICH, F. I. (1996). A queueing system with a choice of the shorter of two queues—An asymptotic approach. Problemy Peredachi Informatsii 32 20–34. MR1384927 [30] WANG,W.,ZHU,K.,YING,L.,TAN,J.andZHANG, L. (2016). MapTask scheduling in MapReduce with data locality: Throughput and heavy-traffic optimality. IEEE/ACM Trans. Netw. 24 190–203. [31] WIEDER, U. (2016). Hashing, load balancing and multiple choice. Found. Trends Theor. Com- put. Sci. 12 276–379. MR3683828 [32] XIE,Q.,YEKKEHKHANY,A.andLU, Y. (2016). Scheduling with multi-level data locality: Throughput and heavy-traffic optimality. In Proc. INFOCOM ’16 1–9. [33] YING, L. (2017). Stein’s method for mean field approximations in light and heavy traffic regimes. Proc. ACM Meas. Anal. Comput. Syst. 1 12. The Annals of Applied Probability 2019, Vol. 29, No. 3, 1778–1807 https://doi.org/10.1214/18-AAP1438 © Institute of Mathematical Statistics, 2019

EFFECTIVE BERRY–ESSEEN AND CONCENTRATION BOUNDS FOR MARKOV CHAINS WITH A SPECTRAL GAP

BY BENOÎT KLOECKNER Université Paris-Est Applying quantitative perturbation theory for linear operators, we prove nonasymptotic bounds for Markov chains whose transition kernel has a spec- tral gap in an arbitrary Banach algebra of functions X . The main results are concentration inequalities and Berry–Esseen bounds, obtained assuming nei- ther reversibility nor “warm start” hypothesis: the law of the first term of the chain can be arbitrary. The spectral gap hypothesis is basically a uniform X - hypothesis, and when X consist in regular functions this is weaker than uniform ergodicity. We show on a few examples how the flexibility in the choice of function space can be used. The constants are completely ex- plicit and reasonable enough to make the results usable in practice, notably in MCMC methods.

REFERENCES

[1] BALADI, V. (2000). Positive Transfer Operators and Decay of Correlations. Advanced Series in Nonlinear Dynamics 16. World Scientific, River Edge, NJ. MR1793194 [2] BOLTHAUSEN, E. (1982). The Berry–Esseén theorem for strongly Harris recurrent Markov chains. Z. Wahrsch. Verw. Gebiete 60 283–289. MR0664418 [3] BRUIN,H.andTODD, M. (2008). Equilibrium states for interval maps: Potentials with sup φ − inf φ

MSC2010 subject classifications. Primary 65C05; secondary 60J22, 62E17. Key words and phrases. Concentration inequalities, Berry–Esseen bounds, Markov chains, spec- tral gap property, Markov chain Monte-Carlo method. [12] FELLER, W. (1966). An Introduction to Probability Theory and Its Applications. Vol. II. Wiley, New York. MR0210154 [13] GIULIETTI,P.,KLOECKNER,B.,LOPES,A.O.andMARCON, D. (2018). The calculus of thermodynamical formalism. J. Eur. Math. Soc.(JEMS) 20 2357–2412. MR3852182 [14] GLYNN,P.W.andORMONEIT, D. (2002). Hoeffding’s inequality for uniformly ergodic Markov chains. Statist. Probab. Lett. 56 143–146. MR1881167 [15] GÓMEZ,D.M.andDARTNELL, P. (2012). Simple Monte Carlo integration with respect to Bernoulli convolutions. Appl. Math. 57 617–626. MR3010240 [16] GOUËZEL, S. (2015). Limit theorems in dynamical systems using the spectral method. In Hy- perbolic Dynamics, Fluctuations and Large Deviations. Proc. Sympos. Pure Math. 89 161–193. Amer. Math. Soc., Providence, RI. MR3309098 [17] HENNION,H.andHERVÉ, L. (2001). Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness. Lecture Notes in Math. 1766. Springer, Berlin. MR1862393 [18] JOULIN,A.andOLLIVIER, Y. (2010). Curvature, concentration and error estimates for Markov chain Monte Carlo. Ann. Probab. 38 2418–2442. MR2683634 [19] KELLER,G.andLIVERANI, C. (1999). Stability of the spectrum for transfer operators. Ann. Sc. Norm. Super. Pisa, Cl. Sci.(4)28 141–152. MR1679080 [20] KLOECKNER, B. R. (2017). Effective perturbation theory for simple isolated eigenvalues of linear operators. J. Operator Theory To appear. Available at arXiv:1703.09425. [21] KLOECKNER, B. R. (2017). Effective high-temperature estimates for intermittent maps. Er- godic Theory Dynam. Systems To appear. Available at arXiv:1704.00586. [22] KLOECKNER, B. R. (2017). An optimal transportation approach to the decay of correlations for non-uniformly expanding maps. Dynam. Systems.Toappear.Availableat arXiv:1711.08052. [23] KLOECKNER, B. R. (2018). Toy examples for effective concentration bounds. [24] KONTOYIANNIS,I.,LASTRAS-MONTANO,L.A.andMEYN, S. P. (2005). Relative entropy and exponential deviation bounds for general Markov chains. In International Symposium on Information Theory, 2005 1563–1567. IEEE Press, New York. [25] KONTOYIANNIS,I.andMEYN, S. P. (2012). Geometric ergodicity and the spectral gap of non-reversible Markov chains. Probab. Theory Related Fields 154 327–339. MR2981426 [26] LEZAUD, P. (1998). Chernoff-type bound for finite Markov chains. Ann. Appl. Probab. 8 849– 867. MR1627795 [27] LEZAUD, P. (2001). Chernoff and Berry–Esséen inequalities for Markov processes. ESAIM Probab. Stat. 5 183–201. MR1875670 [28] LIVERANI, C. (2001). Rigorous numerical investigation of the statistical properties of piece- wise expanding maps. A feasibility study. Nonlinearity 14 463–490. MR1830903 [29] NAGAEV, S. V. (1957). Some limit theorems for stationary Markov chains. Teor. Veroyatn. Primen. 2 389–416. MR0094846 [30] NAGAEV, S. V. (1961). More exact limit theorems for homogeneous Markov chains. Teor. Veroyatn. Primen. 6 67–86. MR0131291 [31] PAULIN, D. (2015). Concentration inequalities for Markov chains by Marton couplings and spectral methods. Electron. J. Probab. 20 no. 79, 32. MR3383563 [32] PAULIN, D. (2016). Mixing and concentration by Ricci curvature. J. Funct. Anal. 270 1623– 1662. MR3452712 [33] PERES,Y.,SCHLAG,W.andSOLOMYAK, B. (2000). Sixty years of Bernoulli convolutions. In Fractal Geometry and Stochastics, II (Greifswald/Koserow, 1998). Progress in Probability 46 39–65. Birkhäuser, Basel. MR1785620 [34] ROBERTS,G.O.andROSENTHAL, J. S. (2004). General state space Markov chains and MCMC algorithms. Probab. Surv. 1 20–71. MR2095565 [35] RUELLE, D. (2004). Thermodynamic Formalism: The Mathematical Structures of Equilibrium Statistical Mechanics, 2nd ed. Cambridge Mathematical Library. Cambridge Univ. Press, Cambridge. MR2129258  [36] SOLOMYAK, B. (1995). On the random series ±λn (an Erdos˝ problem). Ann. of Math.(2) 142 611–625. MR1356783 [37] TYURIN, I. S. (2011). Improvement of the remainder in the Lyapunov theorem. Teor. Veroyatn. Primen. 56 808–811. MR3137072 [38] WATANABE,S.andHAYASHI, M. (2017). Finite-length analysis on tail probability for Markov chain and application to simple hypothesis testing. Ann. Appl. Probab. 27 811–845. MR3655854 The Annals of Applied Probability 2019, Vol. 29, No. 3, 1808–1836 https://doi.org/10.1214/18-AAP1440 © Institute of Mathematical Statistics, 2019

THE NESTED KINGMAN COALESCENT: SPEED OF COMING DOWN FROM INFINITY

∗ BY AIRAM BLANCAS ,1,TIM ROGERS†,2,JASON SCHWEINSBERG‡,3 AND ARNO SIRI-JÉGOUSSE§,4 Goethe Universität Frankfurt∗, University of Bath†, University of California, San Diego‡ and Universidad Nacional Autónoma de México§

The nested Kingman coalescent describes the ancestral tree of a popula- tion undergoing neutral evolution at the level of individuals and at the level of species, simultaneously. We study the speed at which the number of lineages descends from infinity in this hierarchical coalescent process and prove the existence of an early-time phase during which the number of lineages at time t decays as 2γ/ct2,wherec is the ratio of the coalescence rates at the individ- ual and species levels, and the constant γ ≈ 3.45 is derived from a recursive distributional equation for the number of lineages contained within a species at a typical time.

REFERENCES

[1] ALDOUS, D. J. (1999). Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists. Bernoulli 5 3–48. MR1673235 [2] ALDOUS,D.J.andBANDYOPADHYAY, A. (2005). A survey of max-type recursive distribu- tional equations. Ann. Appl. Probab. 15 1047–1110. MR2134098 [3] BANSAYE,V.,MÉLÉARD,S.andRICHARD, M. (2016). Speed of coming down from infinity for birth-and-death processes. Adv. in Appl. Probab. 48 1183–1210. MR3595771 [4] BERESTYCKI,J.andBERESTYCKI, N. (2009). Kingman’s coalescent and Brownian motion. ALEA Lat. Am. J. Probab. Math. Stat. 6 239–259. MR2534485 [5] BERESTYCKI,J.,BERESTYCKI,N.andLIMIC, V. (2010). The -coalescent speed of coming down from infinity. Ann. Probab. 38 207–233. MR2599198 [6] BERESTYCKI, N. (2009). Recent Progress in Coalescent Theory. Ensaios Matemáticos [Math- ematical Surveys] 16. Sociedade Brasileira de Matemática, Rio de Janeiro. MR2574323 [7] BLANCAS,A.,DUCHAMPS,J.-J.,LAMBERT,A.andSIRI-JÉGOUSSE, A. (2018). Trees within trees: Simple nested coalescents. Electron. J. Probab. 23 1–27. [8] CREER, S. et al. (2010). Ultrasequencing of the meiofaunal biosphere: Practice, pitfalls and promises. Mol. Ecol. 19 4–20. [9] DAWSON, D. A. (2018). Multilevel mutation-selection systems and set-valued duals. J. Math. Biol. 76 295–378. MR3742789 [10] DHERSIN,J.-S.,FREUND,F.,SIRI-JÉGOUSSE,A.andYUAN, L. (2013). On the length of an external branch in the beta-coalescent. Stochastic Process. Appl. 123 1691–1715. MR3027896

MSC2010 subject classifications. Primary 60J25; secondary 60J80, 92D15, 92D25. Key words and phrases. Kingman’s coalescent, nested coalescent, gene tree, species tree, coming down from infinity, recursive distributional equation. [11] EWENS, W. J. (1972). The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3 87–112; erratum, ibid. 3 (1972), 240; erratum, ibid. 3 (1972), 376. MR0325177 [12] GIVENS,C.R.andSHORTT, R. M. (1984). A class of Wasserstein metrics for probability distributions. Michigan Math. J. 31 231–240. MR0752258 [13] HARVEY,P.H.,MAY,R.M.andNEE, S. (1994). Phylogenies without fossils. Evolution 48 523–529. [14] KANTOROVICˇ ,L.V.andRUBINŠTEIN˘ , G. Š. (1958). On a space of completely additive func- tions. Vestnik Leningrad Univ. Math. 13 52–59. MR0102006 [15] KINGMAN, J. F. C. (1982). The coalescent. Stochastic Process. Appl. 13 235–248. MR0671034 [16] LAMBERT,A.andSCHERTZER, E. (2018). Coagulation-transport equations and the nested coalescents. Available at arXiv:1807.09153. [17] MADDISON, W. P. (1997). Gene trees in species trees. Syst. Biol. 46 523–536. [18] MÖHLE, M. (2000). Total variation distances and rates of convergence for ancestral coales- cent processes in exchangeable population models. Adv. in Appl. Probab. 32 983–993. MR1808909 [19] MOOERS,A.O.andHEARD, S. B. (1997). Inferring evolutionary process from phylogenetic tree shape. Q. Rev. Biol. 72 31–54. [20] MORAN, P. A. P. (1958). Random processes in genetics. Proc. Camb. Philos. Soc. 54 60–71. MR0127989 [21] MORGAN,M.J.,BASS,D.,BIK,H.,BIRKY,C.W.,BLAXTER,M.,CRISP,M.D., DERYCKE,S.,FITCH,D.,FONTANETO, D. et al. (2014). A critique of Rossberg et al.: Noise obscures the genetic signal of meiobiotal ecospecies in ecogenomic datasets. Proc. Royal Soc., Biol. Sci. 281 20133076. [22] ROSSBERG,A.G.,ROGERS,T.andMCKANE, A. J. (2013). Are there species smaller than 1 mm? Proc. Royal Soc. Biol. Sci. 280 20131248. [23] ROSSBERG,A.G.,ROGERS,T.andMCKANE, A. J. (2014). Current noise-removal methods can create false signals in ecogenomic data. Proc. Royal Soc. Biol. Sci. 281 20140191. [24] SZÖLLOSI˝ ,G.J.,TANNIER,E.,DAUBIN,V.andBOUSSAU, B. (2014). The inference of gene trees with species trees. Syst. Biol. 64 e42–e62. The Annals of Applied Probability 2019, Vol. 29, No. 3, 1837–1877 https://doi.org/10.1214/18-AAP1447 © Institute of Mathematical Statistics, 2019

CONDENSATION IN CRITICAL CAUCHY BIENAYMÉ–GALTON–WATSON TREES1

∗ BY IGOR KORTCHEMSKI ,†,2 AND LOÏC RICHIER† CNRS∗ & CMAP, École polytechnique†

We are interested in the structure of large Bienaymé–Galton–Watson ran- dom trees whose offspring distribution is critical and falls within the do- main of attraction of a stable law of index α = 1. In stark contrast to the case α ∈ (1, 2], we show that a condensation phenomenon occurs: in such trees, one vertex with macroscopic degree emerges (see Figure 1). To this end, we establish limit theorems for centered downwards skip-free random walks whose steps are in the domain of attraction of a , when conditioned on a late entrance in the negative real line. These results are of independent interest. As an application, we study the geometry of the boundary of random planar maps in a specific regime (called nongeneric of parameter 3/2). This supports the conjecture that faces in Le Gall and Mier- mont’s 3/2-stable maps are self-avoiding.

REFERENCES

[1] ALDOUS, D. (1993). The continuum random tree. III. Ann. Probab. 21 248–289. MR1207226 [2] AMBJØRN,J.,BUDD,T.andMAKEENKO, Y. (2016). Generalized multicritical one-matrix models. Nuclear Phys. B 913 357–380. [3] ARMENDÁRIZ,I.andLOULAKIS, M. (2011). Conditional distribution of heavy tailed ran- dom variables on large deviations of their sum. Stochastic Process. Appl. 121 1138–1147. MR2775110 [4] BERGER, Q. (2017). Notes on random walks in the Cauchy domain of attraction. Probab. Theory Related Fields. To appear. [5] BERTOIN, J. (1996). Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge Univ. Press, Cambridge. MR1406564 [6] BINGHAM,N.H.,GOLDIE,C.M.andTEUGELS, J. L. (1989). Regular Variation. Ency- clopedia of Mathematics and Its Applications 27. Cambridge Univ. Press, Cambridge. MR1015093 [7] BOROT,G.,BOUTTIER,J.andGUITTER, E. (2012). A recursive approach to the O(n) model on random maps via nested loops. J. Phys. A 45 045002, 38. MR2874232 [8] BUDD,T.andCURIEN, N. (2017). Geometry of infinite planar maps with high degrees. Elec- tron. J. Probab. 22 Paper No. 35, 37. MR3646061 [9] BURAGO,D.,BURAGO,Y.andIVANOV, S. (2001). A Course in Metric Geometry. Graduate Studies in Mathematics 33. Amer. Math. Soc., Providence, RI. MR1835418 [10] CURIEN,N.andKORTCHEMSKI, I. (2014). Random stable looptrees. Electron. J. Probab. 19 no. 108, 35. MR3286462

MSC2010 subject classifications. Primary 60J80, 60G50, 60F17, 05C05; secondary 05C80, 60C05. Key words and phrases. Condensation, Bienaymé–Galton–Watson tree, Cauchy process, planar map. [11] CURIEN,N.andKORTCHEMSKI, I. (2015). Percolation on random triangulations and stable looptrees. Probab. Theory Related Fields 163 303–337. MR3405619 [12] DARLING, D. A. (1952). The influence of the maximum term in the addition of independent random variables. Trans. Amer. Math. Soc. 73 95–107. MR0048726 [13] DEN HOLLANDER, F. Probability theory: The coupling method. Lecture notes, available on- line, http://websites.math.leidenuniv.nl/probability/lecturenotes/CouplingLectures.pdf. [14] DEVROYE, L. (2012). Simulating size-constrained Galton–Watson trees. SIAM J. Comput. 41 1–11. MR2888318 [15] DUPLANTIER,B.andSHEFFIELD, S. (2011). Liouville quantum gravity and KPZ. Invent. Math. 185 333–393. MR2819163 [16] DUQUESNE, T. (2003). A limit theorem for the contour process of conditioned Galton–Watson trees. Ann. Probab. 31 996–1027. MR1964956 [17] DUQUESNE,T.andLE GALL, J.-F. (2002). Random trees, Lévy processes and spatial branch- ing processes. Astérisque 281, vi+147. MR1954248 [18] DURRETT, R. (1980). Conditioned limit theorems for random walks with negative drift. Z. Wahrsch. Verw. Gebiete 52 277–287. MR0576888 [19] FELLER, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II, 2nd ed. Wiley, New York. MR0270403 [20] FÉRAY,V.andKORTCHEMSKI, I. (2018). The geometry of random minimal factorizations of a long cycle via biconditioned bitype random trees. Annales Henri Lebesgue. To appear. [21] JACOD,J.andSHIRYAEV, A. N. (2003). Limit Theorems for Stochastic Processes, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathemat- ical Sciences] 288. Springer, Berlin. MR1943877 [22] JANSON, S. (2012). Simply generated trees, conditioned Galton–Watson trees, random alloca- tions and condensation. Probab. Surv. 9 103–252. MR2908619 [23] JANSON,S.andSTEFÁNSSON, S. Ö. (2015). Scaling limits of random planar maps with a unique large face. Ann. Probab. 43 1045–1081. MR3342658 [24] JONSSON,T.andSTEFÁNSSON, S. Ö. (2011). Condensation in nongeneric trees. J. Stat. Phys. 142 277–313. MR2764126 [25] KALLENBERG, O. (2002). Foundations of Modern Probability, 2nd ed. Probability and Its Applications (New York). Springer, New York. MR1876169 [26] KENNEDY, D. P. (1975). The Galton–Watson process conditioned on the total progeny. J. Appl. Probab. 12 800–806. MR0386042 [27] KESTEN, H. (1986). Subdiffusive behavior of on a random cluster. Ann. Inst. Henri Poincaré Probab. Stat. 22 425–487. MR0871905 [28] KNIZHNIK,V.G.,POLYAKOV,A.M.andZAMOLODCHIKOV, A. B. (1988). Fractal structure of 2D-quantum gravity. Modern Phys. Lett. A 3 819–826. MR0947880 [29] KORTCHEMSKI, I. (2013). A simple proof of Duquesne’s theorem on contour processes of conditioned Galton–Watson trees. In Séminaire de Probabilités XLV. Lecture Notes in Math. 2078 537–558. Springer, Cham. MR3185928 [30] KORTCHEMSKI, I. (2015). Limit theorems for conditioned non-generic Galton–Watson trees. Ann. Inst. Henri Poincaré Probab. Stat. 51 489–511. MR3335012 [31] KORTCHEMSKI,I.andRICHIER, L. (2018). The boundary of random planar maps via loop- trees. Ann. Fac. Sci. Toulouse Math. To appear. [32] LE GALL, J.-F. (2005). Random trees and applications. Probab. Surv. 2 245–311. MR2203728 [33] LE GALL, J.-F. (2007). The topological structure of scaling limits of large planar maps. Invent. Math. 169 621–670. MR2336042 [34] LE GALL, J.-F. (2013). Uniqueness and universality of the Brownian map. Ann. Probab. 41 2880–2960. MR3112934 [35] LE GALL,J.-F.andLE JAN, Y. (1998). Branching processes in Lévy processes: The explo- ration process. Ann. Probab. 26 213–252. MR1617047 [36] LE GALL,J.-F.andMIERMONT, G. (2011). Scaling limits of random planar maps with large faces. Ann. Probab. 39 1–69. MR2778796 [37] LINDVALL, T. (1992). Lectures on the Coupling Method. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York. MR1180522 [38] LOUIGI, A.-B. (2015). A probabilistic approach to block sizes in random maps. Preprint, avail- able on arxiv, arXiv:1503.08159. [39] MARCKERT,J.-F.andMIERMONT, G. (2007). Invariance principles for random bipartite pla- nar maps. Ann. Probab. 35 1642–1705. MR2349571 [40] MARCKERT,J.-F.andMOKKADEM, A. (2006). Limit of normalized quadrangulations: The Brownian map. Ann. Probab. 34 2144–2202. MR2294979 [41] MARZOUK, C. (2018). On scaling limits of planar maps with stable face-degrees. ALEA Lat. Am. J. Probab. Math. Stat. 15 1089–1122. MR3852246 [42] MARZOUK, C. (2018). Scaling limits of random bipartite planar maps with a prescribed degree sequence. Random Structures Algorithms 53 448–503. MR3854042 [43] MIERMONT, G. (2013). The Brownian map is the scaling limit of uniform random plane quad- rangulations. Acta Math. 210 319–401. MR3070569 [44] MILLER,J.,SHEFFIELD,S.andWERNER, W. (2017). CLE percolations. Forum Math. Pi 5 e4, 102. MR3708206 [45] NAGAEV,S.V.andWACHTEL, V. (2007). The critical Galton–Watson process without further power moments. J. Appl. Probab. 44 753–769. MR2355590 [46] NEVEU, J. (1986). Arbres et processus de Galton–Watson. Ann. Inst. Henri Poincaré Probab. Stat. 22 199–207. MR0850756 [47] PITMAN, J. (2006). Combinatorial Stochastic Processes. Lecture Notes in Math. 1875. Springer, Berlin. MR2245368 [48] RICHIER, L. (2018). Limits of the boundary of random planar maps. Probab. Theory Related Fields 172 789–827. MR3877547 [49] ROGOZIN, B. A. (1971). Distribution of the first laddar moment and height, and fluctuations of a random walk. Teor. Veroyatn. Primen. 16 539–613. MR0290473 [50] ROHDE,S.andSCHRAMM, O. (2005). Basic properties of SLE. Ann. of Math.(2)161 883– 924. MR2153402 [51] SHEFFIELD, S. (2009). Exploration trees and conformal loop ensembles. Duke Math. J. 147 79–129. MR2494457 [52] SHEFFIELD,S.andWERNER, W. (2012). Conformal loop ensembles: The Markovian charac- terization and the loop-soup construction. Ann. of Math.(2)176 1827–1917. MR2979861 [53] SLACK, R. S. (1968). A with mean one and possibly infinite variance. Z. Wahrsch. Verw. Gebiete 9 139–145. MR0228077 [54] STEFÁNSSON,S.Ö.andSTUFLER, B. (2017). Geometry of large Boltzmann outerplanar maps. Preprint, available on arxiv, arXiv:1710.04460. [55] STUFLER, B. (2016). Limits of random tree-like discrete structures. Random Structures Algo- rithms. To appear. [56] SZE, M. (1976). Markov processes associated with critical Galton–Watson processes with ap- plication to extinction probabilities. Adv. in Appl. Probab. 8 278–295. MR0408020 The Annals of Applied Probability 2019, Vol. 29, No. 3, 1878–1903 https://doi.org/10.1214/18-AAP1448 © Institute of Mathematical Statistics, 2019

ENTROPY-CONTROLLED LAST-PASSAGE PERCOLATION1

BY QUENTIN BERGER2 AND NICCOLÒ TORRI3 Sorbonne Université We introduce a natural generalization of Hammersley’s Last-Passage Percolation (LPP) called Entropy-controlled Last-Passage Percolation (E- LPP), where points can be collected by paths with a global (path-entropy) constraint which takes into account the whole structure of the path, instead of a local (1-Lipschitz) constraint as in Hammersley’s LPP. Our main result is to prove quantitative tail estimates on the maximal number of points that can be collected by a path with entropy bounded by a prescribed constant. The E-LPP turns out to be a key ingredient in the context of the directed polymer model when the environment is heavy-tailed, which we consider in (Berger and Torri (2018)). We give applications in this context, which are essentials tools in (Berger and Torri (2018)): we show that the limiting variational prob- lem conjectured in (Ann. Probab. 44 (2016) 4006–4048), Conjecture 1.7, is finite, and we prove that the discrete variational problem converges to the continuous one, generalizing techniques used in (Comm. Pure Appl. Math. 64 (2011) 183–204; Probab. Theory Related Fields 137 (2007) 227–275).

REFERENCES

[1] ALBERTS,T.,KHANIN,K.andQUASTEL, J. (2014). The intermediate disorder regime for directed polymers in dimension 1 + 1. Ann. Probab. 42 1212–1256. MR3189070 [2] AUFFINGER,A.andLOUIDOR, O. (2011). Directed polymers in a random environment with heavy tails. Comm. Pure Appl. Math. 64 183–204. MR2766526 [3] BAIK,J.,DEIFT,P.andJOHANSSON, K. (1999). On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12 1119– 1178. MR1682248 [4] BERGER,Q.andTORRI, N. (2018). Directed polymers in heavy-tail random environment. Available at arXiv:1802.03355. [5] BERGER,Q.andTORRI, N. (2018). Beyond Hammersley’s Last-Passage Percolation: A dis- cussion on possible new local and global constraints. Available at ArXiv:1802.04046. [6] BINGHAM,N.H.,GOLDIE,C.M.andTEUGELS, J. L. (1989). Regular Variation. Ency- clopedia of Mathematics and Its Applications 27. Cambridge Univ. Press, Cambridge. MR1015093 [7] COMETS, F. (2016). Directed Polymers in Random Environments. Ecole d’Eté de probabilités de Saint-Flour 2175. Springer, Cham. [8] COMETS,F.,SHIGA,T.andYOSHIDA, N. (2004). Probabilistic analysis of directed polymers in a random environment: A review. In Stochastic Analysis on Large Scale Interacting Systems. Adv. Stud. Pure Math. 39 115–142. Math. Soc. Japan, Tokyo. MR2073332 [9] DEN HOLLANDER, F. (2007). Random Polymers. Ecole d’Eté de probabilités de Saint-Flour 1974. Springer, Berlin.

MSC2010 subject classifications. Primary 60K35; secondary 60K37, 60F05. Key words and phrases. Last-passage percolation, heavy-tail distributions, path entropy. [10] DEY,P.S.andZYGOURAS, N. (2016). High temperature limits for (1 + 1)-dimensional di- rected polymer with heavy-tailed disorder. Ann. Probab. 44 4006–4048. MR3572330 [11] HAMBLY,B.andMARTIN, J. B. (2007). Heavy tails in last-passage percolation. Probab. The- ory Related Fields 137 227–275. MR2278457 [12] HAMMERSLEY, J. M. (1972). A few seedlings of research. In Proc. Sixth Berkeley Symp. Math. Statist. and Probab. 345–394. Univ. California Press, Berkeley, CA. MR0405665 [13] LOGAN,B.F.andSHEPP, L. A. (1977). A variational problem for random Young tableaux. Adv. Math. 26 206–222. MR1417317 [14] RESNICK, S. I. (2008). Extreme Values, Regular Variation and Point Processes. Series in Op- erations Research and Financial Engineering. Springer, New York. MR2364939 [15] STONE, C. (1967). On local and ratio limit theorems. In Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 2 217–224. Univ. California Press, Berkeley, CA. MR0222939 [16] ULAM, S. M. (1961). Monte Carlo calculations in problems of mathematical physics. In Mod- ern Mathematics for the Engineer: Second Series 261–281. McGraw-Hill, New York. MR0129165 [17] VERSHIK,A.M.andKEROV, S. V. (1977). Asymptotics of the plancherel measure of the symmetric group and the limiting form of Young tables. Sov. Math., Dokl. 18 527–531. The Annals of Applied Probability 2019, Vol. 29, No. 3, 1904–1928 https://doi.org/10.1214/18-AAP1450 © Institute of Mathematical Statistics, 2019

THE LEFT-CURTAIN MARTINGALE COUPLING IN THE PRESENCE OF ATOMS

BY DAV I D G. HOBSON AND DOMINYKAS NORGILAS University of Warwick

Beiglböck and Juillet (Ann. Probab. 44 (2016) 42–106) introduced the left-curtain martingale coupling of probability measures μ and ν, and proved that, when the initial law μ is continuous, it is supported by the graphs of two functions. We extend the later result by constructing the generalised left- curtain martingale coupling and show that for an arbitrary starting law μ it is characterised by two appropriately defined lower and upper functions. As an application of this result, we derive the model-independent upper bound of an American put option. This extends recent results of Hobson and Norgilas (2017) on the atom-free case.

REFERENCES

[1] BAYRAKTAR,E.,HUANG,Y.-J.andZHOU, Z. (2015). On hedging American options under model uncertainty. SIAM J. Financial Math. 6 425–447. MR3356981 [2] BEIGLBÖCK,M.,COX,A.M.G.andHUESMANN, M. (2017). The geometry of multi- marginal Skorokhod embedding. Preprint. Available at arXiv:1705.09505. [3] BEIGLBÖCK,M.,HENRY-LABORDÈRE,P.andPENKNER, F. (2013). Model-independent bounds for option prices—A mass transport approach. Finance Stoch. 17 477–501. MR3066985 [4] BEIGLBÖCK,M.,HENRY-LABORDÈRE,P.andTOUZI, N. (2017). Monotone martingale transport plans and Skorokhod embedding. Stochastic Process. Appl. 127 3005–3013. MR3682121 [5] BEIGLBÖCK,M.andJUILLET, N. (2016). On a problem of optimal transport under marginal martingale constraints. Ann. Probab. 44 42–106. MR3456332 [6] BILLINGSLEY, P. (2013). Convergence of Probability Measures. Wiley, New York. MR0233396 [7] BRENIER, Y. (1987). Décomposition polaire et réarrangement monotone des champs de vecteurs. C. R. Acad. Sci. Paris Sér. IMath. 305 805–808. MR0923203 [8] CHACON, R. V. (1977). Potential processes. Trans. Amer. Math. Soc. 226 39–58. MR0501374 [9] CHACON,R.V.andWALSH, J. B. (1976). One-dimensional potential embedding. In Sémi- naire de Probabilités, X. Lecture Notes in Math. 511 19–23. Springer, Berlin. MR0445598 [10] GALICHON,A.,HENRY-LABORDÈRE,P.andTOUZI, N. (2014). A stochastic control ap- proach to no-arbitrage bounds given marginals, with an application to lookback options. Ann. Appl. Probab. 24 312–336. MR3161649 [11] HENRY-LABORDÈRE,P.andTOUZI, N. (2016). An explicit martingale version of the one- dimensional Brenier theorem. Finance Stoch. 20 635–668. MR3519164

MSC2010 subject classifications. Primary 60G42; secondary 60G40. Key words and phrases. Martingale optimal transport, optimal stopping, model-independent pric- ing, American put. [12] HOBSON, D. (2011). The Skorokhod embedding problem and model-independent bounds for option prices. In Paris–Princeton Lectures on 2010. Lecture Notes in Math. 2003 267–318. Springer, Berlin. MR2762363 [13] HOBSON,D.andNEUBERGER, A. (2012). Robust bounds for forward start options. Math. Finance 22 31–56. MR2881879 [14] HOBSON,D.andNEUBERGER, A. (2017). Model uncertainty and the pricing of American options. Finance Stoch. 21 285–329. MR3590709 [15] HOBSON, D. G. (1998). Robust hedging of the lookback option. Finance Stoch. 2 329–347. [16] HOBSON,D.G.andNEUBERGER, A. (2016). More on hedging American options under model uncertainty. Preprint. Available at arXiv:1604.02274. [17] HOBSON,D.G.andNORGILAS, D. (2017). Robust bounds for the American put. Preprint. Available at arXiv:1711.06466. [18] JUILLET, N. (2016). Stability of the shadow projection and the left-curtain coupling. Ann. Inst. Henri Poincaré Probab. Stat. 52 1823–1843. MR3573297 [19] NEUBERGER, A. (2007). Bounds on the American option. Preprint. SSRN:966333. [20] NUTZ,M.andSTEBEGG, F. (2018). Canonical supermartingale couplings. Ann. Probab. 46 3351–3398. MR3857858 [21] NUTZ,M.,STEBEGG,F.andTAN, X. (2017). Multiperiod martingale transport. Preprint. Available at arXiv:1703.10588. [22] STRASSEN, V. (1965). The existence of probability measures with given marginals. Ann. Math. Stat. 36 423–439. MR0177430 The Annals of Applied Probability 2019, Vol. 29, No. 3, 1929–1961 https://doi.org/10.1214/18-AAP1451 © Institute of Mathematical Statistics, 2019

UPPER BOUNDS FOR THE FUNCTION SOLUTION OF THE HOMOGENEOUS 2D BOLTZMANN EQUATION WITH HARD POTENTIAL

BY VLAD BALLY Université Paris-Est

We deal with ft (dv), the solution of the homogeneous 2D Boltzmann equation without cutoff. The initial condition f0(dv) may be any probabil- ity distribution (except a Dirac mass). However, for sufficiently hard poten- tials, the semigroup has a regularization property (see Probab. Theory Related Fields 151 (2011) 659–704): ft (dv) = ft (v) dv for every t>0. The aim of this paper is to give upper bounds for ft (v), the most significant one being of −η −|v|λ type ft (v) ≤ Ct e for some η,λ > 0.

REFERENCES

[1] ALEXANDRE,R.,DESVILLETTES,L.,VILLANI,C.andWENNBERG, B. (2000). En- tropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152 327–355. MR1765272 [2] BALLY,V.andCARAMELLINO, L. (2017). Convergence and regularity of probability laws by using an interpolation method. Ann. Probab. 45 1110–1159. MR3630294 [3] BALLY,V.,CARAMELLINO,L.andCONT, R. (2016). Stochastic Integration by Parts and Functional Itô Calculus. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser/Springer, Cham. MR3381599 [4] BALLY,V.andCLÉMENT, E. (2011). Integration by parts formula and applications to equations with jumps. Probab. Theory Related Fields 151 613–657. MR2851695 [5] BALLY,V.andFOURNIER, N. (2011). Regularization properties of the 2D homogeneous Boltzmann equation without cutoff. Probab. Theory Related Fields 151 659–704. MR2851696 [6] BENNETT,C.andSHARPLEY, R. (1988). Interpolation of Operators. Pure and Applied Math- ematics 129. Academic Press, Boston, MA. MR0928802 [7] BICHTELER,K.,GRAVEREAUX,J.-B.andJACOD, J. (1987). for Pro- cesses with Jumps. Stochastics Monographs 2. Gordon and Breach Science Publishers, New York. MR1008471 [8] BISMUT, J.-M. (1983). Calcul des variations stochastique et processus de sauts. Z. Wahrsch. Verw. Gebiete 63 147–235. MR0701527 [9] BOULEAU,N.andDENIS, L. (2015). Dirichlet Forms Methods for Poisson Point Measures and Lévy Processes. Probability Theory and Stochastic Modelling 76. Springer, Cham. MR3444890 [10] DE MARCO, S. (2011). Smoothness and asymptotic estimates of densities for SDEs with locally smooth coefficients and applications to square root-type diffusions. Ann. Appl. Probab. 21 1282–1321. MR2857449

MSC2010 subject classifications. 60H07, 60J75, 82C40. Key words and phrases. Boltzmann equation without cutoff, Hard potentials, interpolation crite- rion, integration by parts. [11] DEBUSSCHE,A.andFOURNIER, N. (2013). Existence of densities for stable-like driven SDE’s with Hölder continuous coefficients. J. Funct. Anal. 264 1757–1778. MR3022725 [12] DEBUSSCHE,A.andROMITO, M. (2014). Existence of densities for the 3D Navier–Stokes equations driven by Gaussian noise. Probab. Theory Related Fields 158 575–596. MR3176359 [13] FOURNIER, N. (2000). Existence and regularity study for two-dimensional Kac equation with- out cutoff by a probabilistic approach. Ann. Appl. Probab. 10 434–462. MR1768239 [14] FOURNIER, N. (2015). Finiteness of entropy for the homogeneous Boltzmann equation with measure initial condition. Ann. Appl. Probab. 25 860–897. MR3313757 [15] FOURNIER,N.andMOUHOT, C. (2009). On the well-posedness of the spatially homogeneous Boltzmann equation with a moderate angular singularity. Comm. Math. Phys. 289 803– 824. MR2511651 [16] FOURNIER,N.andPRINTEMS, J. (2010). Absolute continuity for some one-dimensional pro- cesses. Bernoulli 16 343–360. MR2668905 [17] GAMBA,I.M.,PANFEROV,V.andVILLANI, C. (2009). Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation. Arch. Ration. Mech. Anal. 194 253–282. MR2533928 [18] GRAHAM,C.andMÉLÉARD, S. (1999). Existence and regularity of a solution of a Kac equa- tion without cutoff using the stochastic calculus of variations. Comm. Math. Phys. 205 551–569. MR1711273 [19] GUERIN,H.,MELEARD,S.andNUALART, E. (2006). Exponential estimates for spatially homogeneous Landau equations via the Malliavin calculus. J. Funct. Anal. 2 649–677. [20] ISHIKAWA, Y. (2013). Stochastic Calculus of Variations for Jump Processes. De Gruyter Stud- ies in Mathematics 54.deGruyter,Berlin.MR3087501 [21] KOLOKOLTSOV, V. N. (2006). On the regularity of solutions to the spatially homogeneous Boltzmann equation with polynomially growing collision kernel. Adv. Stud. Contemp. Math.(Kyungshang) 12 9–38. MR2226696 [22] LAPEYRE,B.,PARDOUX,É.andSENTIS, R. (2003). Introduction to Monte-Carlo Methods for Transport and Diffusion Equations. Oxford Texts in Applied and Engineering Mathe- matics 6. Oxford Univ. Press, Oxford. MR2186059 [23] LÉANDRE, R. (1985). Régularité de processus de sauts dégénérés. Ann. Inst. Henri Poincaré Probab. Stat. 21 125–146. MR0798891 [24] TANAKA, H. (1978/79). Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Z. Wahrsch. Verw. Gebiete 46 67–105. MR0512334